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Abstract: Scientists who want to know future climate can use multimodel ensemble (MME) methods
that combine projections from individual simulation models. To predict the future changes of
extreme rainfall in Iran, we examined the observations and 24 models of the Coupled Model Inter-
Comparison Project Phase 6 (CMIP6) over the Middle East. We applied generalized extreme value
(GEV) distribution to series of annual maximum daily precipitation (AMP1) data obtained from both
of models and the observations. We also employed multivariate bias-correction under three shared
socioeconomic pathway (SSP) scenarios (namely, SSP2-4.5, SSP3-7.0, and SSP5-8.5). We used a model
averaging method that takes both performance and independence of model into account, which is
called PI-weighting. Return levels for 20 and 50 years, as well as the return periods of the AMP1
relative to the reference years (1971–2014), were estimated for three future periods. These are period
1 (2021–2050), period 2 (2046–2075), and period 3 (2071–2100). From this study, we predict that over
Iran the relative increases of 20-year return level of the AMP1 in the spatial median from the past
observations to the year 2100 will be approximately 15.6% in the SSP2-4.5, 23.2% in the SSP3-7.0, and
28.7% in the SSP5-8.5 scenarios, respectively. We also realized that a 1-in-20 year (or 1-in-50 year)
AMP1 observed in the reference years in Iran will likely become a 1-in-12 (1-in-26) year, a 1-in-10
(1-in-22) year, and a 1-in-9 (1-in-20) year event by 2100 under the SSP2-4.5, SSP3-7.0, and SSP5-8.5
scenarios, respectively. We project that heavy rainfall will be more prominent in the western and
southwestern parts of Iran.

Keywords: bias correction; exceedance probability; expected waiting time; heavy rainfall; L-moment
estimation; return period

1. Introduction

Extreme rain events can result in landslides and floods, accompanied with a loss of life
and the deterioration of infrastructure. Thus, understanding and projecting heavy rainfall is of
significant importance to climate change impact, adaptation, and vulnerability assessments.

Numerous studies have reported that extreme precipitation events have become
more frequent during the last century, and are occurring even more often over the 21st
century ([1–7], for example). A simplified and major reason for more frequent extreme
rainfall is the following: when the temperature increases, the saturation specific humidity
of the air is higher and therefore the air can contain a higher amount of water vapor, as
dictated by the Clausius–Clapeyron relationship [8]. When rain-triggering conditions are
developed, more saturated air leads to heavier rainfall [9,10]. This has been the case across
some areas of the world during the last century [11]. Seemingly paradoxically, as written
by Mann and Kump [12], “While many regions are likely to become drier, scientists predict
that even in those regions individual rainfall or snowfall events will become more intense,
although longer dry spells will separate them.”

When our interest is in predicting extreme climatic events, the generalized extreme
value (GEV) distribution is typically used for example [13–19]. The GEV distribution
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encompasses three asymptotic extreme value distributions by large sample theory [20]. In
this study, we used the GEV distribution to predict extreme quantiles in the future.

Over the past decades, many researches have focused on trends in extreme precip-
itation across Iran. Modarres and Sarhadi [21] reported that there is a decreasing trend
in annual total rainfall at 67% of the stations, while an increasing trend was observed
in the 24-hour maximum rainfall at 50% of the stations in Iran. Rahimi and Fatemi [22]
studied recent trends in average and extreme rainfall events in Iran during a 58-year pe-
riod (1960–2017). The results indicated that most areas have gone through a significant
increasing trend in extreme precipitation values, frequency, and intensity, especially in the
coasts of the Persian Gulf and in the southwestern regions of Iran. Shokouhi et al. [23]
evaluated the performance of CMIP5 (Coupled Model Inter-Comparison Project Phase
5) climate models in simulating temperature and precipitation in major rain-fed wheat-
production areas in Iran. The results showed that precipitation will increase in northern
areas toward the end of this century and a higher reduction in precipitation is anticipated
in the southern areas. Darand [24] reported, by using an ensemble of CMIP5 models, that
annual total rainfall and rainy days were predicted to decrease. However, the frequency
and intensity of downpour were projected to increase significantly, particularly in northern
and southwestern parts of Iran.

