
atmosphere

Review

Effects of PM2.5 on Chronic Airway Diseases: A Review of
Research Progress

Xin Li and Xiaoju Liu *

����������
�������

Citation: Li, X.; Liu, X. Effects of

PM2.5 on Chronic Airway Diseases: A

Review of Research Progress.

Atmosphere 2021, 12, 1068. https://

doi.org/10.3390/atmos12081068

Academic Editors: Haider A. Khwaja,

Azhar Siddique and Mirza

M. Hussain

Received: 30 July 2021

Accepted: 13 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China;
lix20@lzu.edu.cn
* Correspondence: liuxiaoju835@126.com or liuxj@lzu.edu.cn

Abstract: The adverse effects of polluted air on human health have been increasingly appreciated
worldwide. It is estimated that outdoor air pollution is associated with the death of 4.2 million people
globally each year. Accumulating epidemiological studies indicate that exposure to ambient fine
particulate matter (PM2.5), one of the important air pollutants, significantly contributes to respiratory
mortality and morbidity. PM2.5 causes lung damage mainly by inducing inflammatory response and
oxidative stress. In this paper, we reviewed the research results of our group on the effects of PM2.5

on chronic obstructive pulmonary disease, asthma, and lung cancer. And recent research progress
on epidemiological studies and potential mechanisms were also discussed. Reducing air pollution,
although remaining a major challenge, is the best and most effective way to prevent the onset and
progression of respiratory diseases.

Keywords: fine particulate matter (PM2.5); chronic airway disease; health effects; inflammatory
responses; oxidative stress; alveolar macrophages

1. Introduction

In the past few decades, air pollution has become a major contributor impacting
human health. More than 90% of the world’s population live in locations where the
air quality levels are far below the World Health Organization (WHO) standards. It is
estimated that 4.2 million people worldwide die from lung cancer, heart disease, stroke,
and acute and chronic airway diseases each year due to environmental air pollution [1].
Pollutants that have the greatest impact on human health include particulate matter (PM),
sulfur dioxide, ozone, and nitrogen dioxide. The harmful impacts of PM on human health
have become a major concern of the governments and health organizations around the
world [2].

PM consists of solids and liquid droplets suspended in the atmosphere. PM is generally
divided into three categories based on its aerodynamic diameter: coarse particles (PM2.5–10)
with a diameter of 2.5–10 µm, fine particles (PM2.5) with a diameter equal or less than
2.5 µm, and ultrafine particles with a diameter less than 0.1 µm. PM differing in the source
and chemical composition could lead to different health effects. PM2.5 has a relatively
small particle size, but a larger superficial area, which makes it easier to absorb all kinds of
toxic substances. The Global Burden of Disease 2015 ranks PM2.5 as the fifth highest risk
factor for death [3]. PM2.5 can enter the lung through breathing, deposit in the terminal
bronchioles and alveoli, and even transport to other tissues and organs via the circulation
system, causing multi-organ damage [4]. Results from our team and other epidemiological
studies have found that PM2.5 exposure is significantly associated with respiratory hospital
admissions and mortality [5,6]. Several crucial studies have been summarized in Table 1.

In this paper, we summarized recent epidemiological studies by our team and others
on the effects of PM2.5 on the development of chronic airway diseases, including chronic
obstructive pulmonary disease (COPD), asthma, and lung cancer, and discussed the poten-
tial mechanisms involved. A literature search was conducted using electronic databases
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Pubmed, Web of Science, and Scopus, focusing on peer-reviewed English journal articles
published in the last 5 years.

Table 1. Associations between PM2.5 and chronic airway diseases.

Author, Year, Reference Nationality Population Sample Health Effects Main Findings

Pun et al., 2017 [5] USA 529,000,000 COPD mortality
Per 10 µg/m3 increase in PM2.5 was

positively associated with a 1.10-fold risk of
COPD death (95% CI: 1.08, 1.12)

Doiron et al., 2019 [7] UK 303,887 COPD prevalence and
lung function

The odd ratio (OR) of COPD prevalence was
1.52 ([95% CI: 1.42, 1.62], per 5 µg/m3). For
each 5 µg/m3 increase in PM2.5 level was
associated with lower FEV1 (−83.13 mL

[95%CI: −92.50, −73.75]) and FVC
(−62.62 mL [95%CI: −73.91, −51.32]).

