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Abstract: In this study, the results from the analysis of annual ring widths (‘Dm’) time series of
two “very sensitive” to the climate and solar–climate relationships of long lived European beech
(Fagus sylvatica) samples (on age of 209 ± 1 and 245 ± 5 years correspondingly) are discussed.
Both series are characterized by very good expressed and relating to the solar magnetic Hale cycle
20–22-year oscillations. A good coincidence between the changes of ‘Dm’ and the growth or fading
of the solar magnetic cycle is found. The transition effects at the beginning and ending of the
grand Dalton (1793–1833) and Gleissberg minima (1898–1933) are very clearly visible in the annual
tree ring width data for the one of beech samples. Some of these effects are also detected in the
second sample. The problem for the possible “lost” sunspot cycle at the end of 18th century is also
discussed. A prediction for a possible “phase catastrophe” during the future Zurich sunspot cycles
26 and 27 between 2035–2040 AD as well as for general precipitation upward and temperature fall
tendencies in Central Bulgaria, more essential after 2030 AD, are brought forth.

Keywords: Dalton minimum; lost sunspot cycle; solar dynamo; Sun–climate; tree ring widths

1. Introduction

The idea for investigations of solar activity in the past as well as the “Sun–climate”
relationships on the basis of tree ring widths measurements was suggested since the
beginning of the 20th century by the American astronomer Edward Douglass (1867–1962),
the “father” of dendrochronology. He provided the pioneer studies in this field on the
basis of long lived tree ring samples mainly from the south-west part of USA [1]. A few
decades later, the British scientist Derek Schove partly used dendrochronological data for
the reconstruction of solar activity in the past (the so called “Schove’s series”) [2,3]. Later, in
1970s, an extended study of solar–climatic relationships based on dendrochronological data
from the west part of USA was made [4]. Relative new dendrochrinological studies, which
are oriented to “Sun–climate” problematic have been published by Rasspopov et.al [5],
Wang et al. [6] and well as Shumilov et al. [7]. It needs to be especially noted there a large
number of studies from the last ~20 years, which relate to the European beech or pinopsida
samples and in many of them, in light of “Sun–climate” connection [8–14].

One of the most interesting and discussed problems in solar and solar-terrestrial
physics to the present day relates to the existence and stability of 11 year and 20–22-year
solar activity cycles by long duration (periods T ≥ 100 year) [15–25]. First, it touches
the theme for solar oscillations with super- centurial duration, such as the bi-centurial
(~200 year) and bi-millennial (2200–2400/2500 year, often signed as “Hallstadt”) [18]. A
large number of epochs by typical duration from 2–3 to few decades when the sunspot
(~11 year) Schwabe–Wolf’s cycles are characterized by relatively low or very low ampli-
tudes (grand sunspot minima). They have been detected during the last ~10,000 years (the
postglacial Holocene epoch) on the basis of time series analysis over so called “historical”
indirect data sets such as the Schove’s series [2,3], the “cosmogenic” isotopes (mainly 14C
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and 10Be) series [15–20], the naked eye visible giant sunspots, and/or sunspot groups [21],
and so forth. They are related according to the viewpoint of many authors, namely to the
quasi secular multiplet of oscillations by duration in the range of 50–120 years, where the
80–90 year Gleissberg cycle [22] is only one of them [23,24], the bi-centurial 170–230 year
(the Vries/Suess) cycle [16], the 2200–2500 year (Hallstadt) cycle [18], as well as other oscilla-
tions in the super centurial or super millennial range. In particular the grand solar minima
series after 1000 AD, namely in the 11th, 13th, 15th, 17th, and 19th and signed as Oort, Wolf,
Spoerer, Maunder, and Dalton minima, respectively, are related to the sunspot ~200 year
cycle minimum phases which occurred during the corresponding epochs [2,3,17,18]. In
addition, the Spoerer and Maunder minima are the deepest of them due to their connection
with the last Hallstadt cycle minimum [18,19]. That is why the term “Dalton-type” is often
used to signal these grand solar minima which are related to top-down or near minimum
~200 year deVries/Suess cycle phases. On the other side, “Maunder-type” minimum re-
lates to the superposition of both of the deVries and Hallstadt cycles’ top-down phases
(Maunder-type), while to quasi sub- and centurial solar cycles minima effect events like
the Gleissberg minimum (1898–1933 AD) are related.

The term “solar dynamo” is used to signify the complex physical processes in the Sun’s
convective zone which are directly related to the observed solar activity centers of sunspots
groups’ generation, development, and destruction [26–29]. The basic moment for the solar
dynamo models is the description (qualitative and quantitative) of the transformation of
the global Sun’s magnetic (poloidal) field to the (toroidal) magnetic field of the forming
active centers and the reverse converting of the toroidal field again in poloidal field, but
with the opposite sign to the initial one. The explanation of the mean amplitudes and
lengths of the 11 and 22 year solar cycles is one of the most important aims of the solar
dynamo models [26–29]. That is why the large time scale variations of solar activity and
grand solar minima related to them could be considered as deviations to the mean solar
dynamo regime.

Many authors associate the grand solar minima with epochs of relative climate cool-
ing [18–20,23,25]. According to different estimations, the mean planetary Earth climate
cooling effect corresponds to 0.5–0.8 ◦C for the ~200 year solar minima epochs or 1.5–2 ◦C
for the Hallstadt cycle minima—the so-called “little ice epochs”. On the other side, these es-
timations are disputed, mainly because the observed relative total solar irradiance changes
(TSI -index) are too small (≈0.06 to 0.1%) and the corresponding model extrapolations in
the past for the Dalton or Maunder minima given much less values (see for example [30]).
An alternative explanation could assume that the Sun’s force on the climate has a multi-
component physical nature, i.e., except the TSI changes other solar activity phenomena,
such as solar proton events (SEP) [31], solar magnetic dipole reverses (the 20–22 year
Hale cycle), and the galactic cosmic rays (GCR) modulations by the heliosphere playing
important roles as well [32,33].

It is clear that the grand solar minima are a serious call for the “solar dynamo” models.
They successfully explain the mean behavior of sunspot activity as well as the periodic
alternative sign changes of the Sun’s total magnetic field in relation to these cycles [29].
However, it is almost impossible for these models to explain by what phenomena the grand
solar minima quasi-regularity is caused. There are two main viewpoints: 1. The grand solar
minima are catastrophic non-regular events [34,35], or 2. They are quasi regular events,
affected by outer for the Sun factors (for example Solar system bari-center variations [36]
and gravitational–tidal forcing from the planets [37]. Although the “planet hypothesis”
is not acceptable by the majority of researchers due to the absence of strong physical
arguments, there are many supporting studies during the last two decades where the
physical concept is essentially improved (see for example [37,38].

The present epoch (beginning of 21st century) is very interesting and critical for our
understanding of both the long time solar activity changes and “Sun–climate” relations
as well as for the climate changes as a whole. If the position is taken that the grand solar
maxima are regular quasi periodic events, it could be expected that during the first half or
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middle of the present century, a new super-centurial grand solar minimum of Dalton-type
will begin. Taking into account that the last such event (Dalton minimum (1793/98–1830)
is the eponym) started on the boundary between 18th and 19th and took a mean period
of T ≈ 200–210 years [16,18,19] for the bi-centurial deVries/Suess cycle it is most probable
that the new grand minimum should begin close to 2000 AD. On the other hand, if such
an event occurs after 2060–2070 AD, the hypothesis for the non-regular nature of grand
solar minima will be more appropriate. If the “Sun–climate” relationships are a serious
factor for the climate changes in the modern epoch, a possible grand solar minimum
approach should reflect on the climate parameter changes as well as on different biosphere
parameters, including the tree vegetation processes.

The older trees aged ≥200–220 years, whose living interval contains at least the Dal-
ton minimum or part of it, are very appropriate objects for studies in this course. The
corresponding annual tree ring widths series lengths are comparable to the deVries/Suess
solar cycle and by about 2 or more times exceed the solar oscillations by the centurial
or sub- centurial duration. They will be also essentially longer than the almost all mete-
orological instrumental data series in the world. (The regular continuous instrumental
meteorological observations in Bulgaria have been provided since 1899 AD, i.e., since
the national meteorological network was started). Thus, for the studied annual tree ring
width data series a meteorological information from near placed meteorological stations
for calibration could be used. On this basis, a reconstruction of the climatic conditions
and “Sun–climate” relationships in the corresponding region for much longer time as the
instrumental series is principally possible. A serious advantage for such a study could
be preliminary information about the “Sun–climate” relationships for the region based
on meteorological instrumental data series. It helps for a faster and easier choice of the
tree samples sites and the preliminary wait regarding the shorter (11 and 22 year) solar
modulated cycles in tree rings time series.