See [25–28], for example, for more studies on the impact of climate change on heavy
rainfall and flood frequency in Iran.

A few studies including [29] have analyzed the future projections of extreme rainfall
over Iran using an ensemble of CMIP6 models. Zarrin and Dadashi-Roudbari [29] projected
the intensity of extreme precipitation based on an ensemble of bias-corrected five CMIP6
models. In this study, we update the previous studies based on 24 CMIP6 models under the
three shared socioeconomic pathway (SSP) scenarios: SSP2-4.5, SSP3-7.0, and SSP5-8.5 [30].
We predict the amount of changes in the extreme rainfall using different methodology
from the previous works. The weights informing the performance and the dependence of
each model are provided in building a multi-model ensemble to predict the future extreme
rainfall in Iran.

Studies on the projection of future climate change have used ensembles of multiple cli-
mate simulations. Multi-model ensemble (MME) methods of climatic projection have been
shown to improve on the systematic bias and to have fewer of the general limitations that
are normally associated with individual simulation models. Among the many ensemble
techniques, model weighting or averaging is typically employed ([31–33], for example).

One typical unequal weighting scheme involves assigning more weights to those mod-
els that are more skilled and realistic for a specific process or application. This performance-
based weighting method and its variants, including Bayesian model averaging (BMA),
have been employed in many different studies [17,19,33]. It has improved the accuracy
of the projections and reduced the prediction uncertainty. However, it has been reported
that a few models often exhibit extremely high weights, but most others have very low
weights [19,34]. Here, the model performance is the systematic determination of model
bias and uncertainty, measured by comparing statistically the similarity of a modeled and
observed time series [35].

In addition to the model performance, some researchers have considered other criteria,
such as model convergence [36], model independency [37–40], and a semi-performance
measure [41]. Model convergence is a good agreement across models which is measured by
the distance of the i-th model from the ensemble average. Model independency is a counter
measure of inter-dependency or similarity between models. Model semi-performance is
a modified model performance to reduce the impacts of very high performed models to
the weights distribution. A weighting scheme that accounts for both the independence
and performance simultaneously is called the PI-weighting. In this study, we employ
PI-weighting to robustly quantify uncertainty in an MME. In calculating the PI-weights,
considering only one or two climate variables over a relatively small area can lead to an
overfitting problem [40,42]. To avoid this problem, we thus consider five climate variables
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as in Table 1 over Middle East, while our focus is the annual maximum daily precipitation
(AMP1) over Iran as in [43] did. The AMP1 (or annual Rx1day [44]) is defined as the annual
maximum precipitation (in mm) among the daily rainfall amount in the year.

Data and Climatology

Much of Iran is affected by subtropical high pressure (STHP) and is therefore located
in the desert belt of the Northern Hemisphere; however, climatic diversity in Iran is very
high [45]. In the north and on the southern shores of the Caspian Sea, the climate is
temperate and humid. In the western part of the country it is Mediterranean climate and
in the southern regions, the hot semi-arid climate prevails. Due to the existence of Alborz
mountains in the north and Zagros mountain ranges in the west of Iran, the interior of
the Iranian plateau also has an arid and desert climate. The mean annual temperature
increases from northwest to southeast, from about 10 °C in Azerbaijan region to 25–30 °C in
the south and southeast [46]. Due to its geographical location, Iran’s average precipitation
is much lower than the global average. More than two-thirds of Iran’s area has an average
annual precipitation of less than 300 mm, but there are rainfall nuclei above 1000 mm in the
Zagros region and the northern slopes of Alborz [47]. Results by Darand and Sohrabi [26]
indicated significant changes in daily precipitation over more than 50% of Iran during the
last two decades. This increasing trend is observed in the western and southwestern Iran.

We consider five climate variables over Middle East to avoid overfitting in calcu-
lating the PI-weights, while our focus is the annual maximum daily rainfall (AMP1)
over Iran in this study. Table 1 lists five climate variables. Consecutive wet days and
dry days are defined as consecutive days with daily precipitation of ≥1 and <1 mm,
respectively [48,49]. These are recommended by the Expert Team on Climate Change De-
tection and Indices [44,50]. These five variables including four auxiliary variables are used
to compute robustly the weights of independence of the CMIP6 models [40,42].