Cortez-Lugo et al., 2015 [8] Mexico 29 COPD symptoms

Per 10 µg/m3 increment in PM2.5 resulted in
a 33% increase in cough symptoms (95% CI:

5-69%) and a 23% increase in sputum
symptoms (95% CI: 2-54%)

Bao et al., 2020 [9] China 54,058 AECOPD
The excess risk (ER) in the daily outpatient
visits of COPD patients was 1.190% (95% CI:

0.176–2.215%, per 10 µg/m3)

Chi et al., 2019 [10] China 2251 asthma exacerbations

PM2.5 was closely associated with asthma
emergency department visits, with the
strongest effects on lag5 (relative risks

[RR] = 1.072, 95% CI: 1.024, 1.119)

Dunea et al., 2016 [11] Romania 25 asthma symptoms
PM2.5 was positively correlated with the
number of wheezing episodes (r = 0.87;

p < 0.01)

Hazlehurst et al., 2021 [12] USA 1469 asthma prevalence

Each 2 µg/m3 increase in PM2.5 exposure
was considered to be associated with a

1.29-fold increase in asthma risk (95% CI:
1.06, 1.58)

Abdul Wahab et al., 2019 [13] Malaysia 514 Lung cancer
histological types

Subjects exposed to PM2.5 were twice as
likely to develop lung adenocarcinoma as

other types of lung cancer (p = 0.024)

Bai et al., 2019 [14] Canada 100,146 lung cancer prevalence
The hazard ratio (HR) of per 5.3 µg/m3

increment in PM2.5 for lung cancer
incidence was 1.02 (95% CI: 1.01–1.05)

2. PM2.5 and Chronic Airway Diseases
2.1. COPD

COPD is a chronic inflammatory lung disease characterized by recurrent respiratory
symptoms and persistent airflow restriction. It is the third leading cause of death world-
wide [15]. Patients with COPD are more susceptible to the effects of ambient air pollution
than healthy people. The ambient PM2.5 is an important risk factor of COPD [16]. A recent
study analyzed data from 303,887 individuals aged 40–69 years from the UK Biobank and
found that higher PM2.5 concentration was significantly associated with COPD prevalence.
It was also demonstrated that for every 5 µg/m3 increase in the concentration of PM2.5, the
forced expiratory volume in 1 s (FEV1) and the forced vital capacity (FVC) decreased by
0.083 and 0.063 L, respectively [7]. Another study found that a short-term PM2.5 exposure
in COPD patients was associated with decreased FEV1, FVC, carbon monoxide diffus-
ing capacity, and maximal mid-expiratory flow, indicating that PM2.5 may affect airway
function and pulmonary dispersion function in patients with COPD [17].

PM2.5 exposure is associated with acute exacerbation of COPD (AECOPD). In an
adult cohort study in Mexico, per 10 µg/m3 increment in PM2.5 resulted in a 33% increase
in cough symptoms and a 23% increase in sputum symptoms [11]. We found that in
Lanzhou, China, per 10 µg/m3 increase in PM2.5 level led to a 1.190% increase in the daily
outpatient visits of COPD patients. Moreover, for every 10 µg/m3, the daily outpatient
visits increased by 0.978% for those aged <65 years old and 1.906% for those aged ≥65 years
old, suggesting that PM2.5 exposure had a greater impact on the elderly [9]. Consistently,
epidemiological studies performed in other countries or regions revealed a clear correlation