However, in many cases there are significant uncertainties relating the tree ring widths
data and their analysis in relation to “Sun–climate” connections. They are due to the bio-
logical features of the wood samples. The surrounding conditions could play particularly
important and even dominant role in many cases. Participating in photosynthesis, the trees
consume water and nutrient resources from the surrounding soil, along with a number of
growing representatives of the flora-trees, shrubs, and grasses. The latter are competitors in
the use of these resources. Therefore, the growth of a tree at its various stages depends, to a
certain extent, on the growth rate of the surrounding plants. In this case, additional external
factors, such as industrial or sanitary deforestation, windfall, storm erosion of the upper
soil layer, the laying of forest roads near the test sample, etc., can play a role. Landscape
features, such as the slope of the terrain and the petrochemical composition and physical
properties of the soil, also affect the degree of uncertainty in the estimates of the influence
of solar activity and climate on tree growth. Trees growing on negative landforms, e.g., in
river floodplains, receive abundant water supply from the moisture-saturated soil. Their
growth is too inert with respect to atmospheric climatic changes. The effect of precipitation
variations in short-time scales for these cases may not be noticeable.

Otherwise, when a tree grows on steep slopes in soils with a small accumulation of
water, a more intense influence of solar and climatic factors on the growth of the tree can
be expected. In the best case scenario, on the basis of corresponding data some fine effects
in solar–climatic relationships evolution can be found, analyzed, and connected with the
last one solar dynamo regime changes.

The age of tree is an additional factor that could damage the climate and solar–climate
relation effect. Generally, the younger tree samples’ growth is faster than the aged ones.
That is why usually in the tree ring, time series general non-linear trends are observed. For
the dominant (“conventional”) part of the dendrochronological analysis, these trends are
removed by using different mathematical algorithms because they are considered as “stray”
signals. However, if the object of the study are to detect and analyze effects caused by long
periodic solar–climatic oscillations, it is important to carefully proceed with these trends.
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That is why the trend could contain information not only for the age effects of growth, but
also for the long-term solar cycles’ influences. The objectives of the present research were:

1. The tree rings widths (Dm) time series investigation of a long lived (age 209 ± 1 years;
logged in 1983 AD) beech sample (Fagus sylvatica), in the aspect of “Sun–climate”
relationship and solar dynamo regime changes during the interval 18th–21st centuries
is the first aim of this paper. A specific moment is to search for a possible reaction
of ‘Dm’ in transition epochs preceding and during the grand solar minima of Dalton
and Gleissberg.

2. The second aim is the climate changes (precipitations and/or temperatures for the
vegetation season) reconstruction test during the calendar interval 1780–1900 AD.

3. On the basis of the obtained ‘1’ statistically significant cycles, a kinematic regression
model is built for ‘Dm’ regarding the epoch 1780–1982. It is extrapolated for the next
30 years (1982–2012 AD). The extrapolated data for comparison with the real solar
activity and regional climate changes are used (“epignosis test”). It helps for the
estimation of how the obtained kinematic model is adequate and stable in time. If the
epignose test is successful, the above described steps could be used for extrapolation
(as turned out to be in realities). The above described procedure (‘1–3’) for an future
calendar interval after 2012 AD on the basis of other beech sample data could be used.

4. Another long-lived beech sample (age 245 ± 5years; logged in 2012 AD) time se-
ries is used for an additional analysis. The used calendar range of this sample is
1811–2011 AD. The kinematic model extrapolation calendar range is 2012–2045 AD.

Both samples are logged from sites in Central Stara planina (Balkan Mountain Range)
and the larger part of the analysis and results concerning solar–climate connections relating
to Central Bulgaria.

The present work is a continuation of our cited earlier works [39–41]. That is why in a
significant degree of it is based on results that are already described in the above mentioned
manuscripts. However, a large part of these descriptions are in the Bulgarian language.
Other part from the used there results and their analysis, which relates to seven old beech
samples (age ≥ 200 years) are presented of compact type in [41] due to volume limit
requirements for the manuscript.

An extended discussion of the presented results and their analysis in the light of
earlier established our results for “Sun–climate” relationships in Bulgaria and South- East
Europe is given in Section 5. There is also a short debate about the physical mechanisms
of solar–climatic relationships as well as about the specific features of the grand Dalton-
type solar minima and their relation to the Gnevishev-Ohl’s rule violations and the solar
200 year cycle minima. The forecast about new grand super-centurial minimum in 21st
century as well as the climate consequences are also discussed.

2. Data
2.1. Tree Samples

This study is based on primary dendrochronological data of 45 tree samples collection
from 23 sites of industrial logging on the territory of Bulgaria. This collection contains
44 tree samples which were logged in 2012 and 2013 + the earlier logged in 1983 AD
“Gurkovo-01” sample, which was added. The measurement and preliminary data pro-
ceedings have been described by Komitov et al. [37,38]. As it is shown in Figure 1 these
samples are taken mainly from Central and West Stara Planina (Balkan Mountain range)
and a smaller part–from Sredna Gora near to Stara Zagora, East Rodope, Ludogorie (in
North-East Bulgaria) as well as the mountains in South-West Bulgaria (Rila, Pirin, Mala-
shevo Mountain and the region of small relatively low and middle mountains near to Sofia
in the south and east direction).

The tree samples distribution in collection is as follows: white pine (Pinus sylvestris)-3,
spurce (Picea)-1, oak-7 (Quercus petraea-3 + Quercus robur-4); European Beech (Fagus sylvatica)-34.
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Figure 1. The tree samples locations on the territory of Bulgaria (the whole collection).

The youngest sample (“Trojan-01”, beech) is 57 years old, while the oldest (“Rositsa-01”,
beech too) is 24 ± 5 years old. The oldest pinopsida sample is spruce (“Govedartsi-01”, age
134 years), while the age of oldest oak sample is 175 years. The sample distribution by age
is shown on Figure 2. The mean age of the whole samples collection is 128 years.

Figure 2. The tree samples distribution by age.
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All samples are cut about 1–1.2 m over the ground where the trunk form already
corresponds approximately to cylinder.

2.2. Instrumental Climatic Data

An essential moment for our studies is the existence of a very detailed preliminary
information about the short time climate oscillations (precipitations + temperatures) by
instrumental data and the regional and seasonal features of “Sun–climate” relations for the
whole territory of Bulgaria during the most part of 20th century (namely 1899–1979 AD).
At the beginning a 20–22-year solar modulated cycle in the temperature and precipitations
time series for three meteorological stations in Upper Tracian Valley (Plovdiv, Stara Zagora,
and Chirpan) for the warm half-year (May–October) has been established [42]. In the
second stage a massive study for the whole territory of Bulgaria by using of participations
and temperature instrumental data from 73 stations and for the both half-years (cool,
November–April and warm, May–October) has been provided. The existence and statisti-
cal certainty of 20–22 year climate oscillation both for precipitations and temperatures in
the warm half-year for the 3/4 of South Bulgaria territory except the West Bulgarian Basign
Valleys, as well as in separate stations in North Bulgaria has been confirmed (Figure 3).
In contrary, statistically significant 11-year oscillations have been found for November-
April season on the whole Bulgarian territory (Gogoshev M and Komitov B., “Analysis of
short–periodic climate variations in Bulgaria during the 20th century and their consequences for the
national economics”, special preprint to Bulgarian Acadame of Science president acad. A. Balevski,
1983; no official publishing but the main results regarding “Sun–climate” relationships are
briefly described in [43]). It was very well expressed in West Bulgarian Basign Valleys,
but generally weakens when approaching the Black Sea. It was later extended until to
1994 AD by including of data only for 50 stations, due to changes of the administrative
procedures regarding the use of instrumental data from the National Institute of Hydrology
and Meteorology.

Figure 3. The 20–22 year solar–climatic cycle manifestation in the warm half-year precipitation
sums on the territory of Bulgaria (1899–1979 AD). The meteorological station locations where the
20–22 year cycle is statistically significant are signed by black filled circles, the other ones- by empty
circles; The “Gurkovo-01” and “Rositsa-01” beech samples locations are signed by red triangles.

Thus, these above mentioned studies for Sun–climate relationship and the obtained
results given us preliminary information about the short time potential solar-modulated
cycles, which could be detected in tree rings widths data series in the separate regions of
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Bulgaria. This relates for oscillations for which the corresponding period is T ≤ 50–60 year,
but mainly for the 11 and 20–22 year ones.

2.3. Preliminary Data Processing and General Trends. The ~200 Year Cycle in the Longest Beech
Tree Ring Widths Data Series

In the all studied tree ring time series the first oldest 5 to 40 tree rings near to the
center have been removed for eliminating the strong growth effects when the sample is
very young as well as in the cases when the near-central structure is particular destroyed
due to putrefaction processes. After that, for each tree sample a smoothing procedure of
tree rings width over 5 years and for all measured radial directions has been provided.
Thus, smoothed tree ring width ‘Dm’ is the parameter which for all further analysis is used.

There is a clear expressed vegetation season for the European beech, which is almost
fully coincided with the warm half-year (May–October) in Bulgaria. The last statement
was especially tested [39,40]. That is why the climatic calibration of the beech tree widths
(‘Dm’) series on the basis of near placed meteorological stations data is very comfortable.
In addition, it needs to be noted that in the ‘Dm’ pinopsida samples time series a strong
non-linear general trend, related predominantly in our opinion to the age effect exist.