Table S1 in the accompanying Supplementary Materials lists the 24 CMIP6 climate
models used in this study. The considered scenarios are shared socioeconomic pathways
SSP2-4.5, SSP3-7.0, and SSP5-8.5 [30]. Three overlapping periods are considered for future
data, namely, period 1 (2021–2050), period 2 (2046–2075), and period 3 (2071–2100), abbre-
viated by P1, P2, and P3 in this study. The reason why the periods overlap is to make each
period at least 30 years long by the end of this century.

Table 1. The five climate variables considered in this study.

Variable Acronym Description

AMP1 Annual Maximum Daily Precipitation
AMP5 Annual Maximum Five-Day Precipitation
ATP Annual Total Precipitation

AMCWD Annual Maximum Consecutive Wet Days
AMCDD Annual Maximum Consecutive Dry Days

Figure 1 depicts maps of Middle East and Iran showing 42 observations sites and 47
points over 2◦ × 2◦ grids inside Iran. The observations for 44-year (1971–2014) reference
period were obtained from the Iran Meteorological Organization. The reason why we
choose 44-year reference period instead of 30-year is because there are the observations of
44 years over 42 stations in Iran. A sample size 44 is better than 30, both in estimating stably
the parameters of GEV distribution and in applying the bias correction method. To re-grid
and to construct a rain field on grid points of 2◦ × 2◦, the Barnes scheme [51] was used
for the observed time series and simulation data from the 24 CMIP6 models for each of
five climate variables. In total, 598 grid points were used to cover Iran and its surrounding
areas.
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Figure 1. (a) Map of the Middle East showing 42 observations sites inside Iran and 598 grid points over the whole area.
The Barnes interpolation method was used to re-grid and to build a rainfall field over 2◦ × 2◦ grids in Middle East. (b) Map
of the Iran from 44◦ to 62◦ longitude and 26◦ to 40◦ latitude, including the sea and land, with 47 grid points of 2◦ × 2◦ for
this study. This map was drawn by using a R package ‘ggplot2’ [52].

The remainder of this paper is structured as follows. The statistical methods are
described in Section 2. The results of model weights and projected future changes in Iran
are presented in Section 3. Discussions are then given in Section 4, followed by a conclusion
in Section 5. Details including technical specifics, tables, and figures are provided in the
accompanying Supplementary Materials.

2. Methods
2.1. Generalized Extreme Value Distribution

The generalized extreme value (GEV) distribution has been widely used to analyze
extreme univariate values. The cumulative distribution function of the GEV distribution is
as follows:

G(x) = exp

{
−
(

1 + ξ
x− µ

σ

)−1/ξ
}

, (1)

when 1 + ξ(x− µ)/σ > 0, where µ, σ, and ξ are the location, scale, and shape parameters,
respectively, [20].

The changes in extremes is usually described in terms of the changes in extreme
quantiles. These are computed by inverting the following (1): zp = µ− σ

ξ [1− {−log(1−
p)}−ξ ], where G(zp) = 1− p. Here, zp is called as the return level associated with the return
period 1/p. The value zp is expected to be exceeded once every 1/p years on average [20].
These quantities are defined for all values, but applied to extreme precipitation in this study.
Conversely to the above, the return period T(z) = 1/p for the given value z is obtained by
calculating p(z) = 1− G(z). For the given value z, T(z) is sometimes called the expected
waiting time, and the value p(z) = 1− G(z) is referred to as the exceedance probability of
z. The exceedance probability is often used as an alternative to the return period [53,54].
Another quantity that we can obtain is the expected number of reoccurrences during a
certain period. By multiplying 30 years (for example) by the exceedance probability p(z),
we can estimate the expected frequency of such years over a period of 30 years in which
we have more than z amount of AMP1 for a year.

The relative change of 20-year return level in the period Pi for i = 1, 2, 3 relative to the
reference period P0 is defined as:

δR20(Pi) =
R20(Pi)− R20(P0)

R20(P0)
× 100, (2)
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where R20(P) is the 20-year return level in the period P.
The parameters in GEV distribution are estimated by the maximum likelihood

method [20,55] or the L-moment method [13]. In this study, we employ the latter, which is
more efficient in small samples than the maximum likelihood estimator [13]. We used the
“lmom” package in R [56].