Atmosphere 2021, 12, 1068 3 of 12

between increased PM2.5 exposure and COPD-related hospital visits [18–21]. A meta-
analysis combining the results of 12 cohort studies showed that an increase of 10 µg/m3

in ambient PM2.5 is associated with a 3.1% increase in the hospitalizations for COPD [22].
Seasonal changes have an impact on the association between PM2.5 exposure and AECOPD.
Our study showed that PM2.5-related COPD outpatient visits were higher in winter than
in summer [9]. Other cohort studies also suggest a stronger correlation between PM2.5
exposure and COPD hospitalizations in cold weather [19,21,23]. However, Samoli et al. [24]
indicated that the association of PM2.5 exposure and COPD outpatient visits was stronger
in warmer seasons. Another study in Yinzhou, China also noted that the effects of PM2.5
on hospitalizations for COPD was stronger in the warm season (April to September) than
in the cold season (October to March) [18]. The discrepancy of seasonal impact of PM2.5 on
COPD patients might be related to differences in PM2.5 component and levels and human
activities. However, this needs to be further investigated.

The effects of PM2.5 on the risk of COPD death has been rarely studied, and the
conclusions are inconsistent. A cohort study of older adults in the United States investigated
the correlation between ambient PM2.5 exposure and the rate of mortality [5]. After
adjusting for possible influencing factors, a 12-month mean PM2.5 exposure concentration
(per 10 µg/m3 increase) was positively associated with a 1.10-fold risk of COPD death.
Date from the European MED-PARTICLES project during 2001–2010 suggested that every
10 µg/m3 increase in atmospheric PM2.5 over 6 days was relevant to a 2.53% increase in
COPD death [24]. In addition, long-term exposure to PM2.5 may be responsible for the
increased risk of cardiovascular death in patients with COPD [25]. However, other studies
had different conclusions. A population-based cohort study conducted in Canada failed to
demonstrate a significantly positive correlation between PM2.5 and the risk of COPD death
after adjusting for confounding factors [26]. Another study by Uccelli et al. [27] found no
association between PM2.5 and the rate of COPD death in central Italy.

At present, the pathogenesis of PM2.5 in COPD primarily focuses on inflammatory
response, oxidative stress, immune disorder, and cytotoxicity. PM2.5 exposure induces
airway inflammation in mice by increasing the infiltration of inflammatory cells, including
macrophages, neutrophils, and eosinophils (EOS). These cells secrete pro-inflammatory
molecules, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α [28–31].
Repeated PM2.5 also resulted in decreased pulmonary function and emphysema, even at
a lower level [31]. PM2.5 dose-dependently upregulates the expression of matrix metal-
loproteinase (MMP-9), MMP-12, fibronectin, collagen, and transforming growth factor
(TGF)-β1, in which the increased protease activity is highly related to airway remodeling
and development of emphysema in COPD [32]. Of note, PM2.5 exposure could significantly
worsen cigarette smoking (CS)-induced changes in COPD, suggesting that PM2.5 and CS
may synergistically promote the occurrence and the development of COPD. Our previous
studies showed that PM2.5 can obviously reduce the levels of total antioxidant capacity
(TAC) and glutathione peroxidase (GSH-Px), and increase the level of malondialdehyde
(MDA) in the lungs of COPD mice, suggesting that the oxidation/antioxidant imbalance
was aggravated in COPD after PM2.5 exposure [33,34]. The change in this balance will
increase oxidative stress and promote airway inflammation. We found that nuclear factor-
related factor 2 is a key mediator of PM2.5-induced oxidative stress exacerbation [33]. In
addition, PM2.5 is involved in the immune dysfunction of COPD. Our group have shown
that exposing COPD mice to PM2.5 triggered the imbalance of helper T cells (Th)1/Th2
and Th17/regulatory T cells (Treg) in the T lymphocyte subsets by activation of the Notch
pathway [35].