In contrary, such general statistically significant trends by linear or non-linear (poly-
nomial) algebraic type of power degree from 1 to 4 for the beech samples are almost totally
absent or are very weakly expressed when the age is in order 150–160 year or less. This is,
in our opinion, an indicator that the ‘Dm’ variations are caused mainly from the climate
and/or solar–climate connections, while “the age effect” was effectively eliminated due to
the preliminary removal of the near-central rings from the analysis. In any case, if in our
beech series, which are used for analysis, so far some “age–effect” remains it is too small.

Moreover, significant non-linear general trends, and related to them, “age-effect” were
established for all oak samples.

In the 6 oldest beech samples time series a trend of quasi-periodic type with a period
200 ≤ T ≤ 230 year has been established [41]. All they are from sites in Stara Planina. This
quasi-periodic (“hyper-cycle”) trend description (see details in Section 3) is better as the
fitting is on the basis of any linear or polynomial algebraic minimized function in the power
degree from 2 to 4. Besides, the extreme phases of these trend- hyper cycles are closely to
the solar 200 year de Vries-Suesscycle extremes like Dalton and Glesissberg minima as well
as to the present epoch of relatively low solar activity at the beginning of the 21st century.
Consequently, the relation of this 200–230 year cyclic trend to the solar ~200 year cycle and
its influence over climate is very probable.

As it was already pointed out, “Gurkovo-01” also belongs to the oldest beech samples
(age 209 years). However mainly due to the fact that it was logged in 1983 its ‘Dm’–time
series includes Dalton and Gleissberg minima epochs, but not the present epoch, which
indeed marks the start of new grand minimum. That is why, in our opinion, no 200 year
hyper-cyclic trend is visible in this series and there is no statistically significant general
trend at all. On the other hand, the Dalton minimum as well as the damaging effect
over 20–22 year cycle during this solar grand minimum epoch is clearly visible (Figure 4,
left panel).

2.4. Two Stage Tree Samples Selection Procedure

One of the first tasks in our dendrochronological project in 2013–2014 AD was to check
in how many ‘Dm’ time series a statistically significant 20–22 year cycle would be detected.
The next task was to check how the coincidence between the regions where 20–22 year
cycle in tree rings widths ‘Dm’ series was established and the regions with 20–22 year
oscillations in the climate instrumental data series from the earlier studies from the 1980th.
The results from corresponding analysis confirm these suggestions [39,40].
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Figure 4. The smoothed 5-year beech annual ring widths series (left: “Gurkovo-01”; right: “Rositsa-01”). The odd numbered
Zurich sunspot cycles maxima are marked by gray circles, the even numbered ones–by dark circles; the hypothetic “lost”
cycle SC4’ is signed by “⊗” (see Section 4.2) The Zurich sunspot cycles are signed by “SC” + the corresponding number.

In the next stage, the oldest 7 (age > 200 year) beech samples were on the focus of
our analysis. Two tasks were solved there: 1 On the basis of obtained oscillations spectra
by using of T–R periodogram algorithm (see Section 3) to build kinematic models of the
‘Dm’ series and to use them for extrapolations (forecasting) of ‘Dm’ for the nearest future
(~2045 AD); 2. Calibration procedures between the studied ‘Dm’ series and suitable near
placed meteorological stations data series for the 1899–1979/94 AD epoch. The extracted
calibration functions were used for the extrapolation of climate parameters (temperatures
and precipitations) of corresponding regions for the nearest future (until 2045 AD). The
corresponding results have been described by Komitov and Kaftan [41].

On the basis of above mentioned results, it can establish that the best models and
calibration functions have been derived for two tree ring widths time series—“Gurkovo-01”
and “Rositsa-01”.

1. In their T–R spectra, the solar modulated 20–22 year cycle is much better expressed as
in the spectra of the remained five.

2. The Dalton minimum includes in both series and its traces are much more clearly
visible from the 7 oldest samples.

3. The ~200 year periodic type trend is very powerful in “Rositsa-01” series. Its first
minimum corresponds to the Dalton minimum, the maximum to the deepest phase of
Gleissberg minimum, and the second minimum to the modern epoch of low sunspot
activity, which starts after sunspot cycle 22 (SC22) and continues to the present day.
This fact supports our suggestion that the 207-year trend hyper-cycle in “Rositsa-01”
is predominantly by solar origin and reflects the deVries / Suess cycle forcing over
climate in the corresponding region. These features are very important for the main
aim of our study, namely the analysis of the solar dynamo regime changes and the
influence of the grand solar minima on them.

4. Another important circumstance is that unlike the other five time series, the phase shift-
ing (delay) of ‘Dm’ to temperatures and precipitations is negligible for “Gurkovo-01”
and “Rositsa-01” (0 to 1 year) [41]. This helps for better and more certain interpreta-
tion of the results in relation to climate changes, as well as to “Sun–climate” connec-
tion. That is why our present study is based on the “Gurkovo-01” and “Rositsa-01”
data series.

Both beech samples have been obtained from the Central Stara Planina (Balkan Moun-
tain Range). “Gurkovo-01” was obtained by the author in 1983 AD by occasional circum-
stances in almost homogenous beech forest, from a site of industrial logging on the south
slope of Stara Planina (in District of Stara Zagora) and ~800 m above sea level. The terrain is
sloped (~30–45◦) on southwest. It is relatively dry and moderately stony. The accompanied
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flora was poor—mainly herbs and a few bushes. The beech sample age is 209 ± 1 years.
The effective time series length (i.e., the using part after removing of the first 6 near-central
tree rings data) is 203 years, which covers the epoch 1780–1982 AD.

The second sample (“Rositsa-01”) was obtained in 2012 AD in an industrial logging
site ~50 km west-northwest from the “Gurkovo-01” site on the north slope of Stara Planina
(in District of Gabrovo) and ~1020 m above sea level. The surrounding trees are also beech
samples. The slope of terrain is ~35◦, oriented on west-southwest, relatively rich in water,
clay, and sand. The age of this sample is 245 ± 5 years. The effective time series of this
sample is 200 years. The first 40 near-central tree rings are removed from the analysis due
to bad contrast as well as to eliminate the young tree growth effect.

Stara Planina is a significant climatic boundary. On the north side of mountain range
where is the “Rositsa-01” site, the main air transit comes predominantly from North
Atlantic, while the air transport from south directions is significant. Over South Bulgaria,
the air transition from Mediterranean Sea (and connected with it Mediterranean cyclones)
plays an important role.

The terrain of “Rositsa-01” site features significantly higher underground water re-
sources than the “Gurkovo-01” site. Taking into account the above mentioned, related
to climate differences between North and South Bulgaria, it could be expected that the
“Rositsa-01” tree rings width series is less sensitive to short-time oscillations like 20–22 year
solar–climatic cycle as “Gurkovo-01”. The validity of this statement will be demonstrated
in Section 4.

As was already pointed in Section 1, the 10–11 and 20–22 year solar cycles are basic
phenomena for the solar dynamo theory [26–29]. However, a statistically significant 11-year
cycle signal in the beech samples time series does not exist. This is related in some degree
to the fact that the beech vegetation season is between April and October, where the
20–22 year, but not 11 year solar–climatic cycle is significant [43]. That is why our study
is focused mainly on the 20–22 year cycle and its amplitude variations in both tree rings
time series.

3. Methods

We used two methods to analyze the time series and determine the quasi-periodic
oscillations. For quick preliminary diagnostics of the spectral structure of the time series,
we used standard wavelet analysis based on a complex Morlet wavelet with a parameter
ω0 = 6, which was realized in the standard procedure of the Matlab software package [44].

We used T–R periodogram analysis [43,45] for a detailed study of the spectrum of quasi
cyclic variations identified in the time series. This method approximates the investigated
time series Φ(t) as a superposition of periodic functions of the type:

ϕ(t) = Y(t)− A0 = A cos(
2πt
T

) + B sin(
2πt
T

) (1)

where Y(t) are the values of the time series terms for moments t, which are defined by their
number, i.e., t = 0, 1, 2 . . . N − 1, where N is the number of terms in the time series. A0 is

the average value of the time series values, i.e., A0 =

N−1
∑

t=0
Y(t)

N .
The coefficients A and B are determined by the ordinary least squares method (OLS)

for each fixed value of the period T. In the standard version of T–R periodogram analysis
used in the study, T increases over the interval [T0, Tmax] with a linear step of ∆T. For each
of the derived periodic functions (1), we calculated the correlation coefficient R with respect
to the time series Y(t). The local maxima of R indicate the probable existence of cycles with
lengths close to the corresponding periods T. The statistical significance of these cycles
was estimated by the criterion R/σR ≥ 2, where σR is the standard error of the correlation
coefficient, i.e., σR = 1−R2

√
N

.
We used this criterion in our first T–R periodogram analyses. Later, based on an

analysis of 20,000 pseudorandom number series of different lengths N, we introduced a
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stricter criterion [45], R/σR ≥ 3.5. The decision of whether a maximum of R for which
2 ≤ R/σR ≤ 3.5 should be considered statistically significant is taken in each particular
case on the basis of additional expert assessment.