2.2. Bias Correction

The simulated data are often associated with systematic biases of the simulation
model. Such biases sometimes produce the historical data which are considerably different
from the distribution of the observations. Bias-correction (BC) methods are sometimes
employed to address this problem. A BC method transforms the simulated data into
new data which have fewer biases with respect to an observed time series. To correct the
model outputs more efficiently by taking account of the dependency among variables or
nearby grids, several multivariate BC methods have been proposed. In this study, we
chose the multivariate bias correction (MBC) method by Cannon [57] among the many
available BC techniques [24,58]; it is a multivariate extension of quantile delta mapping
(QDM). QDM has an advantage of preserving the approximate trends of the model data.
The MBC is applied to the five climate variables provided in Table 1 to take into account
the dependency among these variables. The method is not applied to the data of each
period separately but to the whole data of all periods (2021–2100) at once. More details are
provided in the Supplementary Materials.

2.3. Performance and Independence Weighting for Ensembles

Model averaging is a statistical method in which unequal or equal weights are as-
signed to those models. Despite some arguments, the equal weighting or “model democ-
racy” [32] has been criticized because it does not consider the performance, uncertainty,
and independency of each model in building an multi-model ensemble (MME) ([37,59,60],
for example).

As the basic idea of PI-weighting, models that agree poorly with observations for a
selected set of diagnostics receive less weight, as do models that largely duplicate existing
models [39]. Weights are computed for each model based on a combination of the distance
Di (apprising the performance) and the model similarity Sij (apprising the dependence):

wi =
exp(− Di

σD
)

1 + ∑M
j 6=i exp(− Sij

σS
)

, (3)

with the total number of models M and the shape parameters σD and σS. The weights are
normalized so that their sum equals 1.

The numerator represents the modeling skill when using a Gaussian weighting, where
the weight decreases exponentially the farther away a model is from the observed data.
The denominator is the “effective repetition of a model” [37] and is intended to account for
the model interdependency [39].

To compute the performance of each model, T-year return levels are compared based
on the GEV fitting on the historical data and the observations. To calculate the model
similarity Sij, we follow a technique proposed by Sanderson et al. [61] that is based on
the principle component analysis (PCA) applied to the simulation data only. This PCA is
executed separately for each of five climate variables. Thus, we have five distances between
models i and j. Then, the final distance are computed by averaging those five distances for
models i and j.

The parameters σD and σS tune the strength of weighting and the relative significance
of the performance and independence [42]. Large values will result in to an almost equal
weights, whereas small values will cause aggressive (or one-sided) weights, providing
most of the weight to a few models. The shape parameters are often determined through a
perfect model test (or a model-as-truth experiment) using the continuous rank probability
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score [40,42]. This leave-one-out procedure needs a huge computing time. To overcome this
computational burden, we follow a relatively simple method proposed by [43] to determine
the shape parameters. More details in computing the distance Sij and in selecting the shape
parameters are given in the Supplementary Material.

3. Results
3.1. Model Similarity

Table S2 provides the similarity values Sij for certain models. Figure 2 shows the
intermodel distance matrix for the 24 CMIP6 models considered in this study. The distances
are obtained from the five climate variables listed in Table 1 for the Middle East, using the
historical data and the future simulation data. Each box shows a pairwise combination,
where red color indicates a greater distance. According to Figure 2, models FGOALS-g3,
GFDL-ESM4, BCC-CSM2-MR, INM-CM5-0, MPI-ESM1-2-HR, and NorESM2-MM were
found to be the most independent, whereas models CanESM5, EC-Earth3-Veg, IPSL-CM6A-
LR, and CMCC-CM2-SR5 were found to be the most dependent. The details on these
models are available in Table S1 in the Supplementary Material.

3.2. PI-Weights

The normalized PI-weights are obtained using Equation (3) with σS = 0.4 and σD =
0.16. Figure 3 demonstrates the distributions of P-, I-, and PI-weights. The variability of
I-weights is smaller than that of P-weights.