Alveolar macrophages (AMs) play a role in preventing PM2.5-induced AECOPD
(Figure 1). He et al. [36] have shown that PM2.5-bound lipopolysaccharide (LPS) promoted
the expression of IL-6, cyclooxygenase-2, and heme oxygenase-1 (HO-1) in AMs in COPD
mice via a myeloid differentiation factor 88 (MyD88)-dependent pathway. We have found
that LPS significantly upregulated the expression of Toll-like receptor 2 (TLR2) and TLR4
and increased the levels of pro-inflammatory cytokines in monocyte derived macrophages
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(MDMs) isolated from patients with COPD [37]. Furthermore, MDMs derived from pa-
tients with COPD showed decreases in the expression of TAC and GSH-Px and an increase
in the expression of MDA, indicating that COPD patients are under oxidative stress, and
that the oxidative stress is aggravated by exposure to PM2.5 or CS [33]. Excessive oxidative
stress may be responsible for the decreased phagocytic capacity of MDMs following PM2.5
exposure [38]. In support of this notion, our in vivo studies demonstrated that either
acute or chronic exposure to PM2.5 impaired AMs phagocytosis in COPD mice through
intensifying oxidative stress [34,39,40]. Our further study showed that actin-related protein
2/3 complex and F-actin mediated abnormal cytoskeletal rearrangement in response to
PM2.5, which aggravated the decline of AMs phagocytosis in COPD mice [41]. It has been
shown that PM2.5-dependent activation of phosphatidylinositol 3-kinase δ (PI3Kδ) and inhi-
bition of RAS homologous gene family member A activity were associated with abnormal
cytoskeletal rearrangement in AMs [42]. Our studies also suggest that traditional Chinese
medicine, such as Astragalus and Codonopsis pilosula polysaccharides, had protective
effects on the phagocytosis of AMs in COPD mice exposed to PM2.5 [34,39]. Moreover, the
direction of AMs polarization induced by PM2.5 still remains controversial. It has been
shown that PM2.5 can promote the polarization of AMs towards a M1 phenotype by a
reactive oxygen species (ROS)-dependent mechanism, which is associated with oxidative
stress [30]. In contrast, PM2.5 has also been shown to enhance an M2 phenotype and
promote the expression of MMP-9, MMP-12, and TGF-β in lung tissues [43].
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Figure 1. The role of macrophages in PM2.5-related chronic airway diseases. PM2.5 exposure promotes
recruitment of macrophages and release of cytokines, such as IL-6, IL-1β, and TNF-α. Macrophages
also release eotaxin-1 to attract eosinophil recruitment, and stimulate T cells to produce IFN-γ, IL-17,
and IL-21. PM2.5 induces macrophage phagocytosis dysfunction, which is related to oxidative stress.
Above effects leads to chronic lung inflammation. The increased expressions of ROS and HO-1 in
macrophages aggravates pulmonary oxidative stress. MMPs and TGF-β released by macrophages are
involved in the process of emphysema and airway remodeling. In addition, macrophages involved
in tumor angiogenesis by releasing VEGF.

It has been demonstrated that PM2.5 probably elicits autophagy of human bronchial ep-
ithelial cells (HBECs) by enhancing ROS-mediated oxidative stress [44,45]. Autophagy func-
tions to maintain cell homeostasis and adapt to stress under normal conditions, whereas
excessive autophagy results in cell death. Similarly, it has been reported that HBECs
produced nitric oxide synthase 2 and nitric oxide in vitro when exposing to PM2.5, which
resulted in autophagy-mediated cell death [46]. Excessive production of ROS contributes
to mitochondrial damage and HBEC apoptosis, linking to the development of emphy-
sema [31,47]. Li et al. [48] indicated that PM2.5 exposure down-regulated the expression
of microRNA (miR)-486, which caused ROS production and apoptosis of HBECs. PM2.5
also up-regulated long-noncoding RNA MEG3 and triggered p53-mediated apoptosis and
autophagy in HBECs [49]. Together, these findings suggest that PM2.5 induces HBECs
autophagy and apoptosis by epigenetic mechanisms.
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2.2. Asthma