It should be noted that our experiments with T–R analysis over pseudo-random
number series pointed that the “3.5σR-level” is a good filter for the almost all variations
belonging to “white noise” and “red noise” regions. In only ~8% cases from the studied
pseudo-random number series cycles for which R/σR ≥ 3.5 has been found. These per-
centages stay almost the same and there are no significant changes if R/σR ≥ 3.5. On the
contrary, the relative part of detected cycles significantly increases when R/σR decreases
in the range 2 ≤ R/σR ≤ 3.5. That is why the viewpoint can be taken that the “3.5σR-level”
is the rough lower limit for these peaks in the T–R spectra which are non-typical for the
pseudorandom number series by ≥92% probability, i.e., their existence is non-casual.

An important feature of the T–R periodogram is the possibility to detect oscillations,
which are comparable or even slightly longer by length to the same studied time series,
i.e., general trends of simple-periodic function type (“hyper-cycles”). It is very suitable
and useful in cases like in the present study, searching for the existence of very long cycle
(~200 year) in time series with the almost same length. In this case a comparison of the
correlation coefficient R of the periodic function to the corresponding coefficients R for other
fitting function of algebraic polynomial type is recommended for deciding if there a general
trend, a hyper-cycle, or if a better description is that it is a polynomial algebraic type.

The described procedure is used to obtain a series of R values depending on the period
T. This series is called the “T–R correlogram” or a “T–R spectrum”. A function Φ(t) is then
constructed based on M statistically reliable cycles. It is an approximation of the Y(t) time
series (kinematic model) by the OLS with the form:

Φ(t) = A0 +
M

∑
m=1

[Am cos(
2πt
Tm

) + Bm sin(
2πt
Tm

)] (2)

with the correlation coefficient R(Φ, Y) between the Y(t) time series and the Φ(t) kinematic
model. F is the Fisher–Snedecor parameter whether the constructed model can be used for
the purposes of forecasting, i.e.,

F =
1

1− R2
N − 2M

N − 1
(3)

For each periodic function (1) the corresponding amplitude a(T) =
√

A(T)2 + B(T)2

could be calculate. On this basis a transition from T–R spectrum to amplitude ones is
possible. On the other hand, the parameter

S =

T2∫
T1

a(T)dT (4)

signed as “integral power index” [45] is used as an indicator of the overall oscillation
amplitude in the range of periods [T1, T2].

The T–R periodogram algorithm software is also applied to be used in power step
scanning regime (i.e., Tk = T0pk, where p > 1, but recommended p ≤ 1.05 and k = 0, 1, 2, 3
. . . ). A building of “scalograms” as in the wavelet analysis is also possible [x].

The climate calibration was based on the precipitation and temperature data from
Pleven (for “Rositsa-01” sample) and Stara Zagora (for “Gurkovo-01”). These stations
were selected based on two criteria: 1. their relative proximity to the areas in which the
samples were retrieved (~35 km between Stara Zagora and “Gurkovo-01” site and ~45 km
between Pleven and “Rositsa-01 one) and 2. the availability of sufficiently long series
of meteorological data on precipitation and temperatures (70–80 years and more). The
precipitation and temperature data were selected for the months associated with the active
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vegetation season of beech trees (BVS; from April to November, when the yield of both first
and last month is almost negligible).

4. Results
4.1. Solar Related Oscillations in the Beech Annual Tree Ring Widths Series: The 20–22 Year Cycle

The smoothed by 5 years tree rings width time series of both samples are shown in
Figure 4.

Some of the most impressive features in “Gurkovo-01” time series (left panel) are the
clearly visible solar modulated quasi-cyclic oscillations by duration of ~20 years during
the larger part of investigated period–since 1830 AD. The local minima of quasi 20-year
oscillations of Dm correspond to maxima of even numbered in the Zurich series sunspot
cycles, while the Dm maxima occur predominantly near to odd Zurich sunspot cycles
maxima. This agrees with our earlier results, based on instrumental data for 20th century
about tendency for drier and warmer “summer” half-year seasons (May–October) in South
Bulgaria during the even numbered Schwabe–Wolf’s sunspot cycles maxima and wetter
and colder ones near to even numbered sunspot cycles maxima [42,43]. The statistically
significant negative coefficient of linear correlation (r =−0.69) between “summer” half-year
precipitation (L) in Stara Zagora meteorological station (in Central South Bulgaria) and
Dm of “Gurkovo-01” beech sample tree widths series during the epoch (1926–1982 AD)
supported this statement. On the other side the statistically significance of correlation
coefficient between the mean “summer” half-year temperatures θ and Dm is even higher
(r = −0.71). Our analysis points out that leading factor for Dm changes is the temperature,
while the relationship between precipitations and Dm is just effect of a strong anticorrelation
between the precipitations and temperatures.

Our analysis also shows that not statistically significant non-linear effects in “Dm -> θ”
and “Dm -> L” relationships are here, i.e., the best fitting function approximations are of
the linear type. This conclusion is valid for the “Rositsa-01” sample too. Besides here are
no significant phase shifting in the above mentioned relationships. The time delaying of
Dm to θ is +1 year for “Rositsa-01”, while for “Gurkovo-01” it is zero [41].

The second important feature in the left panel on Figure 4 is the serious drop of
20–22-year cycle amplitude during the epoch 1790–1830 AD, which corresponds to the
solar grand Dalton minimum.

On the right panel of Figure 4 the smoothed by 5 years Dm time series of “Rositsa-01”
cycles are shown. There are weak 20–22 year oscillations which are superimposed over
a quasi-periodic trend by duration of T = 207 years. The both minima of this bi-centurial
“hyper-cycle” (also by solar origin [39,40]) are during the Dalton minimum and the present
epoch of low solar activity. On the contrary, as it was already pointed out, the bi-centurial
oscillation in “Gurkovo-01” series is not visible. Perhaps it is caused by the fact that this
series is ended in 1982 AD, when the new long term solar minimum had not yet started.

This comparison is useful because it demonstrates the significance of a large number
of conditions, which are strongly necessary to taken into account a more precise analysis of
the “Sun–climate” relationships and interesting events in solar dynamo regime changes in
the past. “Gurkovo-01” is essentially better for studying the much more shorter time scale
effects due to the better manifestation of the solar 22 year magnetic cycle.

It has been established in our previous studies that the statistically significant quasi
periodic oscillations in “Gurkovo-01” time series by duration of 17.25, 20.75, 23.75, 46.5,
64.0, and 108.0 year are well detectable. They all have analogs in solar and geomagnetic
activity, except the 46.5 year one, whose origin is in our opinion unclear on this stage.
The 64.0 and 108.0 year are the most featured from all oscillations. Their peak correlation
coefficients R are 0.515 and 0.649 respectively. There are also few weaker expressed cycles
by duration of 12, 15.25, 27.25, 31.25, and 37.25 years. The 31.25 year cycle is equal to
~3 Schwabe–Wolf’s sunspot cycles and could be also considered as resonance connected to
the 64-year cycle.
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The “Rositsa-01” T–R spectra contains statistically significant oscillations by durations
of 38.5, 54.5, 83 and 207 years [40,41]. The first one has analog in geomagnetic activity,
while the other three have both geomagnetic and sunspot activity. The 207 year oscillation
(hyper-cycle) in this series corresponds to the bi-centurial solar deVries/Suess cycle. The
last one is also well expressed in other dendrochronological series (as an example for
Juniperus turkestanica, see [5,46]) As it has been pointed out above, the quasi-decadal
oscillations (~20 year) in “Rositsa-01” are very weak and it is also shown on the T–R
correlogram (Figure 5 left panel). That is why the “Rositsa-01” time series variations are a
good indicator for the long-term solar dynamo changes and long solar –climate tendencies,
but essentially less sensitive in short time scales. However, the 17, 22.5, and 30 year
oscillations are very well expressed in “residual” series, i.e., if a demodulation procedure
over the 207 year trend-hyper-cycle is provided (Figure 5 right panel).

Figure 5. Left: The “Rositsa-01” T–R correlogram (original series); right: The T–R correlogram of “residual” series, after
demodulation of the 207 year cycle.

As it is shown on the right panel of Figure 5 an 88 year cycle, which is analog of the
solar 88 year Gleissberg cycle is the best expressed oscillation in the residual series. In
second place, there is the 38 year oscillation, which could be taken as an analog of the
hydrological so called “Buchner cycle” [47], as well as the 52 year (solar modulated [2,3])
and the all three oscillations by 17, 22, and 30 years.