The high P-weight of the KACE-1-0-G decrease in the PI-weight owing to the low
I-weight. The PI-weights of the GFDL-ESM4, NorESM2-MM, andBCC-CSM2-MR models
increase owing to a relatively high independency. The PI-weight is not located in the
middle of the P- and I-weights, but is close to the P-weight, except in a few cases. When
the P-weight (I-weight) is almost the same as the equal weight, as in the FGOALS-g3
(ACCESS-CM2 and ACESS-ESM1-5) model, the PI-weight is wholly influenced by the
I-weight (P-weight). The performances for some of the models, such as INM-CM4-8,
CMCC-ESM2, MPI-ESM1-2-LR, CanESM5, TaiESM1, and CMCC-CM2-SR5 are so low that
their (even relatively high) I-weights do not affect the final weights. Based on this view,
the performance is more influential to the PI-weights than the independency. Some of these
observations may be changed if different σS and σD are used.

3.3. Future Projection of Extreme Precipitation

Using the PI-weights obtained in the above section, the future extreme precipitations
are projected by the MME. Note that the future climate data are used after the bias correction
with the MBC method [57]. Figure 4 illustrates the time series plots of the 9-year moving
averages of AMP1 in Tehran with a 90% confidence band, from the observations, from the
PI-weighted MME of the historical data, and from the PI-weighted averages for the future
simulation data under the three SSP scenarios. Lower 5% and upper 5% prediction values
among 24 models are lined to construct 90% confidence band. In Figure 4, the line for the
observations shows more variation than the lines of bias-corrected historical data by the
PI-weighted MME. The variance of 9-year moving averages of observed AMP1 is 4.98,
whereas that value for the PI-weighted ensemble of bias-corrected historical data is 1.93.

3.4. Return Levels

Figure 5 (S3) displays boxplots of the 20-year (50-year) return levels of the AMP1 in
Iran. The boxplot of the historical data after BC is similar to that from the observations,
whereas the boxplot before BC is much smaller than that from the observations. The
increasing trends from P1 to P3 are evident in every scenario. This result is consistent with
that by Darand [24]. Summary statistics of the corresponding values of these boxplots are
provided in Table S3.
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Figure 2. A heatmap of the intermodel distance matrix, computed from the five climate variables for the Middle East, using
the historical data and the future simulation data, for the 24 Coupled Model Inter-Comparison Project Phase (CMIP) 6
models. Each box shows a pairwise combination, where red color show a greater independence and blue color show a
greater dependence.

Figure 3. Distribution of the weights for the 24 CMIP6 models calculated based on the performance only (asterisk),
the independence only (triangle), and both the performance and independence (circle). The weights are computed from the
five climate variables for the Middle East.
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Figure 4. Time series plots of 9-year moving averages of the annual largest daily rainfall in Tehran from the observed data
(dark brown line), from the PI-weighted ensemble of the bias-corrected historical data (black line) of the 24 CMIP6 models
for the past years (1971–2014), and the PI-weighted averages for the bias-corrected future data under the three shared
socioeconomic pathway (SSP) scenarios. Shaded bands show 90% confidence intervals. The blue, green, and red lines for
the future are for SSP2-4.5, for SSP3-7.0, and for SSP5-8.5, respectively. The weights are computed from the five climate
variables for Middle East.

Figure 5. Boxplots of 20-year return levels (unit: mm) of the annual largest daily rainfall averaged over 47 grids in Iran for
the future periods, namely P1 (2021–2050), P2 (2046–2075), and P3 (2071–2100), under the SSP2-4.5, SSP3-7.0, and SSP5-8.5
scenarios. OBS and HIST(NBC) stand for the observations and the historical data without a bias correction, respectively.

Figure 6 shows isopluvial maps of the 50-year return levels of the AMP1 for three
future periods under the three scenarios. Increasing trends from P1 to P3 in SSP3-7.0 and
SSP5-8.5 scenarios are predicted in the western and southwestern parts of Iran, which is
consistent with the result by Darand and Sohrabi [26].
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Figure 6. Isopluvial maps of the 50-year return levels (unit: mm) of the annual largest daily rainfall for 47 grids over
Iran for the future periods, namely, P1 (2021–2050), P2 (2046–2075), and P3 (2071–2100) under the SSP2-4.5, SSP3-7.0 and
SSP5-8.5 scenarios.