Asthma is a complex heterogeneous disease characterized by chronic inflammation,
reversible airflow limitations, and airway hyperresponsiveness [50]. Asthma affects ap-
proximately 300 million people worldwide [51]. There is growing epidemiological evidence
that PM2.5 exposure can lead to deterioration of lung function and acute attacks in asth-
matic children and adults. In a Canadian panel study of school-age children with asthma,
exposure to trace metals in PM2.5 was associated with elevated exhaled nitric oxide [52].
A two-year study of asthma patients conducted by Duan et al. [17] showed that every
10 µg/m3 increase of PM2.5 at lag 3 reduced FEV1 by 0.012 L, FVC by 0.042 L, and the
peak expiratory flow (PEF) by 0.061 L/s, suggesting that a short-term PM2.5 exposure
was negatively correlated with FEV1, FVC, and PEF. A recent meta-analysis review study
showed that ambient PM2.5 was negatively associated with FEV1/FVC in adults with
asthma in general, despite the low or moderate risk of bias in some selected studies [53].

Currently, PM2.5 is generally believed to be relevant to asthma exacerbations in which
children are more susceptible than adults [10,54]. It is estimated that PM2.5 contributed
to 5–10 million of emergency department visits by asthma patients in 2015, accounting
for 4–9% of total visits worldwide [55]. To date, studies have confirmed that PM2.5 is
the only compound that is independently related to emergency department visits for
asthma patients [56,57]. Moreover, a case-crossing study from South Texas has shown
that elevated PM2.5 concentration increased the risk of readmissions in children with
asthma [58]. Wheezing is a primary respiratory symptom to assess exogenous factors that
trigger asthma attacks. In a study of allergic children in Romania, PM2.5 was positively
correlated with the number of wheezing episodes [11].

Schultz et al. [59] reported that the risk of asthma was increased by more than three
times for each 5 µg/m3 increase in annual average concentration of PM2.5. Interestingly,
even a level of PM2.5 well below WHO guidelines was also linked to an increased morbidity
of asthma and an increased risk of childhood sensitization to common allergens [60].
Moreover, a study of 4140 children in Southern California over 11 years demonstrated that
reductions in environmental PM2.5 were significantly correlated with the lower asthma
rates [61].

Exposure to PM2.5 early in life may increase an individual’s risk of developing asthma.
A population-based birth cohort study observed that a 2.7-fold increase in PM2.5 in the first
year of life was related to an absolute 4.1% increase in asthma risk by age 5 [62]. The impacts
of PM2.5 on asthma and wheezing in children can be traced back to embryonic development
in the womb. Yan et al. [63] reported that prenatal exposure to PM2.5 increased the risk
of asthma and wheezing in children, and was more strongly associated with the risk of
asthma in children under 3 years of age. Recently, a large multi-city sample study in the
United States suggests that fetal lung development during 26–36 weeks of gestation is
susceptible to the toxicity of PM2.5. Their study showed that each 2 µg/m3 increase in
environmental PM2.5 exposure was considered to be associated with a 1.29-fold increase in
asthma risk [12]. A large birth cohort in Taiwan, China has also shown the adverse effects
of prenatal and postnatal exposure to PM2.5 on the development of asthma in children [64].

Asthma is associated with Th2 airway inflammation with prominent infiltration of
EOS and the production of pro-Th2 cytokines, including IL-4, IL-5, and IL-13 [50,65]. PM2.5
exposure can exaggerate the effects of allergens in asthmatic mice, leading to increased
airway hyper-responsiveness and Th2 cytokine levels, and aggravation of Th1/Th2 cell
immune imbalance [66,67]. IL-33 and IL-25 are newly discovered Th2 cytokines. PM2.5
promotes the release of IL-33 and IL-25 to drive the Th2-biased immune response [68,69].
Nuclear transcription factor-κB (NF-κB), GATA binding protein 3, T-box transcription
factor, and Runt-related transcription factor 3 are involved in Th1/Th2 immune imbalance
induced by PM2.5 [66,70]. Our previous study indicated that the Notch pathway plays a
vital role in immune imbalance in asthma [71]. In another unpublished study, we found that
Notch pathway may link to PM2.5-induced Th1/Th2 immune response in asthmatic mice.
Th17/Treg imbalance is associated with asthma severity. Trace-elements that bind to PM2.5,
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such as polycyclic aromatic hydrocarbons, may be a strong candidate to regulate Th17/Treg
imbalance. PM2.5 targets glutamic oxalacetic transaminase 1 and hypoxia inductive factor
(HIF-1α) in an aromatic hydrocarbon receptor-dependent manner, shifting Th17/Treg
towards a Th17 predominance [72].