A more detailed analysis for the 20–22 year oscillation changes in “Gurkovo-01” series
has been made by calculating of the integral power index S22 (Figure 6). For the aims of
the present study, the possible interval of solar magnetic (Hale) cycle and corresponding
to him climate and tree ring widths were chosen to be 18–24 years. The time series of S22
is shown in Figure 6 (left panel), while the corresponding T–R spectra is shown on the
right panel. The sharp fading of S22 during the Dalton minimum was follows by epoch of
significant higher mean level in the middle of 19th century. Since approximately 1860 AD
(i.e., the sunspot cycle No 10 (SC10) maximum) a sharp downward tendency begin, which
reach his minimum at ~ 1910–1912 AD. S22 is going up after that up to 1927–28 AD. There
is a shallow minimum near to 1940 AD. The epoch since 1940 and up to 1980 (Zurich solar
cycles No 17–21 (SC17–21)) is featured by a general increase of 20–22 year cycle amplitude.
As it could be seen in the T–R correlogram (Figure 2, right) the 20–22 year cycle amplitude
is modulated mainly by the 108.0 year cycle and in second place by the 64.0 year one. The
third important cycle is by duration of 32.5 years and most probably it is in a resonance
relationship with the 64 year one.

Quasi 60 year oscillations are detected in many phenomena in space and Earth cli-
mate. A ~62 year cycle has been obtained in middle latitude aurora (MLA) historical
time series and “cosmogenic” isotope 10Be abundances in Greenland continental ice core
“Dye-3” [48,49]. These facts lead with a very high probability to a hypothesis that the
~60 year cycles have a solar origin. The problem is very intriguing of taking into account
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that there is no strong manifestation of cyclic variability by length of 5 or 6 sunspot cycles
in sunspot indexes or they are weak if they exist.

Figure 6. Left: The amplitude index S22 of “Gurkovo-01” beech sample Dm-series. The moving window width is equal to
30 years; right: the corresponding T–R correlogram.

It needs to be specially noted that a cyclic tendency of ~60–65 years follows from the
results in study of Georgieva [50] concerning the possible origin of the Schwabe–Wolf’s
cycle double peaked structure and the Gnevishev’s gap between them. Based on sunspot
activity data for 20th century, she suggests that the both peaks of the ~11 year sunspot
cycle are caused by two types of plasma transport in Sun’s convective zone-advective and
diffusive. Every one of these two types gives its separate part in sunspot activity, which
maxima are shifted meanly on 1.5–2 years each from other. They correspond to both main
peaks of sunspot activity in Schwabe–Wolf’s cycle. In our opinion, there is an oscillation
variable regime of both types of plasma transport by length of ~ 6 Schwabe–Wolf’s cycles,
i.e., ~60–70 years. The order reverse of the both sunspot peaks (“advecive –diffusive”
to “diffusive -advective” and on the contrary) occurs meanly on 3 sunspot cycles, i.e.,
approximately 30–35 years. Thus the ~60–65 year cycle could exist in solar dynamo regime
changes without any strong manifestation in sunspot activity indexes. On the other hand,
this phenomenon seems to play role in manifestations of solar flares, coronal mass ejections
(CME) as well as the solar wind parameters, geomagnetic storms, and aurora activity [51].

We find that the detected the “Gurkovo-01” sample series main local extrema of
S22 are in good coincidence with the double types of plasma transport scheme since the
beginning of 20th century, thereafter, enough certain corresponding data from the sunspot
observations are extracted. Due to this 60 year cycle there is an interleaving of 20–22 year
cycles by high, moderate and weak cycle magnitude in the tree ring widths data, which is
very well expressed in “Gurkovo-01” beech sample.

A 60–70 year cycles are detected in many Earth climate parameters–for example in the
Northern hemisphere temperatures [52]. Quasi 60 year variations have been detected in
North Atlantic Oscillation behavior [53].

It needs to be noted that a solar cycle by duration is slightly more than a century
(~110–120 year) and its relationship to differential solar rotation was discussed by Javara-
iah [54]. That is why the 108 year cycle in S22 time series could be considered the analog of
the last one.

Similar procedures for investigation of S22 parameter behavior for “Rositsa-01” sample
have been provided (Figure 7, left panel). As shown on the right panel of Figure 7, the
20–22 year oscillations in this time series are modulated mainly by 86 year and 33 year cy-
cles. The first of them is very close to the solar quasi centurial Gleissberg- cycle (80–90 years,
7–8 sunspot Schwabe–Wolf’s cycles), while the second one (3 sunspot cycles) is a second
resonance of the ~60 year. It is interesting that all main local S22 minima for the “Rositsa-
01” sample closely coincidence by time with 11 year sunspots minima (1843 AD–to the
minimum of SC9, 1856 AD–to SC10, 1879 AD–to SC12, 1923 AD–to SC16, 1944AD–to
SC18, 1954–to SC19, and 1976–to SC21). The deepest from all these minima is in 1923,
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i.e., during the Gleissberg’s grand solar mimima. However, it is obvious that there is a
significant difference between S22 dynamics between “Gurkovo-01” and “Rositsa-01”,
which by authors opinion reflects the different features of atmospheric transport between
both sides of the Stara Planina.

Figure 7. Left: The amplitude index S22 of “Gurkovo-01” beech sample Dm-series. The moving window width is equal to
30 years; right: the corresponding T–R correlogram.

Unlike the “Gurkovo-01” series there is no well-expressed minimum of S22 parameter
during the Dalton minimum in “Rositsa-01” series. There is a simple explanation for
this—the “Rositsa-01” series starts in 1811AD, i.e., on 31 years further as “Gurkovo-01”.
By this one the deepest part of the Dalton minimum between 173/94 and 1810 AD is not
included in this series.

4.2. The Beech Tree Rings Widths, Dalton Minimum and the Problem about the “Lost” Sunspot
Cycle at the End of 18th Century

In our opinion, the relative high sensitivity of “Gurkovo-01” to the short scale solar
activity oscillations like 20–22 year Hale cycle opens a possibility for more detailed study of
the solar activity long term changes effects such as the transitions from high solar activity
epochs to grand solar minima. In the “Gurkovo-01” time series such phenomena could be
observed in the end of 18th century–the very long transition epoch between sunspot cycle
No 4 (SC4) and the weak next SC5. According almost all researchers it marks the beginning
of grand Dalton minimum (1798–1830 AD). An exclusion of this “consensual” scenario
is the suggestion for an additional weak and short “lost” sunspot cycle after SC4 [55].
This weak sunspot cycle (SC4’) should be started in 1793 AD and ends approximately
in 1799/1800 AD. This hypothesis was very popular in 2000th, but finally it was not
appropriated. However, all researchers agree that there was occurs an unusual sunspot
activity behavior in 1790th, which indicates for a serious corruption of Schwabe–Wolf’s
cycle during this time.

In Figure 1, the mean calendar moments of even numbered sunspot cycles maxima
are signed by black circles, while the odd numbered sunspot maxima are signed by gray
circles. The possible calendar moment (~1796 AD) of the hypothetical “lost” sunspot cycle
SC4’ maximum is signed by “⊗”. As it shown the maximum of the even SC4 sunspot cycle
coincided with an inflection on the graphics of Dm, while the smoothed moments of the
remained even sunspot maxima correspond to Dm minima, i.e., local temperature maxima
and precipitation minima. The “inflection” near to SC4 is very short and it was followed
not by increasing but by an unexpected and even more strong and continuous decline. The
smoothed maximum of the next odd numbered SC5 corresponds to weak Dm maximum.
Thus, a serious damaging of 22 year solar cycle influence over tree ring widths growth
during the last decade of 18th century is shown. The “critical” moment is 1793 AD where
in our opinion occurs the real start of Dalton minimum. The typical declining phase of
sunspots in SC4 was break near to this calendar year, as it seems suddenly by some new
phenomena, which forced the sunspot activity fall. Such phenomena potentially could
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be the Sun’s tachocline region sinking. As it is shown on the same panel SC5 maximum
corresponds to a weak, but clearly visible Dm maximum. This fact indicates that there is
no change in “Dm-22 year solar cycle phase” relationship between SC4 and SC5 maxima.
Consequently, there is no indication for some additional Schwabe–Wolf’s cycle at the
beginning of Dalton minimum.

There is an indication about one significant “surplus” Dm minimum near the end
of the19th century (~1898/1899 AD, see Figure 1 left panel). It is not in coincidence
with even numbered sunspot cycle maximum, but with the minimum of the even SC14.
This calendar moment is also estimated as a start of the grand Gleissberg sunspot mini-
mum (1898–1923 AD). Most probable a sinking of Sun’s convective zone lower boundary
(tachocline) also occurs. This phenomenon is not clearly visible in the “Rositsa-01” time
series particular due to the low sensitivity of this beech sample to the 20–22 year oscillations.

4.3. The Kinematic Models and Their Extrapolations
4.3.1. “Epignosis Test”: Gurkovo-01

The T–R correlogram of the “Gurkovo-01” sample smoothed series was used to con-
struct a kinematic model with extrapolation into the future from 1982 until 2012 AD [41].
The model and its extrapolation are shown in Figure 8 (left panel). The correlation coeffi-
cient between the model and the data was found to be R(φ,Y) = 0.83. The corresponding
Snedekor–Fisher’s parameter is F = 3.12, which is significantly above the critical threshold
F = 1.53 with a 95% confidence level. Since the model was derived from a time series which
ends in 1982 AD, i.e., about ~38 years ago, the extrapolation after the last calendar year can
be used for an epignosis test of the assumption on the degree to which kinematic models
of this type can serve the purposes of forecasting.