3.5. Changes in Return Levels

Figure 7 exhibits relative changes (unit: %) of the 20- and 50-year return levels of
extreme precipitation over Iran relative to the years 1971–2014. The increasing changes are
more evident in the northern part than in the southern area. Summary statistics of relative
changes are presented in Table S4 in the Supplementary Materials. Relative increases in the
observations for spatially averaged 20-year (50-year) return level are approximately 15.6%
(17.5%) in the SSP2-4.5, 23.2% (25.2%) in the SSP3-7.0, and 28.7% (30.0%) in the SSP5-8.5
scenario by the year 2100.

3.6. Change in Return Periods

Figure 8 displays boxplots for the 20-year and 50-year return periods, as compared
to the reference years (1971–2014) for the three future periods under the three scenarios.
The corresponding statistics are presented in Table 2. We realize that a 1-in-20 year (1-in-50
year) AMP1 in Iran will likely become 1-in-12 (1-in-26) year, 1-in-10 (1-in-22) year, and 1-in-
9 (1-in-20) year events in the median by 2100 based on the SSP2-4.5, SSP3-7.0, and SSP5-8.5
scenarios, respectively, as compared to the observations from 1971 to 2014. These findings
indicate that both return periods are likely to decrease on average by approximately 54%
under the SSP2-4.5 and 57% under the SSP5-8.5 by the year 2100.
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Figure 7. Isopluvial maps of for the relative changes (unit: %) of (a) 20-year and (b) 50-year return levels relative to
1971–2014 for the annual largest daily rainfall for 47 grids over Iran for the future periods P1 (2021-2050), P2 (2046-2075),
and p3 (2071-2100) under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios.

Figure 8. Parallel coordinated boxplots, similar to those in Figure 5, but for (a) 20-year and (b) 50-year return periods (unit:
year) relative to the observed data from 1971 to 2014.
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Table 2. Statistics of 20-year and 50-year return periods (unit: year) of the annual largest daily
rainfall averaged over 47 grids in the Iran for future periods P1 (2021–2050), P2 (2046–2075), and P3
(2071–2100) under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios.

SSP2-4.5 SSP3-7.0 SSP5-8.5

P1 P2 P2 P1 P2 P3 P1 P2 P3

Mean 14.5 13.9 12.9 14.7 12.6 10.3 13.8 11.2 9.4
20- Q1 12.3 11.0 10.3 12.3 10.7 8.5 11.7 8.9 7.6

year Median 14.2 13.1 12.3 14.4 12.6 9.7 13.1 10.8 9.4
Q3 16.2 15.1 14.2 16.3 14.2 11.7 15.6 12.9 10.9

Mean 33.8 30.8 28.8 32.8 28.2 22.9 32.1 25.6 20.8
50- Q1 26.9 24.6 22.3 25.5 23.0 18.2 25.6 19.2 15.8

year Median 33.8 29.2 26.9 33.8 29.0 22.4 31.3 24.5 19.3
Q3 38.9 35.6 33.1 39.4 33.6 27.3 37.8 31.6 25.2

3.7. Exceedance Probability and Waiting Time

The spatially averaged estimates of the exceedance probability are presented in
Figure S5 and Table S5. There are relatively large differences in the exceedance proba-
bility of a rainfall of 50 to 80 mm compared with that for over 80 mm, as shown in Figure S6.
The differences between the past and future scenarios are distinct during the period P3.

The expected waiting time (T(z)) until the reoccurrence of a specific AMP1 value (z)
are listed in Table 3. For z = 50 mm of rainfall, for example, the expected waiting times
until a reoccurrence are 28 years in the past, 13.0 years in the future period P1, 10.8 years in
P2, and 7.9 years in P3 based on the SSP5-8.5 scenario.

Table 3. The expected waiting time (unit: year) until reoccurrence of specific annual maximum daily
precipitation (AMP1) values from 20 to 100 mm in the Iran obtained from the observations (OBS) and
the CMIP6 model ensemble under the three SSP scenarios for three future periods (P1, P2, and P3).

