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Abstract: Since the industrial revolution, air pollution has become a major problem causing several
health problems involving the airways as well as the cardiovascular, reproductive, or neurological
system. According to the WHO, about 3.6 million deaths every year are related to inhalation of
polluted air, specifically due to pulmonary diseases. Polluted air first encounters the airways, which
are a major human defense mechanism to reduce the risk of this aggressor. Air pollution consists of
a mixture of potentially harmful compounds such as particulate matter, ozone, carbon monoxide,
volatile organic compounds, and heavy metals, each having its own effects on the human body.
In the last decades, a lot of research investigating the underlying risks and effects of air pollution
and/or its specific compounds on the airways, has been performed, involving both in vivo and in vitro
experiments. The goal of this review is to give an overview of the recent data on the effects of air
pollution on healthy and diseased airways or models of airway disease, such as asthma or chronic
obstructive pulmonary disease. Therefore, we focused on studies involving pollution and airway
symptoms and/or damage both in mice and humans.

Keywords: air pollution; respiratory system; mouse studies; human models

1. Introduction

Air pollution has become a hot topic in the last couple of years as more and more
negative effects on the respiratory, cardiovascular, neurological, and reproductive systems
were discovered. According to the World Health Organization (WHO), about 4.2 million
people died in relation to ambient air pollution suggesting a high impact of air pollution
on our quality of life and on our health system [1,2]. Looking closer to deaths caused
by pulmonary diseases, around 3.6 million deaths occur worldwide [3,4]. One of the
major sources of air pollution, next to natural sources such as volcanos or wildfires, is
industrialization. Developed countries are constantly trying to reduce air pollution, but
developing countries that still need industrialization to grow, observe increased levels of
air pollution [5]. This leads to the fact that 80% of people who live in urban regions are
exposed to air pollution levels exceeding the WHO guidelines [5,6]. Over the last five
years, a lot of research has been published about the effects of air pollution or specific
pollutants on the respiratory system. In this review, we aimed to give an overview of recent
literature with an immunological focus on the effects on healthy and diseased airways such
as asthma or chronic obstructive pulmonary disease (COPD) both in human studies as well
as in murine studies. Therefore, we divided this review into two parts after the definition
of air pollution and the respiratory system. First, we describe lessons learned from murine
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and in vitro studies highlighting the immunological response, and secondly, we assess the
impact of air pollution on human health focusing on respiratory diseases.

2. Definition of Air Pollution

The definition of air pollution according to the Engineers Joint Council, is “the presence
in the outdoor atmosphere of one or more contaminants, such as characteristics and levels of
dust, fumes, gas, mist, odor, smoke, or vapor, to be injurious to human, plant, animal life or
property. Their presence might also unreasonably interfere with the comfortable enjoyment
of life and property.” [7,8]. Based on the physical state and particle size, several distinctions
can be made. Firstly, two main types of pollutants based on the composition can be
distinguished: gaseous compounds and particulate matter (PM) [5,9]. Gaseous compounds
contributing to air pollution are ozone, nitrogen oxides (NOx, as reviewed by [10–12]),
carbon monoxide (CO), carbon dioxide (CO2) and volatile organic compounds ((VOCs);
polyaromatic hydrocarbons (PAH), and heavy metals) [9]. Secondly, PM (consisting of
solid and liquid particles) can be subdivided based on particle size into PM10 (<10 µm),
PM2.5 (<2.5 µm), and ultrafine particles (<0.1 µm) [5,9]. Although gaseous compounds can
have a negative effect on the airways, particulate matter is supposed to have the greatest
impact on our respiratory system [5]. Another important subdivision is by primary and
secondary pollutants. Primary pollutants are those directly emitted by the sources like CO
or SO2, while secondary pollutants are those formed in the atmosphere as a consequence
of chemical and physical reactions. Examples of secondary pollutants are ozone, NO2,
sulfates, and ultra-fine particles (UFP) [13].

3. The Respiratory System and Air Pollution

The respiratory system is composed of two main zones: the conducting zone and the
respiratory zone each with their specific function, respectively transportation of gases and
gas exchange [14]. The conducting zone consists of the trachea, bronchi up to the terminal
bronchioles, whereas the respiratory zone consists of the respiratory bronchioles, alveolar
ducts, alveolar sacs, and alveoli [14]. Chronic lung diseases, such as asthma and COPD,
result from inflamed or obstructive lungs [15] and are one of the two world’s biggest
burdens on the health system [16].

Air pollution and, more specifically, particle matter can deposit in several regions
of the lung depending on the size of the particle, shape, density, and breathing pattern
(Figure 1) [17]. Particles with a size > 10 µm usually do not penetrate the lower airways
as they will be filtered by the nose and upper airways [18,19]. On the other hand PM10,
PM2.5, and ultrafine particles (UFP) will penetrate the lower airways and deposit deeper
into the lungs with the smallest particles (PM2.5 and UFP) accumulating in the terminal
bronchioles and alveoli and the PM10 more in the conducting airways [18,19]. Furthermore,
UFP can even diffuse into the systemic circulation via the blood-air barrier reaching even
the heart, liver, spleen, or brain [19]. Particles will be eliminated through distinct pathways
depending on the site of deposition. Mucociliary transport and clearance by airway
macrophages are the two major pathways [20,21].