Figure 8. Left: Kinematic model of the time series of Dm [mm] for the Gurkovo-01 sample and its extrapolation through
2010 AD; right: Kinematic model of the time series of D for the Rositsa-01 sample and its extrapolation through 2045 AD [39].

These results led to the conclusion that the extrapolation of the kinematic model in
Figure 8 (left panel) predicts a low increase of ‘Dm’ for the “Gurkovo-01” beech sample
and, simultaneously, the onset of a generally hot and arid climate in central Bulgaria after
~1980 AD and until the 2010s. Conversely, this extrapolation gives indirect evidence to
support the assumption of the onset of a new Dalton-type solar minimum.

In the first years from 1982 to the maximum of cycle 22 (SC22), the decrease in the
annual tree ring widths Dm fits into the usual drought-and-warming tendency within the
quasi-20-year variation. However, the forecast predicts that the subsequent growth within
the cycle should soon stop, and the tendency should return to lower Dm and the onset of
arid and hot conditions in the second half of the 1990s. In line with the above, as shown in
Figure 8 (left panel), the “regular” maximum of Dm in SC23 around the year 2000 should
in fact be very weak.



Atmosphere 2021, 12, 829 16 of 26

The forecasts predict that the epoch of weak growth of the “Gurkovo-01” tree sample
and, hence, of an arid and hot climate will last until the maximum of cycle 24 (SC24), i.e.,
until about 2012–2014.

The actual behavior of the climate in central Bulgaria proved to be very consistent with
the forecast segment in Figure 8 (left panel). From 1983 to 1990, there was a series of mostly
hot and arid agricultural vegetation seasons (April–November). After 1990 AD, one could
observe a weak tendency for higher precipitation and lower temperatures until 1996 AD,
and the vegetation seasons were mostly arid and hot for the next 15 years. Extremely arid
and hot seasons occurred in 2000 and 2007 AD.

Comparing the left and right parts of Figure 8 (left panel), it can be seen that they are
largely similar. Thus, we can state that the “Gurkovo-01” kinematic model successfully
served as an epignosis test with respect to the onset of a new Dalton-type grand solar
minimum at the turn of the 21st century. The onset of an epoch of a long decrease in the
magnetic flux and sunspot activity has been an indisputable observational fact starting
from cycle 23 [56]. A more thorough analysis showed that the main event associated
with the start of a new lasting grand solar minimum should be attributed to a time point
2–3 years after the maximum of cycle 22, i.e., around 1992–1993 [57].

One should also bear in mind that the kinematic model, which was successfully used
for epignosis, and the corresponding conclusions were obtained based on data from an in-
terval not much longer than 200 years. As a result, it appears that the onset of a hot and arid
epoch between 1982 and 2012 in Central South Bulgaria can be well explained by the estab-
lished cyclic variations of the last ~200 years, without allowance for any additional causes.
The unaccounted contribution by its nature weak general trend dD/dt = −0.0053 mm/year
has no significant effect on the overall picture.

4.3.2. “Rositsa-01”

The “Rositsa-01” sample, which was obtained on the northern slope of the Central
Stara planina, exhibits an almost complete absence of a phase shift for the Dm parameter
(annual tree ring width) with respect to the precipitation L and temperature θ in Pleven
station for the 1903–1994 AD epoch The coefficient of linear correlation between Dm and
θ is r ≈ −0.67 and F = 1.81, while with L it is r = +0.44. As in the case of “Gurkovo-01”
the best fitting function is between Dm and θ and it is linear, this sample shows a good
consistency of the local minima of Dm with the near-maximum phases of even numbered
Zurich solar cycles. Thus, the behavior of the “Rositsa-01” time series roughly resembles
that of the “Gurkovo-01”. Thus, the presence of these 20-year cycles makes it possible to
extrapolate the “Rositsa-01” kinematic model not only as an indirect indicator of the local
climate, but also as an indicator of solar activity until 2045 AD.

The kinematic model (continuous line) and the smoothed data until 2009 are shown
in the right part of Figure 8 The extrapolation after 2009 AD is shown. The black circle
symbols indicate the approximate calendar times of the near-maximum phases in cycles 24,
25, and 26 (SC24, SC25, and SC26).

The actual pattern of Dm behavior for the Rositsa-01 sample in 1980–2009 AD fits into
the general tendency of an arid and hot climate in Central North Bulgaria, which is also
consistent with the general decline in solar flare activity. Since the 1970s, there has been
a downward trend in the frequency of X-ray averages and powerful class-M and class-X
solar flares and in the frequency of radio flares. After the maximum of cycle 22, i.e., in the
early 1990s, a significant, long-term, downward trend began in almost all the observed
solar indices and in the geomagnetic Aa index [57]. A downward trend in the Ap index that
had been tracked since the end of cycle 19 was characterized a few years earlier [58].

The galactic cosmic ray (GCR) flux in the Earth’s atmosphere exhibits an inverse rela-
tionship with the sunspot activity. Conversely, generally high GCR flux values stimulate
the formation of aerosols and clouds and, hence, lead to climate cooling [32,33,59]. How-
ever, there are some additional details that make the description of the above mentioned
processes more complicate. The last ones will be discussed in Section 5.
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In the modern epoch, the long-term upward trend of the GCR flux began after the
extremely deep minimum in 1991, which corresponds to the beginning of the general
long-term decline in solar-wind parameters and sunspot and geomagnetic activity in the
Aa index. This growth manifests itself more vividly in a decrease in the depth of the minima
in the near-maximum phases of SC23 and SC24 than in the growth of the corresponding
minima [57].

Based on the extrapolation of the kinematic model for the “Rositsa-01” sample, Dm
begins to grow slowly around 2008/2009, i.e., around the solar minimum between cycles
23 and 24. This growth manifests itself in a weak positive trend for precipitation L and a
fall in average temperatures. This trend is superimposed by weak variations, including a
minimum that coincides well with the maximum of SC24 and a maximum that is likely
associated with that of the next SC25.

In our opinion, the very small amplitude of these variations is indirect evidence that
the amplitude of the 22-year magnetic solar cycle, including cycles 24 and 25 of the Zurich
series, will be small. Hence, it follows that if this forecast is correct, then the Zurich cycles
24 and 25 (SC24 and SC25), in relation to sunspot activity, should be expected to be weak
with almost similar amplitudes. As of today (March 2021), this indirect forecast for cycle
24 can be considered successful. Its average annual maximum, which is manifested in
the classical index Ri ≈ 80 in the new system introduced on 1 July 2015 [60], corresponds
to Sn ≈ 120. It represents the weakest Schwabe–Wolf cycle, at least after cycle 14 (SC14;
1902–1913) and, very likely, after cycle 6 (SC6; 1810–1823) during the Dalton Minimum. As
for cycle 25, most of the existing forecasts show that it will be close to cycle 24 or slightly
more powerful [30], but some forecasts also predict that cycle 25 will be weaker [61].

The model extrapolation in Figure 8 (right panel) shows a change in Dm growth from
a slow rate to a much faster one near 2030, when one should expect a minimum between
SC25 and SC26. This steep upward trend continues up to the end of the forecasting interval,
i.e., until 2045. Interestingly, the local Dm minimum, which would correspond to the
maximum of the even SC26, does not stand out. A possible explanation is that either the
amplitude of cycle 26 will be very weak, or it will be suppressed by the next, more powerful
cycle 27.

4.3.3. The Sunspot Zurich Series Kinematic Models and Their Extrapolations

To test this assumption for suppression of SC26 from the next SC27, we conducted a
T–R periodogram analysis of the monthly average indices of the Zurich series (1749–2014 AD)
in the previous, classical version of the Ri index. Based on the T–R correlogram, we
constructed a kinematic model and extrapolated it up to solar cycle 30. The resulting
kinematic model and extrapolation are presented in Left of Figure 9 (upper panel). The
forecast data for cycles 24–27 show good agreement with the previous findings. The results
confirm the preliminary assumption that the weak SC26 will be suppressed by the next,
more powerful SC27. Forecasts predict a very shallow minimum between these cycles
around 2038–2040 AD. Therefore, in the epoch of the minimum between SC26 and SC27,
the simultaneous existence of many active centers belonging to both cycles is expected.