Increased EOS recruitment after PM2.5 exposure is associated with the severity of
airway inflammation in asthma [73]. During sustained PM2.5 treatment, the JAK/STAT6
and TLR2/TLR4/MyD88 pathways have been shown to regulate EOS recruitment [73,74].
Long-term exposure to PM2.5 aggravates asthma by promoting the polarization of M2
macrophages. The release of serum eosinophil chemokine (eotaxin-1) by M2 macrophages
may be another important reason for the increase of eosinophilic infiltration in asthma [75].

PM2.5 can up-regulate IL-17 and TNF-α and down-regulate integrin β4 levels, which
together aggravate neutrophil airway inflammation in asthma model [76,77]. PM2.5 also
affects neutrophil-related responses, such as neutrophilic extracellular traps (NETs), in a
ROS-dependent manner. NETs up-regulate the levels of quinone oxidoreductase, promote
the expression of MUC5AC and mucus over-secretion, leading to aggravation of the
asthmatic symptoms [78].

Functional and structural defects in HBECs exacerbate the severity of asthma. Ex-
posure to PM2.5 induces an increase in ROS levels and inhibits the expression of Stan-
niocalcin 2, the components of tight junctions, ultimately resulting in epithelial barrier
damage [79,80]. Disruption of this barrier function is accompanied by the secretion of
pro-inflammatory mediators and activation of the oxidative stress pathways, including
mitogen-activated protein kinase and NF-κB [80].

2.3. Lung Cancer

The International Agency for Research on Cancer classifies outdoor air pollution and
PM2.5 as class I carcinogens for lung cancer [81]. Numerous studies have identified that
exposure to air pollution, particularly PM2.5, is positively correlated with the morbidity
and the mortality of lung cancers [5,82,83]. Repeated outdoor PM2.5 exposure is related to
the risk of lung cancer death among never-smokers [84]. A prospective study involving
89,234 Canadian women found that environmental PM2.5 even at a low concentration was
correlated significantly with the incidence of lung cancer. The study also showed that the
relationship between PM2.5 exposure and lung cancer occurrence varied greatly by histo-
logical types, with an increased risk of small cell carcinoma by 53% and adenocarcinoma by
44% [85]. Similarly, two studies from Europe and Malaysia indicated a significant associa-
tion between ambient PM2.5 exposure and lung cancer, particularly adenocarcinoma [13,86].
In addition, Guo et.al [82] conducted a nationwide analysis in 295 Chinese cities from 2006
to 2014 and found that PM2.5 has a long-term lag effect on the incidence of lung cancer.

Yang et al. [84] compared the characteristics of lung cancer between China and the
United States. The study showed that the morbidity of non-smoker patients with lung
cancer in China was significantly higher than that of the United States. In China, the
mortality of lung cancer caused by PM2.5 was 18% for women and 10% for men, suggesting
that women have a higher risk of developing lung cancer attributable to PM2.5 than men.
Diagnosis of lung adenocarcinoma was dominated by women and non-smokers, and
subjects exposed to PM2.5 were twice as likely to develop lung adenocarcinoma as other
types of lung cancer [13]. In contrast, some studies have revealed that lung cancer incidence
correlated with PM2.5 was more significant for males [83,87]. The effect of age on PM2.5
associated lung cancer remains controversial. One cohort study on continued exposure to
outdoor air pollution and lung cancer morbidity showed that PM2.5 exposure had a greater
effect among younger individuals [14]. Another study suggested that PM2.5 was associated
with increased mortality of lung cancer among older adults [87].