Looking closer into the airways, inhaled pollutants will first come into contact with the
bronchial epithelium which is the protective barrier against all environmental compounds,
regulating both innate and adaptive immune responses [18,22]. Secondly, innate immune
players such as the alveolar macrophages can also contribute to the clearance of particles
via phagocytosis [18]. Both pathways eventually lead to the induction of oxidative stress
and inflammatory responses in the airways causing damage to the lungs [18,22].
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circulation. Created with BioRender.com. 
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Figure 1. Deposition of particulate matter in the airways. Particulate matter (PM) consists of several
particle sizes which deposit in the airways at different levels. PM > 10 µm will accumulate in the
upper airways and filtered by the nose. PM < 10 µm (PM10) will penetrate in the lower airways up to
the level of the conducting airways. PM < 2.5 µm (PM2.5) will also deposit in the lower airways but
will accumulate deeper in the terminal bronchioles and alveoli. Ultrafine particles (UFP < 0.1 µm)
will reside at the level of the alveoli in the lower airways and can even diffuse into the systemic
circulation. Created with BioRender.com.

4. Lessons Learned from Exposure Models: Murine and Human Data

A lot of research about the effects of air pollution on the airways has been done in both
in vivo and in vitro models. In this part, the different types of pollutants will be discussed
in relation to the airways in murine and in vitro models and humans with a focus on the
immunological response.

4.1. Ozone

Depending on the dose and the frequency, ozone can induce different injuries and
inflammation in the lungs [23,24]. It is already known that being exposed to even a small
amount of ozone, can cause an asthma exacerbation and further worsening of the symptoms
of respiratory diseases, with even an increase in mortality [25]. Therefore, a lot of murine
models and studies have been performed to investigate the underlying mechanisms and
possible risk factors that enhance ozone-induced lung inflammation and injury.

Acute exposure to ozone (single exposure with low or high amounts) leads to acute
disruption of the airway epithelium with desquamation of epithelial cells and leakage due
to disrupted tight junctions [23,24]. Especially, a recent study has shown that ozone changes
the claudin 3 and 4 expressions in mouse bronchial epithelium leading to a leaky barrier
probably via reactive oxygen species (ROS) secreted by alveolar macrophages [26,27]. The
ozone-induced epithelial disruption is related to the release of interleukin (IL)-1α and IL-33
by epithelial cells together with chemokines CXCL1 and CCL2, macrophage inflammatory
protein-2 (MIP-2), and IL-6 resulting in macrophage and neutrophil recruitment to the
airways, inducing neutrophilic inflammation [23,24,28,29].

Also, oxidative stress (via mitochondrial ROS) and activation of the NLR family pyrin
domain containing 3 (NLRP3) inflammasome are induced after acute exposure to ozone and
are playing a crucial role in the pathogenesis of the induced airway inflammation [30,31].
As a result of NLRP3 inflammation activation, ozone induces IL-17A produced by innate
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immune cells such as innate lymphoid cells or γδ T cells which also contributes to activation
and attraction of neutrophils to the airways leading to airway hyperreactivity [32].

Chronic ozone exposure (multiple exposures with small or high amounts of ozone)
induces similar problems as acute exposure but is amplified. Indeed, studies in mice have
shown that repeated exposure to ozone leads to lung inflammation, oxidative stress, mito-
chondrial dysfunction, activation of the NLRP3 inflammasome, and eventually emphysema
with fibrosis in the lungs [23,33]. Secondly, recently it has also been shown that chronic
ozone exposure leads to activation of the aryl hydrocarbon receptor (AhR), which is broadly
expressed on immune cells and epithelial cells, and which plays a protective role via IL-22
production in the lungs [34]. AhR can have several effects depending on the nature of the
ligand and the environment [34]. Ozone induced the production of tryptophan and lipoxin
A4 (LXA4), both ligands for AhR. After activation of this receptor, IL-22 levels together
with ILC3 and γδ T cells are repressed leading to lesser inflammation and induction of
tissue remodeling [34].

Several studies have shown that obesity and being overweight lead to limitations
in pulmonary function leading to the hypothesis that air pollution can have a bigger
effect on the lungs [35]. Also, other effects of air pollution have been described between
gender [36]. Therefore, obesity and sex differences have been described as risk factors to
augment the response towards ozone [37]. In obese mice, it has been shown that acute
ozone exposure leads to a further increase of IL-17A in the lungs leading to more neutrophil
recruitment and airway hyperresponsiveness [38]. Secondly, different responses to ozone in
the different sexes have already been investigated. Androgens, for example, are known to
further increase ozone-induced airway hyperreactivity in C57BL/6 mice [39]. On the other
hand, the estrous cycle and 17β-estradiol, also play an important role in reducing lung
inflammation and hyperresponsiveness after ozone exposure [40,41]. This is also confirmed
in a study exposing both male and female mice to ozone, where different responses in
cellular inflammation and airway hyperreactivity were noted, which might be induced by
a different microbiome [42,43].

Lastly, several studies described the effect of ozone exposures in allergic murine
models. Last et al. (2004) showed that ozone-induced exacerbation of allergic inflammation
is dependent on the sequence of exposure and on the concentration of ozone [44]. Most
studies have been done in an ovalbumin (OVA) allergic murine model and most of them
indicated that ozone aggravates airway inflammation, airway hyperresponsiveness, airway
remodeling, and mucus secretion in OVA-allergic mice [45–47]. However, a study by
Hansen et al. (2016) observed no aggravation of ozone in OVA-allergic mice, it even showed
that allergic mice were protected from the effect of ozone irritation in the airways [48].
These contradictory results show that exposure time and concentration of ozone can lead to
different responses in the airways making it difficult to summarize the different pathways.