The above mentioned conclusion about the “attenuated” SC26 by the next SC27 is
almost fully confirmed again in a new model test. It was provided on this time on the basis
of the new Zurich series version by using the new International Sunspot Index (SN_v2),
which replaces the “classical” Ri in 2015 [56]. On Figure 9 (lower panel) the kinematic
model of the monthly mean SN_v2 values for the Jan. 1749-March 2021 AD epoch and
its extrapolation until 2045 AD is shown. The shallow minimum between weaker SC26
and higher SC27 is visible again. In both extrapolations on Figure 9 a continuous epoch of
relatively weak sunspot cycles is well shown at least until ~2080 AD. It is clearly separating
on two stages–the first one between SC23 and SC27 and the second one after that. According
to the both plots the violation of “amplitude” G-O rule for the pair even-odd numbered
cycles SC24–SC25 (weaker SC25 than SC24) is a very probable event. A second G-O rule
violation for the pair cycles SC28-SC29 is too possible.
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Figure 9. Kinematic model of Zurich sunspot series (old version (upper panel): January 1749–December 2014) on the basis
of T–R periodogramm analysis and its extrapolation up to SC30 maximum (~2080 AD); (the new version (lower panel):
January 1749–March 2021).

From the perspective of the solar dynamo theory, the shallow minimum between
SC26 and SC27 could correspond to the mixing of matter flows associated with both
cycles in the Sun’s convective zone. It is possible that a similar process could lead to the
rapid attenuation of the convection from the weaker SC26. Other authors reached similar
conclusions about cycle 26. A forecast for the weak cycle 26 is also given by Javaraiah [61]
as well as by Zharkova et al. [62]. The last one is based on mixed (empirical + theoretical)
solar dynamo model type. It is very interesting that according to this forecast the weak
SC26 is followed by an relative higher SC27 and after that an general decreasing of sunspot
Schwabe–Wolf’s cycle amplitude until to SC30. It is generally in very good agreement with
our extrapolations on Figure 9 and a serious support of them.

It is the suppression of SC26 that could explain the absence of a local minimum in
the behavior of the Dm parameter around 2035. This, in turn, leads to the conclusion of
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the onset of a very cold and humid climate in the Central Balkan Mountain Range and
correspondingly Central North Bulgaria in 2030–2045. It is in agreement with our more
generalized results based on kinematic models of the seventh oldest beech samples aged
over 200 years [41].

It should be noted that forecasts of an epoch of low Schwabe–Wolf solar cycles, which
as an epoch very similar to the Dalton or Maunder minima were obtained as early as
15–20 years ago by several authors [63–66]. As it pointed out in Section 1, cooling of the
Earth’s climate in general or in separate large regions is examined in connection with these
solar epochs in many studies. It could also add to them the mentioned above work of
Zharkova et al. [62].

5. Discussion

Evidence about successful using of some tree ring data series for “Sun–climate” re-
lationships and solar dynamo regime investigations on the basis of the results and their
analysis are given in this study. Such data series, obtained from long lived (age ≥ 200 year)
could be a good indicator for the reconstruction both of terrestrial and space climate in pre-
instrumental era. The last statement is strong valid for the beech (Fagus sylvatica) samples
because the typical lifespan of this species is ~300–400 years in Bulgarian mountains. In
some separate cases the lifespan exceeds 500 years, which could be made the solar–climatic
relationships study during the Spoerer (15th century) and Maunder (17th century) grand
solar minima also possible. A serious advance regarding the beech samples from territory
of Bulgaria is the almost full absence of significant general trends in ‘Dm’ time series,
caused by the “age-effect”. This statement is not valid for pinopsida (pine and spruce) and
oak, for which significant trends, caused by “age effect” were detected in the course of our
studies [39,40].

However, in the present moment this possibility is rather theoretical than real. It is
due to the fact that during the last 3–4 decades a significant part of the oldest beech samples
have been already logged. An additional problem is the circumstance that the largest part
of all aged trees on territory of Bulgaria are with a safe status. That is why obtaining beech
samples older than 240–250 years is very difficult.

As it has been already pointed at the beginning of the paper, there is a high statistical
noise in the annual tree ring time series and it is very high for the dominating part of the
samples due to the mentioned in Section 1 reasons. Solar modulated cycles by duration
of 20–22 year and statistical probability >95% are detected in significant part (~60%) of
all studied 45 tree samples [39,40]. However, on the other hand by author’s opinion only
in ≤10% of all cases these oscillations are so clear detected and without essential phase
delay to the solar magnetic field changes as in “Gurkovo-01” and “Rositsa-01” probes if
the tree samples choice provides on wholly casual principle. That is why the tree samples
selection in accordance with the described in Section 1 requirements should be provided.
Besides, the climatic calibration and data analysis should proceed for every tree sample
separately. All generalizations concerning climate and solar–climatic relationships should
be made only on the basis of the final results for the separate samples. In our opinion,
any preliminary procedures as Dm data averaging for the all tree samples from different
terrains and many other environmental conditions and the further analysis over the so
obtained “super-sample” data set are principally incorrect.

The presented results and their analysis indicate for the multi-component physical
nature of “Sun–climate” relationship during the last ~200–250 years. It is very complicate
and cannot explain the observed annual tree ring widths variations and the corresponding
temperature and/or precipitation quantities changes based only on solar electromagnetic
flux (TSI-index; TSI-Total Solar Irradiance) changes effects. This is proved by the low
presence or total absence of statistically significant quasi 10–11 year oscillations in the
whole our collection of dendrochronological data from Bulgaria, i.e., the all 45 tree samples.
The last ones are the strongest quasi periodic feature of TSI–variations according to the
satellite observations since 1978 as well the long term extrapolations for the last ~400 years
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(see Lean et al., [67], Krivova et al., [30]). On the other hand, according these as well as
other authors too, some large time scale effects should be exist. In our case they could have
some participation in detected there sub-, quasi- or bi-centurial oscillations.

According to the most of authors the quasi bi-centurial solar related temperature oscil-
lations are in coincidence with the phase of quasi bi centurial deVries/Suess cycle [5,6,59].
This is valid for large continental regions in North America, West and North Europe,
Central Asia, Siberia, East and South-East Asia, India, North and Central Australia, South
Africa, Patagonia, the Pacific Seaside of Central and South America and the Atlantic Seaside
of Africa as well as for the tropical and equatorial parts of Indian ocean and the most west
and most east parts of Pacific according to the results of Wang et al. [68].

However, from other hand according to the same study there are also few relative
smaller total area regions where the 200-year solar cycle is in opposite phase to the corre-
sponding bi-centurial climate oscillations. Such territories are the south -west region of
USA, Mexico, the north part of Caribbean Sea, West Greenland, the sub-tropical regions of
South America, the region of Balkan peninsula + Black Sea + Anatolia + Levant + Egypt as
well as Kamchatka Peninsula). In our option, it is complicated in this stage to determine is
there any general reason for the origin of all such regions, but some tendencies could be
noted. For example, the above mentioned regions in North and South America as well as
the region of Balkans and Near East are placed mainly in corresponding sub-tropical zones
or directly adjacent to them from the higher latitudes side.

The typical short solar-modulated climatic oscillations for these regions during the
warmer part of year or the whole year is by duration of ~20–22 years, i.e., it corresponds to
the magnetic solar (Hale) cycle [4,43,69]. It was already point in Section 2.1 that the climate
in South Bulgaria is significantly connected to the Mediterranean cyclone activity. The
origin of the last ones is related to the Iceland baric center activity and the manifestation of
interaction between meridional and zonal atmospheric transport over Europe. It has been
noticed by row of researchers else in the middle of 20th century the 20–22 year oscillation
is a well-expressed feature in the Iceland baric minimum activity [69–71]. Rubashev [70]
point out that the epochs of strong zonal atmospheric transport over North Atlantic and
Europe is significantly related to the even numbered Zurich sunspot cycles, while the
meridional atmospheric transport forcing–to the odd numbered ones. This statement well
corresponds to the so called “Brown effect”- a tendency of shifting the cyclones trajectories
over North Atlantic on south during the epochs of high solar activity [72].

It is interesting also to note in this course that the reverse correlation between the
beech samples tree ring widths (Dm-parameter) and temperatures in Central and South
Bulgaria corresponds well to similar relationship between temperature and beeches tree
rings widths for Sicily (Italy), which was described by Simunek et al. [12]. It is an additional
support for our conclusions for the Mediterranean origin of 20–22 year cycle in climate of
Bulgaria and its connection to the Mediterranean cyclone activity.

It should be noted in this course that the “amplitude” Gnevishev-Ohl’ s rule [73]
according to which the amplitudes of even numbered solar cycles is weaker as the fol-
lowed them odd numbered ones is valid in the whole period of sunspot cycles SC10-SC21,
i.e., between 1856–1986 AD. On the other hand, the integral sunspot activity during the
even numbered cycles is smaller as in the followed odd numbered ones (the “classi-
cal” Gnevishev-Ohl’s rule [74]) for the whole period 1810–1986 AD, i.e., since SC5. The
20–22 year cycle the existence in atmospheric circulation (and “Brown effect”) over North
Atlantic and Europe during the 19th and 20th centuries is probably caused in high degree
by the Gnevishev-Ohl’s rule effect. For its part, the last one reflects over the Mediterranean
cyclones generation and as a final result, over the temperatures and precipitations in the
southern and central parts of Balkan peninsula (Greece, Albania, North Macedonia and
South and Central Bulgaria). In our opinion that is why the 20–22 year cycle effect is well
expressed in instrumental meteorological and dendrochronological data from Bulgaria
during the last two centuries.
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A significant role could be also played by the dipole magnetic field sign reverse, due
the corpuscular nature of the 20–22 year solar–climatic cycle phenomena (see below). This
reverse lied to alternative interaction (coupling) condition changes between the magnetic
lines of the Earth’s magnetosphere and interplanetary (i.e., Sun’s) magnetic field.