SSP2-4.5 SSP3-7.0 SSP5-8.5

AMP1 OBS P1 P2 P3 P1 P2 P3 P1 P2 P3

20 mm 1.4 1.3 1.2 1.3 1.3 1.3 1.2 1.2 1.2 1.2
30 mm 3.0 2.7 2.4 2.5 2.8 2.6 2.1 2.2 2.3 2.1
40 mm 8.8 6.2 5.4 6.2 6.6 5.8 4.7 6.3 5.0 4.1
50 mm 28.1 14.2 12.8 15.5 13.3 13.6 10.2 13.0 10.8 7.9
60 mm 83.5 35.2 36.3 42.3 39.6 31.9 26.2 33.1 23.8 19.9
80 mm 690 216 178 170 207 232 127 120 83.7 74.6

100 mm 2556 619 405 498 541 663 310 415 208 204

3.8. Expected Number of Reoccurring Years

The expected number of years of occurrence are given in Table S6. For z = 50 mm, as
a specific example, during the last 30 years, we have experienced 0.9 year in which AMP1
was greater than 50 mm. In addition, we are likely to have an expected number of years of
2.3 for the future period P1, 2.8 for P2, and 3.8 for P3 under the SSP5-8.5 scenario.

From this comparison, particularly for AMP1 of 50 mm, the expected number of years
of occurrence for the future periods under the SSP5-8.5 scenario increases by approximately
2.5 (3.1) times that over the last 30 years for P1 (P2), and 4.2 times that for P3 by the
end of 21st century. These results are based on the spatially averaged values. When the
exceedance probability is considered for each grid, different local results will be obtained.

4. Discussion

It is accepted in general that increasing greenhouse gases induce atmospheric temper-
ature warming, which leads to increasing equivalent humidity, according to the Clausius–



Atmosphere 2021, 12, 1052 12 of 16

Clapeyron relationship [8]. The increase in atmospheric water vapor is the main factor in
generating convective instability.

Zarrin and Dadashi-Roudbari [29] concluded that the trend and slope of the intensity
of extreme precipitation are increasing by the year 2100 in all zones in Iran except for some
areas (BWh, BWk, and Cfa zones) for SSP1-2.6 and SSP3-7.0 scenarios. Our result shows
that the increasing trend of the AMP1 is projected in the western and southwestern parts
of Iran. Based on Figure 6 of this study, there seems no change from P1 to P3 in Cfa zone,
which leads to the same result by two studies. In Bwh and BWk zones, our result shows that
there are no changes for SSP2-4.5 scenario, but increasing trends for SSP3-7.0 and SSP5-8.5
scenarios. Thus, it seems hard to compare two results directly. However, an agreement
in general between two studies is that the increasing trend of extreme precipitation is
projected over Iran except for some area.

The daily precipitation data consist of measurements from 00:00 to 24:00 throughout
the day. In daily observations, the rainfall does not accumulate between 22:00 and 02:00, for
example. In the data used in this study, such precipitation is divided and recorded in two
separate days. The actual serious daily risk due to heavy rainfall does not exactly depend
on the precipitation over a time duration from 00:00 to 24:00 exclusively. It is therefore
recommended to consider the AMP1 data based on the maximum precipitation during
the 24 h movement. In this sense, the results presented in this study underestimate the
actual intensity and frequency of AMP1. More realistic daily data, such those as obtained
after moving for 24 h and the annual maximum of two (and several) days of precipitation,
should be used in a future study for assessment of risk owing to extreme rainfall.

Brunner et al. [42,62] considered multiple observational (or reanalysis) datasets to
include an estimate of the observational uncertainty. They proposed a novel approach to
account for the observational spread and uncertainty in a multi-model weighting study,
which can lead to robust result and a more precise uncertainty quantification. In addition,
considering multiple observational datasets may address the problem in which the BC and
performance-based weighting scheme utilize an excessive number of observations. We
believe that using the observations twice in the BC and weight calculation is unadvisable.
Xu et al. [34] considered a Bayesian weighting method that removes observations during the
initial phase of the downscaling and adds them in the estimation of posterior distribution.
However, if the series of observations is sufficiently long to divide into two parts, we may
use one part for the BC and the other part for weights calculation. Although we did not
apply these methods, this would be a good approach in a future study.