Controlled human exposure to ozone causes increased inflammation as evidenced by
neutrophil influx into the lung and increased levels of proinflammatory cytokines [49]. Also,
plasma clara cell protein (CC16) levels, which is a common biomarker used for epithelial
cell damage, were observed to be significantly increased after low-level ozone exposure
in an ozone concentration-dependent manner. Metabolomics analysis of bronchoalveolar
lavage (BAL) samples from volunteers exposed to ozone demonstrated oxidative stress
responses and subsequent cellular repair, with metabolomic signals of increased energy
usage [50]. Focusing on airway inflammation, sputum neutrophils obtained after exposure
showed a small significant increase but in contrast, proinflammatory cytokines (IL-6, IL-8,
and tumor necrosis factor-α (TNF- α)) were not significantly affected [51]. in vitro, ozone
stimulated bronchial epithelial cells induced IL-6 and IL-8 expression [52]. Furthermore,
ozone induced intercellular adhesion molecule 1 (ICAM-1) expression and neutrophil
adhesion to human airway epithelial cells [53]. As in murine models, the effect of obesity
in the response to ozone was studied. Obese females had a larger reduction in forced
vital capacity (FVC) associated with the acute ozone exposure compared to normal-weight
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females [54]. However, no obesity-related difference was observed in airway reactivity and
inflammation [54].

4.2. Carbon Monoxide

CO is a color-free and odorless gas originating from any incomplete combustion of
hydrocarbons or cigarette smoke and can lead to toxicity in the lungs [55]. Breathing high
concentrations of CO leads to the forming of carboxyhemoglobin, resulting in functional
anemia [56]. In this part, the focus will lie on the effects of CO as a toxic part of cigarette
smoke and in short, the unexpected protective effects CO can have in other diseases.

It is well-known that cigarette smoke has several negative effects on the airways, such
as induction of oxidative stress, neutrophilic airway inflammation, and emphysema leading
to COPD (see 5.2) [57]. Cigarette smoke will first induce epithelial cell damage releasing
alarmins and damage-associated molecular patterns (DAMPs) into the airways, further
stimulating the innate and adaptive immune system resulting in neutrophilic inflammation
and the symptoms of COPD [58]. It is important to take into account that several methods
can be used to deliver CO in the form of cigarette smoke to the mice, namely nose-only
exposure or whole-body exposure [59]. Serré et al. (2021) compared both methods and
stated that after 14 weeks of cigarette smoke exposure, the mice receiving it via whole-body
exposure had more inflammation in BAL fluid while nose-only exposure led to more
bronchial epithelial damage, mucus production, and airspace enlargement [60]. In contrast,
Kogel et al. (2021), showed also differences between nose-only exposure and whole-body
exposure in ApoE-/- mice (murine model for atherosclerosis) which might be specific for
this mouse strain, where the nose-only mice had more lung inflammation and molecular
dysregulation of the respiratory system [61]. Other studies have found similar effects on
the airways when exposed to cigarette smoke via a nose-only or via a whole-body system
making it important to take into account when comparing studies [62,63]. Milad et al.
(2021), recently showed that the recruited neutrophils together with IL-1α produced by
epithelial cells can regulate the surfactant homeostasis present after exposure to cigarette
smoke [64]. However, more research is needed to clearly investigate if neutrophilic inflam-
mation is a cause for COPD or if neutrophils are just reacting to what happens in the airway
environment. Next to the neutrophilic inflammation, airway remodeling is a feature of
cigarette smoke-induced COPD [57]. As the complete underlying mechanisms of airway
remodeling are not fully understood, murine COPD models are unraveling this. Recent
evidence demonstrated that the IL-33/ST2 axis [65] and/or the AhR [66] are important for
airway remodeling.

Next to its negative effects, several studies have observed that carbon monoxide
can have a protective role in several lung diseases, such as acute lung injury [67,68],
pulmonary interstitial inflammation [69], bronchopulmonary dysplasia [70], and bacterial
infections [71,72]. In general, all these murine studies showed that carbon monoxide can
alter the fibrotic processes and inflammatory processes leading to a better outcome and
less fibrosis or inflammation [67–73].

For human exposure models, we also focused on studies of CO in the context of
cigarette smoke and not on CO poisoning. Inhalation of cigarette smoke induces airway
barrier dysfunction. Pretreatment of Calu-3 cells, an epithelial cell line, with cigarette smoke
induced airway barrier dysfunction, measured by decreased transepithelial electrical resis-
tance (TEER). In addition, cigarette smoke pretreatment induced suppressed expression
of multiple tight and adherens junctions [74,75]. Besides epithelial barrier dysfunction,
cigarette smoke exposure also induces oxidative stress, increased inflammatory mediators,
and NLRP3 protein expression in bronchial and alveolar epithelial cell lines. Transient
receptor potential protein (TRP) ion channels TRPA1 and TRPV1 are both suggested to
mediate cigarette smoke-induced damage of epithelial cells via modulation of oxidative
stress and inflammation [76].
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4.3. Carbon Dioxide

Not much is written concerning carbon dioxide related to air pollution. Carbon
dioxide is produced by the combustion of fossil fuels or forest fires [5,18]. One recent
study explored the effect of carbon dioxide alone in mice and established that it leads to
a range of respiratory impairments such as higher elastance in the lung and lower lung
compliance [77]. This study also showed that during early life when the lungs are still
growing and under development, they are most sensitive to carbon dioxide which might
lead to alveolar destruction and other lung structures [77]. Combined with exposure to
organic dust, low levels of carbon dioxide can alter immune responses leading to more
airway inflammation and induction of pro-inflammatory cytokines [78,79]. Next to this,
some studies have shown that hypercapnia (elevated levels of carbon dioxide in lung tissue
and bloodstream) can have a negative effect on airway smooth muscle contraction [80,81].
Lastly, one study showed a protective effect of carbon dioxide during wound closure.
Hypercapnia prevents wound closure at the site of both the large airways and the alveolar
epithelium [82].