PM2.5 can directly promote the proliferation, migration, and invasion of lung cancer
cells [88–90]. Lin et al. [91] found that combined exposure to PM2.5 and cigarette smoke
extract stimulated autophagy of lung cancer cells, leading to increased cell migration, inva-
sion, and epithelial mesenchymal transformation (EMT). Epithelial cells undergoing EMT
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show higher motility and aggressiveness, increasing resistance to apoptosis and chemother-
apy drugs, and even development of stem cell-like characteristics [92]. Cancer stem cells
(CSC) are also potential drivers of tumor initiation and progression. Chronic exposure to
PM2.5 can lead to the occurrence of EMT and CSC in vivo and vitro [88,92,93]. Oncogenic
pathways, including Notch, Smad, HIF-1α, and PI3K/Akt pathways, have been shown to
be involved in PM2.5-induced EMT process and facilitate tumor progression [90,92,94,95].

PM2.5 exposure leads to genetic and epigenetic abnormalities that play prominent
roles in lung carcinogenesis. RNA sequencing analysis has shown that on PM2.5 treatment
resulted in altered expression of 143 genes, including 66 up-regulated genes and 77 down-
regulated genes, in human non-small cell lung cancer (NSCLC) cell lines [96]. PM2.5 can
affect DNA methylation and the cell cycle. Inactivation of p53 by genetic or epigenetic
mechanisms is an oncogenic driver of lung cancer. An in vitro study demonstrated that
repeated exposure to low doses of PM2.5 induced hyper-methylation of p53 promoter
by increasing expression of DNA (cytosine-5-)-methyltransferase 3β (DNMT3B), leading
to p53 silencing. The study also found that up-regulation of DNMT3B expression was
attributed to activation of the ROS/protein kinase B pathway [97]. In another study,
lung cancer cells arrested in the G2/M phase after exposure to PM2.5, and this occurred
through up-regulation of p53 and p21 and down-regulation of CDK1 expression [98].
PM2.5 also has profound effects on the expression of miRNAs. Ning et al. [99] found
13 deregulated miRNAs related to lung cancer in the serum of mice inhaled PM2.5 for
8 weeks. Moreover, miR-32, miR-582–5p, and miR-199a-5p participate in PM2.5-induced
EMT and CSC processes, suggesting that miRNAs might be potential targets for lung
cancer therapy [94,95,100]. We found that melatonin has an anti-tumor effect by reducing
oxidative damage [101]. Further research on the role of melatonin in lung cancer cells
exposure to PM2.5 may be beneficial to the treatment of PM2.5-related lung cancer.

Changes in the lung cancer micro-environment, including inflammatory cytokines,
inflammatory cells, and angiogenesis, are associated with PM2.5-induced tumor progression
and metastasis. The proliferation and motility of tumor cells were significantly enhanced
under PM2.5 stimulation in which IL-1β and MMP-1 appeared to regulate the process [102].
The expression of IL-17a was increased in NSCLC patients. Long-term exposure to PM2.5
significantly up-regulated IL-17a in mice, resulting in increased expression of TGF-β1 and
its downstream signal, such as MMP-2 and MMP-9. These accelerated EMT and promoted
the development of NSCLC [88]. PM2.5 stimulates CD4+ and CD8+ T cells to release IFN-γ,
IL-17, and IL-21, and effectively induces cell death in cultured HBECs. Of note, this process
occurs in a macrophage-dependent manner, eventually damaging the respiratory tract
and promoting the progression of lung cancer [103]. Vascular endothelial growth factor
(VEGF) plays a crucial role in the maturation and remodeling of tumor blood vessels.
A study revealed that PM2.5 exposure recruited macrophages, induced angiogenesis by
secreting VEGF, and enhanced the invasion and infiltration of lung cancer both in vivo and
in vitro [104].

3. Conclusions

Despite many countries have strengthened the governance of air pollution in recent
years, the reduction of environmental PM2.5 remains a major challenge. This is associated
with the continuous rise of the morbidity and mortality of many diseases. Understanding
the impact of PM2.5 on common chronic airway diseases would be the first step towards
prevention and diagnosis of the health problems caused by PM2.5. Due to differences in
PM2.5 composition and concentration in different countries and regions, it is necessary to
conduct multi-regional cooperative research in the future to help reduce the significant
health burden.
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