5. Conclusions

We estimated the future changes in precipitation extremes within Iran using observa-
tions, 24 multiple CMIP6 models, generalized extreme value distribution, the multivariate
bias correction technique, and the model weighting method (PI-weighting), which account
for both the performance and independence of the models. To avoid overfitting in the
PI-weighting, we considered five climate variables over Middle East.

In applying the PI-weighting method, we follow ways of selecting two shape param-
eters [43], based on the p-value of the chi-square statistic and entropy. The methods are
simple and intuitively appealing, although they may need more justification to use.

From 20-year and 50-year return levels of the annual maximum daily precipitation
(AMP1) averaged over 47 grids in Iran for three future periods under three SSP scenarios,
the increasing trends from P1 (2021–2050) to P3 (2071–2100) are evident in SSP3-7.0 and
SSP5-8.5 scenario. This result is somehow consistent with that of Darand [24]. We predict
that the relative increases of 20-year return level of the AMP1 in the spatial median from
the past observations to the year 2100 will be approximately 15.6% in the SSP2-4.5, 23.2%
in the SSP3-7.0, and 28.7% in the SSP5-8.5 scenarios, respectively.

From the analysis described in this study, we realized that a 1-in-20 year (1-in-50 year)
AMP1 within Iran will likely become a 1-in-12 (1-in-26) year, a 1-in-10 (1-in-22) year, and a
1-in-9 (1-in-20) year event in terms of the median by the year 2100 under the SSP2-4.5,
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SSP3-7.0, and SSP5-8.5 scenarios, respectively, as compared to the observed data from 1971
through 2014. The increasing trend is projected in the western and southwestern parts
of Iran.

The expected frequency of the reoccurring years, particularly for AMP1 about 50 mm
under the SSP5-8.5 scenario, is predicted to increase by approximately 2.5 times that of
the past 30 years for period 1 (2021–2050), about 3.1 times that for period 2 (2046–2075),
and approximately 4.2 times that for period 3 (2071–2100).

Heavy rainfall can have a significant effect on human life, communities, infrastructure,
agriculture, and natural ecosystems. Thus, in addressing the impact of climate change
due to more frequent extreme precipitation events, governments and communities should
prepare the proper infrastructure and systems more carefully and securely to prevent
critical damage, such as loss of life from landslides and flooding.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
atmos12081052/s1. Table S1: The list of 24 CMIP6 (Coupled Model Intercomparison Project Phase
6) models analyzed in this study. Table S2: The similarity distance metric Sij between model i and
model j. Table S3: Statistics of 20-year and 50-year return levels of the annual largest daily rainfall
(unit: mm) averaged over 47 grids in Iran for the observations (OBS) and the future periods under
the three SSP scenarios. Table S4: Relative change (unit: %) in 20-year and 50-year return levels
of the annual largest daily rainfall averaged over Iran relative to 1971–2014. Table S5: Spatially
averaged the exceedance probability over Iran for the annual maximum daily precipitation (AMP1)
from 20mm to 100mm, obtained from the observations (OBS) and the CMIP6 models. Table S6: The
expected frequency of reoccurring years during 30 years for specific the annual maximum daily
precipitation (AMP1) values from 20mm to 100mm in Iran, obtained from the observations (OBS) and
the CMIP6 models. Figure S1: Plot of the entropy as σS changes from 0.1 to 1.0. Figure S2: Examples
of time series plots of the observations (blue line), CMIP6 data (green line), and the bias-corrected
data (red line) in Iran. Figure S3: Arrangement of data and 7-year moving averages composed of
the historical data from 1850 to 2014 and the future data for computing the Spearman correlation
coefficient between models. Figure S4: Box-plots of 50-year return levels of the annual largest daily
rainfall (unit: mm) averaged over 47 grids in Iran for the future periods under the three SSP scenarios.
Figure S5: The exceedance probability plots for the annual maximum daily precipitation (AMP1)
from 20 mm to 100 mm in Iran, obtained from the observations (OBS) and the CMIP6 models.
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