To our knowledge, there is limited recent literature on human exposure studies
available on CO2 in the context of air pollution.

4.4. Volatile Organic Compounds and Polycyclic Aromatic Hydrocarbons

Volatile organic compounds (VOCs) are gaseous compounds originating from the
evaporation of carbon-containing sources such as building materials, cleaning agents,
adhesives, combustion materials, et cetera [83,84]. A lot of different types/sources of
VOCs exist [83]. The main sources of VOCs are natural sources (forest fires, vegetation,
animal) as well as industrial and agricultural sources (road dust, soil) [83]. Several different
compounds (such as wood VOCs, fuel-derived VOCs, meta-xylene, terpene, . . . ) have
been studied in murine models leading to contrasting results. Junge et al. (2021) studied
VOCs originating from wood (in relation to asthma development) and observed that the
VOCs had no effects, even in high concentrations and after long exposure, on inflammatory
and asthma-promoting processes in mice [85]. In contrast, a recent study with a goal to
investigate the effects of terpene on an allergic asthma model (OVA-induced asthma model),
stated that VOCs reduced the production of IL-4 and IL-13 and allergic inflammation
together with a reduction in the thickening of the bronchial wall suggesting that terpene has
a protective effect in this murine model for allergic asthma [86]. On the other hand, negative
effects of VOCs on the airways have also been reported. VOCs coming from electronic
cigarettes, synthetic material, and household materials, induced lung oxidative stress,
changes in the lung miRNA expression, neutrophilic infiltration, and airway hyperreactivity
in the mice [87–91].

The understanding of the effects of VOCs on human airways is limited because of
analytical difficulties in measuring real ambient air concentrations and in the evaluation
of personal exposure. Therefore, reliable air dispersions models over a wide area, such
as Europe or the United States, are needed, as used in this study by Im et al. (2018) [92].
Furthermore, there is a lack of knowledge on the mechanism of the different compounds in
VOCs action. An exposure platform with cultured bronchial epithelial cells was developed
to study exposure of VOCs for longer periods. Using genome-wide transcriptional analysis,
Gostner et al. (2016) demonstrated that lipid biosynthesis and lung-associated functions
were affected by lower exposure levels, while apoptosis was dominating in the higher
exposure levels [93]. A recent meta-analysis demonstrated a medium-sized association
between VOCs and pulmonary disease, including symptoms like wheezing and throat
irritation [94]. Apparently, exposure to higher VOCs levels in human subjects in daily life
is suggested to induce changes in airway inflammation, possibly increased T-helper (Th)2
inflammation [95]. However, VOCs are especially known as biomarkers that can guide
precision medicine in respiratory diseases like asthma and COPD in humans. Exhaled
breathing condensates also contain thousands of VOCs, which can reflect different disease
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stages, suggesting a role as non-invasive as a biomarker for diagnosis, treatment monitoring,
and exacerbation prediction [96,97].

Polycyclic aromatic hydrocarbons (PAH) are organic compounds with two or more
fused aromatic benzene rings [98]. Several subtypes of PAH exist depending on the
molecular weight. Low-molecular-weight PAH (two and three rings) are gaseous pol-
lutants based in the atmosphere, high-molecular-weight PAH (five rings or more) such
as benzo(α)pyrene, on the other hand, are mostly particle-bound and are harmful to hu-
man health [98]. Benzo(α)pyrene activates human epithelial cells via the AhR leading to
mucus expression and oxidative stress (ROS production) in the airways [99]. Moreover,
benzo(α)pyrene aggravates allergic inflammation in C57BL/6 mice leading to believe that
PAH exposure has only negative effects on the airways [100–103]. Lastly, benzo(α)pyrene
also alters the lipid metabolism in mice and more specifically the glycerophospholipid
metabolism which is important in the progression of lung cancer and chronic airway
inflammation [104,105].

4.5. Particulate Matter

Particulate matter (PM) can be subdivided into PM10, PM2.5, and UFP based on
particle size [18]. Due to its known negative effects on the respiratory system, a lot of
research articles have been published in the last years. PM will have its first interaction
with the respiratory epithelial cells via toll-like receptor (TLR) 4 and/or TLR2 activat-
ing the NF-κB signaling pathway and NLRP3 inflammasome resulting in the induction
of pro-inflammatory cytokines IL-1α, IL-1β, IL-6, CXCL8, and granulocyte-macrophage
colony-stimulating factor (GM-CSF) by innate immune cells such as macrophages, innate
lymphoid cells and dendritic cells [18,106–109]. In this process, tight junctions are also
essential due to their importance in maintaining an intact epithelial barrier. PM2.5 and
PM10 reduced occludin and zonula occludens 1 (ZO-1) expression in the nasal mucosa of
mice leading to oxidative stress in the airways [110,111]. Claudins, another type of tight
junctions, are also altered by PM (all particle sizes) exposure in mice. Claudin 7 expression
was increased in asthmatic mice exposed to PM involving them in the maintenance of
epithelial barrier integrity [112]. Secondly, PM2.5 and PM10 will induce the production
of ROS (oxidative stress) by leading to activation of the NLRP3 inflammasome [18,113].
Together these processes will activate the innate immune system with activation of alveolar
macrophages (phagocytosis of particles), neutrophils, and dendritic cells [18,114–116]. The
latter will then be the link with the adaptive immune system. Dendritic cells will then
present processed antigens to T lymphocytes, activating these cells and turning them
into Th1 or Th2 cells depending on the co-stimulatory molecules presented by dendritic
cells [18]. Also, the newly described innate lymphoid cells (ILC) contribute to the inflam-
matory response induced by PM as reviewed by Estrella et al. (2019) [117]. While ILC2 will
further increase the type 2 cytokine production leading to airway hyperreactivity, ILC1
together with the induction of IFN-γ will be inhibited making the mice more susceptible to
infections and allergens [117]. Taken it all into account PM will lead to airway inflamma-
tion, epithelial damage, DNA damage, oxidative stress, mitochondrial damage, and lung
fibrosis [18,106,115,118–120].

Murine models for allergic asthma models combined with exposure to particulate
matter showed that PM2.5 and PM10 exacerbated the allergic airway response by further
inducing a disbalance between the Th1 and the Th2 response with increased inflammatory
cell infiltration, airway hyperreactivity, allergen-induced IgE, an increase in IL-4, IL-5 and
IL-13 and decrease in IFN-γ and T-bet [121–124].

Last but not least, the microbiome present in the lungs should also be mentioned. PM
exposure, even subchronic, in mice leads to alterations both in the lung microbiome as well
as in the gut microbiome (decreased microbiome richness) leading to lung and intestinal
damage and systemic inflammation [125,126]. Secondly, microbiota dysbiosis leads to
enhanced susceptibility to other bacterial infections in the lung, such as a pneumococcal
infection [126]. Bacteria can also be used as a therapeutic tool, and this applies also to
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PM-induced lung allergic inflammation. Lin et al. (2020), showed that Lactobacillus paracasei
decreased the type 2 allergic response induced by OVA and PM, by decreasing the IgE levels,
cytokines IL-4, IL-5, IL-13, and histamine [127]. This was confirmed by Nam et al. (2020),
who also showed that probiotics can protect against PM-induced airway inflammation [128].
In contrast, Yang et al. (2021) demonstrated that the commensal microbiome can have a
negative effect on the airways by promoting PM-induced acute neutrophilia in the lung
via the IL-17 producing γδ T cells [114]. These T cells can be activated by TLR ligands
from the microbiome leading to IL-17 production and an augmentation of the neutrophilic
inflammation induced by PM [114].

Controlled PM exposure in human volunteers indeed degraded intracellular barrier
proteins such as tight and adherens junctions, increasing the epithelial barrier permeabil-
ity [129]. In human nasal epithelium, the exposure of PM2.5 causes loss of barrier function
through decreased expression of tight junction proteins such as claudin-1, occludin, and
ZO-1 and increased release of proinflammatory cytokines like IL-8, tissue inhibitor of met-
allopeptidase 1 (TIMP), and thymic stromal lymphopoietin (TSLP) [130,131]. Serum CC16
levels are a common biomarker used for epithelial cell damage in humans. Acute exposure
to PM2.5 was significantly associated with serum CC16 levels [132]. PM exposure to human
bronchial epithelial cells resulted in ROS-mediated activation of mitogen-activated protein
kinase (MAPK) and downstream nuclear factor kappa light chain enhancer of activated B
cells (NF-kB) signaling pathways [133]. In addition, inflammatory mediators like IL-1β,
IL-6 and IL-8, matrix metallopeptidase 9 (MMP9), and cyclo-oxygenase 2 (COX-2) were
increased in a dose-dependent manner. IL-8 expression in a human bronchial epithelial cell
line was prevented by pretreatment with an endocytosis inhibitor, suggesting that exposure
to PM2.5 induced IL-8 expression through oxidative stress induction and endocytosis in
airway cells [134]. Besides ROS generation also other mechanisms underlying PM-induced
cell death has been investigated. The epidermal growth factor receptor (EGFR) is also
found to mediate PM2.5 mediated secretion of pro-inflammatory cytokines (IL-1β, IL-6,
IL-8) in human bronchial epithelial cell lines [135]. PM2.5 exposure was demonstrated
to induce NOS2 expression and NO generation, leading to excessive autophagy [136].
So PM2.5 is able to induce rapid autophagosome formation and subsequent cell death in
human epithelial cells.

4.6. Diesel Exhaust Particles

As diesel exhaust particles (DEP) can be seen as part of particulate matter, a lot of
mechanistic pathways after exposure to PM can be applied to DEP. DEP are composed
of a central core of carbon and adsorbed inorganic compounds such as sulfate, nitrate,
and metals [137]. It consists of fine particles (like PM2.5) and ultrafine particles [137]. DEP
exposure leads to a loss of epithelial barrier integrity, especially via a decrease in tricellulin,
a tight junction both on mRNA and protein level, and specific compounds of DEP can
lead to epithelial cell apoptosis [138,139]. The IL-33/ST2 axis has also been implicated in
contributing to DEP-enhanced allergic airway responses. More specifically, combining
DEP and allergens, IL-33 is increased in lung tissue leading to Th2 inflammation and
airway hyperreactivity which is completely reversed in ST2-deficient mice [140–142]. DEP
can activate the respiratory epithelium via TLR2 and TLR4 leading to increased levels of
TNF-α, NF-κB signaling pathway and NLRP3 inflammasome resulting in macrophage and
neutrophil infiltration in the airways [143,144]. Furthermore, TNF-α has been shown to
have a regulatory role in the induction of DEP pulmonary inflammation with the help
of the TNFR2 receptor [145]. Looking further downstream of the epithelium, the innate
immune system gets activated by DEP exposure. Dendritic cells (DC), more specifically
CD11b+ Ly6C- DC, are increased after DEP exposure in the airways further sustaining the
inflammatory environment [146,147].

Secondly, DEP is also known for its induction of oxidative stress and DNA damage
in the airways via ROS [147–152]. H2O2, a marker for oxidative stress, is increased in
BAL fluid of mice exposed to DEP together with serum ceramide levels clearly indicating
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that oxidative stress is induced after DEP exposure [147,149]. Furthermore, an important
protective role for nuclear factor erythroid 2–related factor 2 (Nrf2), which regulates the
expression of antioxidant proteins, is described [148,150]. Nrf2 can reduce the risk of
oxidative stress via modulating the airway innate immune responses [150].

Thirdly, neurons and the neurogenic pathway are also involved in the induction of
several effects of DEP. Transient receptor potential ankyrin 1 (TRPA1) on airway C fiber
afferents is activated after DEP exposure in mice leading to neurogenic inflammation [153,
154]. This has also been studied with human lung tissue, where DEP is able to activate
AhR, resulting in ROS production. These ROS activate TRPA1 on nociceptive airway c-fiber
afferents, leading to respiratory symptoms like cough and bronchospasm [154]. Also,
transient receptor potential vanilloid subtype 1 (TRPV1) has been indicated in playing a
role in the induction of DEP-induced apoptosis of respiratory epithelial cells [155,156].

The controlled human exposure study of Wooding et al. (2019) described the respira-
tory effect from particle-filtered and whole diesel exhaust. They demonstrated that DEP
and allergen co-exposure decreased forced expiratory volume (FEV1) and increased pe-
ripheral white blood cell (WBC) counts, even after particle depletion [157,158]. In addition,
different in vitro studies investigated the impact of DEP on bronchial human epithelial cells.
Exposure to DEP significantly increases the secretion of inflammatory markers (CXCL8,
TNFα) and oxidative stress markers (NFKB, HMOX1, GPx) [159]. Primary nasal epithelial
cells from atopic subjects even produced significantly higher amounts of IL-8 and RANTES
compared to control cells, indicating that allergic subjects will respond differently to DEP
exposure [160]. In contrast, chronic exposure to low DEP concentrations did not induce
increased levels of reactive oxygen species nor the expression of IL-6 and IL-8 [161]. Sub-
sequently, also macrophages and their interaction with epithelial cells play an important
role. DEP exposure increased the mRNA expression of typical M2 macrophages markers
like IL-4, IL-10, IL-13, mannose receptor C (MRC) 1, and MRC2, promoting phenotypic
alteration towards M2 subtypes [158].

4.7. Take Home Message from In Vivo Disease Models, Human and In Vitro Studies

To summarize this part, air pollution studies with all its underlying compounds
demonstrated several negative effects on the airways. The airway epithelium is a key
player in the response to air pollution. Epithelial cell damage, loss of epithelial integrity,
induction of oxidative stress, DNA damage, NLRP3 inflammasome activation, neutrophilic
inflammation, and the production of pro-inflammatory cytokines (such as IL-6, IL-1β,
IL-1α, CXCL8) are the main processes that occur after exposure to air pollutants resulting
in airway hyperresponsiveness (Figure 2). As already mentioned, a lot of research has been
done in murine models and in vitro studies on air pollution and the airways. Therefore, it
is important to take into account that a clear distinction between exposure time, the concen-
tration of pollutant, and/or combination with allergens can induce different effects or no
effect at all. This by itself can be seen as a limitation. Furthermore, many of these studies
relied on the use of airway epithelial cell lines, or primary cultures of airway epithelial
cells, which do not exactly represent the cellular diversity of the in vivo epithelium. There
is thus considerable room to better understand the response of the airway epithelium to
air pollution exposure and how this response may promote the poor respiratory outcomes
associated with exposure. To translate these results to the real-world human condition we
need to consider the combined effect of all different types of pollutants.
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Figure 2. Overview of the inflammatory processes induced by air pollutants in the airways. Air pollutants such as diesel
exhaust particles (DEP), particulate matter (PM), carbon dioxide (CO2), ozone (O3) and carbon monoxide (CO), will induce
epithelial injury leading to a decrease in tight junctions occludin (OCLN), zonula occludens 1 (ZO-1) and claudin (Cldn) 1, 3
and 4. In addition, pro-inflammatory cytokines IL-6, IL-1β, IL-1α and IL-8 and alarmin IL-33 will be released after epithelial
injury. These cytokines will activate neutrophils and macrophages in the airways which can lead to bronchoconstriction.
PM can also activate the epithelial cells via binding to toll like receptor (TLR) 2 or 4 leading to the activation of the NF-κB
signaling pathway and the NLRP3 inflammasome. Air pollutants will also generate reactive oxygen species (ROS) which
will activate innate lymphoid cells (ILC) and γδ T cells via the NLRP3 inflammasome. Reactive oxygen species can also
activate transient receptor potential cation channel A1 (TRPA1) inducing neurogenic inflammation and activating mast cells
resulting to airway smooth muscle contraction. Dendritic cells will present antigens from the air pollutants to T-lymphocytes
and depending on the costimulatory molecules, a different subset of T cells (Th1, Th2 or Th17 cells) will be activated further
increasing the inflammatory mediators and bronchoconstriction.

5. Pollution and Airway Diseases: Cause or Consequence?

In the last decennia, a lot of research was performed investigating the effect of air
pollution on both the healthy and diseased respiratory tract. In particular, exposure to
air pollution is able to induce bronchoconstriction and has been associated with the de-
velopment and exacerbation of several respiratory diseases including asthma and COPD.
Patients with chronic obstructive diseases such as asthma and COPD are especially vulner-
able to the harmful effects of air pollution. Furthermore, special interest exists in exposure
during exercise because of the high ventilatory demands resulting in increased air pollutant
exposure at the airway epithelium. To assess the human health impact of air pollution,
methods are based on recent epidemiological, controlled human exposure, and ex vivo
studies. The results described below will highlight the impact of air pollution on patients
with asthma or COPD, or other respiratory diseases. The quantitative contribution of
air pollution to these diseases is still not exactly known in humans. Quantitative disease
development risk estimates could be directly used in applications, for example, to evaluate
the air quality control strategies to minimize the exposure to indoor/outdoor pollutants
and to improve disease burden. Furthermore, limited data exists of the effects of dual or



Atmosphere 2021, 12, 898 11 of 22

multiple exposures (e.g., tobacco smoking and other air pollutants or associations between
outdoor and indoor air pollutants) on disease outcomes.

5.1. Air Pollution and Asthma

Asthma is a chronic inflammatory disease, which is characterized by airway hyperre-
sponsiveness, remodeling, and reversible airway obstruction [162]. According to WHO,
more than 339 million people suffer from asthma [162]. Asthma can be subdivided into
several phenotypes, based on the type of inflammation, age of onset, and severity [163].
The strongest risk factors for developing asthma are a combination of genetic predisposi-
tion with environmental exposure to inhaled substances that trigger the airways. In the
past years, strong epidemiological evidence demonstrated that outdoor pollution does not
only affect patients with pre-existing asthma but may also affect the onset of asthma [164].
Air pollution modulates various airway epithelial responses, initiating or contributing to
pathological features of asthma.

UFP stimulation of human bronchial epithelial cells from patients with severe asthma
but not from nonasthmatics, induced TSLP, CXCL8, and IL-33 release [165]. In addition
to air pollution-associated Th2 response, evidence also supports that Th17 responses can
be affected. IL-17A expression after high DEP exposure was higher in the epithelium of
severe allergic asthma patients than after low exposure [166]. Similarly, cigarette smoking
was related to IL-17A expression in patients with asthma [167]. Considering neurogenic
inflammation, exposure to a high concentration of DEPs induces increased local levels of
neuropeptides like substance P and calcitonin gene-related peptide (CGRP) in asthmatic
subjects [168]. In addition, ozone exposure induces a greater number of genes in BAL
macrophages, with increased release of inflammatory mediators, in asthmatic patients
than in healthy controls [169]. Finally, ozone-induced epithelial permeability was more
pronounced in bronchial epithelial cells of asthmatics compared to healthy nonatopic
controls [170]. Together these results highlight that the airways of patients with asthma
may be more vulnerable to the effects of air pollution.

Allergens and air pollution are two important risk factors for asthma development.
DEP is suggested to act as an adjuvant to immune responses and augment allergic inflam-
mation. Inhalation of DEP at environmentally relevant concentrations (300 µg PM2.5/m3)
by atopic individuals enhances allergen-induced IL-5 mediated inflammation (eosinophils,
IL-5, eosinophilic cationic protein) in BAL. This impact of combined exposure of allergens
and DEP was even more pronounced in atopic subjects without normally functioning glu-
tathione S-transferase theta 1 (GSTT1), which is a polymorphism in a gene associated with
the metabolism of ROS [171]. Another co-exposure study with allergens and DEP demon-
strated elevated CD4+ Th cells, plasma cells (CD138+ cells), and neutrophils (neutrophil
elastase 2+ cells) in the respiratory submucosa of atopic subjects after DEP exposure [172].
To better understand the underlying mechanism of co-exposure to aeroallergens and DEP,
regulatory proteins of airway epithelium were investigated. Surfactant protein D (SP-
D) levels, which is a soluble pattern recognition receptor, were increased after allergen
exposure. This increase was damped by exposure to the whole DEP before the allergen
challenge. This dampening effect was not present after exposure to particle-depleted
DEP, suggesting that the PM fraction of DEP was responsible for the loss of SPD [173]. In
addition, serum CC16 levels were increased after particle-depleted DEP exposure. Environ-
mental epigenetic regulation, including DNA methylation, is recognized as an important
mechanism underlying the effects of air pollution on the development of allergic asthma.
Similarly, exposure to black carbon (BC) was associated with demethylation of asthma
proinflammatory genes, like IL-4 promotor, in asthmatic children [174].

5.2. Air Pollution and COPD

COPD is characterized by progressive chronic inflammation and irreversible airflow
limitation. A prevalence of 328 million cases of COPD worldwide has been reported [175].
Smoking is described as the greatest risk factor for the development of COPD, but also
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other exposures contribute to the development and progression of the disease [176]. This
response to toxic substances induces an impaired tissue repair and a remodeling process
characterized by destruction and fibrosis of the small airways, and destruction of the lung
parenchyma. Primary COPD epithelial cells demonstrated increased epithelial permeability
and reduced levels of adhesive intracellular junctions compared to healthy controls [177].
The chronic inflammatory process further increases during acute exacerbations. Epidemi-
ological and clinical studies reported that an increase in air pollution leads to increases
in COPD prevalence, emergency room visits, and hospitalization [178,179]. Most studies
are focusing on the association between air pollution and incidence and/or prevalence of
COPD and few studies are focusing on the underlying mechanisms [180]. Meta-analyses
report at best a suggestive causal role of association between air pollution and COPD, but
most studies conclude that there is insufficient evidence to prove a causal relationship [181].
Hence, there is a need for more research on specific at-risk populations such as COPD
patients, leading to the formulation of corresponding protective strategies. Current research
focuses on oxidative stress, inflammation, and DNA damage.

In vitro studies with primary human bronchial epithelial cells from patients with
COPD in relation to healthy control, subjects supported that both genetic and epigenetic
events are important players in response to repeatedly PM2.5 exposure. In particular,
Leclerq et al. (2016) demonstrated that COPD-derived human primary epithelial cells were
more sensitive to PM2.5 exposure, assessed by decreased DNA methyltransferase activity,
decreased telomere length, and modified telomerase activity [182,183].

Recently, mitochondria have been identified as a key player in COPD development.
COPD-diseased bronchial epithelial cells were more sensitive to PM2.5 exposure, resulting
in cytosolic ROS overproduction, mitochondrial function decrease, and NF-kB rise [184].
Mitochondrial ROS will activate NLRP3 inflammasome, increasing cell death pathways
leading to remodeling and fibrosis seen in COPD [185].

Ambient air pollution will lead to increased airway inflammation in COPD patients,
measured by fractional exhaled nitric oxide (FeNO) levels for eosinophilic and FeH2S for
neutrophilic inflammation respectively [186]. PM exposure to human bronchial epithelial
cells showed increased levels of the pro-inflammatory cytokines IL-6 and IL-8 [187,188].

5.3. Air Pollution, Exercise and Bronchial Obstructive Diseases

Regular exercise is beneficial, but it also increases exposure to air pollution. The high
ventilatory needs during exercise induce an increase in total exposure to air pollution and
deeper deposition of the particles [189,190]. Furthermore, exercise-induced respiratory
symptoms are highly prevalent in athletes [191].

On the one hand, exercise has beneficial effects on pulmonary function during expo-
sure to air pollution. Runners showed increased levels of IL-17A in nasal lavage after high
PM exposure compared to baseline, demonstrating a different mucosal airway response
against PM exposure compared to sedentary subjects [192,193]. The increase in IL-17A can
avoid Th2 response, as observed in sedentary subjects. Moreover, exercise can maintain or
enhance mucociliary clearance and may help to regulate inflammatory responses in the
airways [194]. Regarding lung function, a protective effect of exercise to counterbalance
the effect of air pollution was demonstrated in adults and children [195,196]. These results
suggest that regular exercise improves the inflammatory status of the airways and lung
function after PM exposure. These findings may be linked to altered regulatory T cell
(Treg) activity. Physical activity in urban children is associated with lower FOXP3 promoter
methylation, a possible indicator of more pronounced Treg function under conditions
of high black carbon (BC) exposure [197]. This beneficial effect decreased in higher air
pollution concentrations, suggesting a greater need to reduce air pollution exposure during
physical activity [198]. Others report no association between air pollutant exposure and
lung function after short exposure in small groups [199,200].

On the other hand, the harmful effects of exercise during exposure to air pollution
are described in the literature. Especially competitive athletes are vulnerable to training
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and competing in adverse environmental conditions, such as high pollution in ice rinks,
chlorine derivates, or high vehicular traffic areas [201]. The systematic review of Qin
et al. (2019) demonstrated that peak expiratory flow (PEF) decreased after exercise in a
polluted region [202]. Moreover, increased risk to airway inflammation was demonstrated
after exposure to air pollution during exercise [202]. A significant increase in CC16 and
glutathione (GSH) levels was observed in the upper respiratory airways following an 8 km
run during heat and O3 exposure compared to normal conditions [203]. A decrease in lung
function was described in cyclists after a ride with high UFP exposure [204].

The impact of air pollution exposure depends on the pollutant levels, species and
duration, but also on the intensity of exercise and the studied population. In general, among
healthy adult subjects, it is suggested that exercise is beneficial, even during exposure
to air pollution [205]. Similarly, Marmett et al. (2020) hypothesized that exercise may
cause beneficial effects regardless of the chosen place [206]. Nevertheless, susceptible
populations, like the elderly or patients with asthma or COPD will experience the more
negative impact of air pollution even with low levels of air pollution or at low-intensity
exercise. Furthermore, special consideration needs to be taken for competitive athletes
when training and competing in adverse environmental conditions.

Looking at other respiratory diseases such as COVID-19, similar effects of air pollution
can be described. Air pollution can increase the susceptibility to COVID-19 and induce
further the inflammatory immune response, oxidative stress, and damage to the respiratory
epithelium that is already present in the airways of COVID-19 patients as reviewed by
Zhao et al. (2021) [207].

6. Conclusions

Pollutant exposure time and particle size determine the inflammatory cascade and
the seriousness of the damage in the airways. Its effect might be different in patients
with airway diseases when compared to healthy subjects, but whether this is the cause
or consequence of the disease is difficult to disentangle. Overall, we can conclude that
air pollution leads to adverse effects in the airways of both healthy and diseased lungs
such as induction of epithelial damage, production of reactive oxygen species, induction of
neutrophilic inflammation, and airway hyperresponsiveness (Figure 2). Intense exercise
is considered to be beneficial even when executed in polluted areas, however specific
populations will be more vulnerable to higher pollution exposure rates, associated with
intense exercise. Additional research is, therefore, necessary to answer the question of
how air pollution will affect the human airways either acutely or chronically, especially in
the context of obstructive airway diseases and how potential long-lasting damage can be
prevented.
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