There are many studies since the middle of 20th century concerning the problem
of the physical mechanisms of the “solar activity–atmospheric circulation” relationship.
A good overview of interesting works until ~1975 AD is given in the monograph of
Vitinsky et al. [71]. According to this overview as well as from many other studies (for
example Schuurmans and Oort [31]) very important role in dynamics of baric structures in
North and Middle Atlantic plays the high energetic solar protons by energy E ≥ 10 MeV,
i.e., the so called “solar energetic particles” (SEP) or solar cosmic rays. The primary
sources of SEP are the solar proton eruptions (SPE). The last ones are generated very often
during the moderate and strong solar flares (X-ray power class M or X). A significant part
of SEP is generated also by shock waves on the top of the interplanetary coronal mass
ejections (ICME).

It is interesting that according to the corresponding modeling results the dynam-
ical effect over the atmospheric baric structures from the penetrating to the boundary
“stratosphere–troposphere” SEP depends more on energy (~E3) than the time of exposi-
tion. In this model the dependence (from the time) is linear [71]. The last one opens the
possibility that relative short phenomena as SPE could to affect seriously the statement of
large baric structures like Iceland baric minimum and Bermuda-Azores High (Anticyclone).
Atmospheric circulation effects (including also meridional air mass carryng) over signif-
icant parts of Northern hemisphere could be observed as a result from these processes.
These processes could affect more efficiently the temperatures and precipitations in the
periphery of Atlantic cyclones action (for example South-East Europe, Anatolia, Black Sea),
but not over tropics or inner parts of Eurasia, where the effective SEP penetration in lower
atmosphere is small or absent or in the inner parts of Eurasia, which are too far from the
Iceland baric center. The above described effects over temperatures and precipitations
should be also less or non-remarkable if the corresponding regions are too close to the
Iceland baric center, which are continuously under action of the last one.

If the G-O rule is valid the flare and SEP activity during the odd numbered solar
cycle should expect to be higher in relation to the corresponding even numbered one in
even-odd numbered pair. Taking into account the above described role of SEP events this is
an argument for the corpuscular nature of the observed during the last ~200 years climatic
20–22 year cycle.

As it has been pointed by the author [48,51], the primary sources of ~60 year tem-
perature oscillations are related most probably to the SPE phenomena, which are in close
relationship to the solar flare activity. The modulation of 20–22 year oscillations from the
~60 year cycle in our dendrochronological data has been already described in Section 4.1.

As follows from the above described possible role of SEP the manifestation of 20–22 year
solar climatic cycle should be decreased during the epochs of grand solar Dalton-type
minima. The last one is confirmed by the present analysis of dendrochronological data
and their instrumental data calibration. This statement is supported by the analysis of the
corresponding data from the USA which has been provided in 1970th [4].

The galactic cosmic rays (GCR) variations are another primary extraterrestrial source
which could affect the atmospheric circulation due to mechanisms, similar to the described
above. The mean energy of coming to the upper Earth’s atmosphere GCR fux is essentially
higher than SEP flux during the SPE events. That is why they could efficiently penetrate
to the troposphere not only over middle and high latitudes, but over the tropical zones
too. The problems about GCR effects over the atmospheric circulation are studied by
Tinsley [72]. The GCR flux is maximal during the solar sunspot minima epochs due to the
reduction of the general screen effect by the heliosphere (one of the so called “Forbush
effects”). If it takes also into account the aerosol and clouds generation forcing [32,33], it
follows the overall effects of cooling, atmospheric instability, and precipitations increasing
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over large parts of Earth surface during the grand solar minima epochs. The exceptions are
separate regions like Balkan peninsula, South Brazil/North Argentina, or southwest USA.

However, the above mentioned mechanism for “GCR flux–climate” relationship seems
too rough and it works well only in large time scales and long time epochs like the
grand minima. In time scales that are less than century there are a number of additional
phenomena which could destroy the general reversed “sunspot activity- GCR flux” and
“GCR flux–mean Earth temperature” relationships. In our opinion, there are at least
two natural phenomena, which have a potential for this one:

1. The solar flare + SEP activity, as was already described above, relates to the quasi
60 year climatic oscillation, which is detectable in Greenland ice (“Dye-3 core) 10Be
concentrations data series, and aurora activity [48] as well as for the mean annual
North hemisphere temperatures and World Ocean temperatures [51]. It is interesting
also to note some extremely powerful SEP events in the past (most probably near
to 11 year sunspot maxima epochs), which seriously affected the GCR –flux during
the corresponding calendar epochs (in 665–663 BC, 775 AD, and 993 AD). They are
detected on the basis of high precise mass-spectrometric measurements of 14C tree
rings concentrations [75–77].

2. The volcanic activity is the other important factor. The GCR influence over atmosphere
is realized due to interaction between cosmic particles and atmospheric water vapor,
but the aerosol production process is much more effective when the concentrations of
volcanic materials (acid gases and dust) is high. Thus, the current volcanic activity
depends on how effective be the “GCR –aerosol + clouds generation” mechanism will
be. On other hand there are evidence that the powerful volcanic eruption phenomena,
the corresponding eruptive index VEI ≥ 4 are modulated by solar activity on the
basis of “trigger effect” (Komitov and Kaftan [78]). The effect is important during
the near sunspot activity extremes phases, which makes the overall “Sun–climate”
relationship much more complicated.

Thus, finally it could be concluded that the general observed picture of “Sun–climate”
relationship and over Balkan peninsula in particular is in much better agreement with the
SEP/GCR mechanisms as with these based on solar electromagnetic changes effects. The
role of TSI-index variability in our opinion is relatively small.

The prediction of Dalton-type grand minimum in 21st century is closely connected to
the questions: What are the basic features of these solar phenomena? How continuous and
how deep must they be to be marked as “grand minima’? This is an important moment,
due to the fact that some authors suggested that Dalton minimum is a specific intermediate
solar dynamo state between grand minimum and ordinary activity [29].

In our opnion, there are two phenomena, which could be used as a criteria to determine
if there a grand (super-centurial) solar minima or not.

The first one is that the corresponding epoch is superimposed over the downward or
near-minimum phase of the ~200 year de Vries/Suess oscillation. This could be tested by
using many of the available time series analysis, including the T–R periodogram algorithm.
According to the last one there was a 200 year cycle minima that occurred in 1856 AD [65].
The epoch 1793/98–1830 (Dalton minimum) is superimposed over the downward phase of
this cycle.

The second feature is the existence of G-O rule violations during the downward phase
of a 200 year cycle. The last one is an indicator for significant long time change in the solar
dynamo regime and is a precursor for super-centurial Dalton-type or Maunder-type grand
solar minima [66]. This requirement is valid for Dalton minimum as well–there is a very
serious G-O violation for the pair sunspot cycles with Zurich numbers 4 and 5 (SC4 and
SC5). That is why we conclude that the Dalton minimum is a real super centurial grand
minimum, like those of Oort or Wolf.

According to this determination the new epoch of low sunspot activity in 21st cen-
tury will be super–centurial (Dalton type minimum) too. (Next 200 year minimum in
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2060–2070 AD [60]; the violation of G-O rule is a fact for the pair SC22-SC23 [61] and may
will be for the pair sunspot cycles SC24-SC25 [49] (see also Figure 9).

6. Conclusions

On the basis of the presented results in this study and their analysis, the following
conclusions can be made:

1. It is possible to use some tree ring widths data series (Dm) of specially selected long
lived samples not only for the detection of solar modulated climatic cycles, but for
searching fine effects of solar–climatic relationships as well as for solar dynamo regime
changes. It is shown in “Gurkovo-01” as well as in “Rositsa-01” beech samples tree
ring widths data series. However, the relative part of suitable for such precise analysis
tree samples is too small (<10% by our rough estimation). A serious limitation of this
method is the age of used tree samples, because finding suitable tree samples older
than 250 years in Bulgaria is very difficult.

2. The data series demonstrates that there are no significant additional force factors
over the climate of Central Bulgaria at least until 2010–2012 AD except these ones,
which acted through the period 1780–1982 AD. An indirect additional support for
this part of study is the successful to the present moment prediction about the start of
a forthcoming new prolonged epoch of low solar activity (Dalton-type minimum) at
the end of 20th and the beginning of 21st centuries.

3. The forecast about a forthcoming new grand solar minimum was confirmed on the
basis of the second studied sample (“Rositsa-01”) time series kinematic model. Its
extrapolation up to 2045 indicates for a low SC26 between 2030–2040 AD. The last one
will be seriously damaged by the higher next SC27. This event could be determined
as a “phase catastrophe” in the long-term behavior of solar activity. This will coincide
with an epoch of Central Bulgaria climate cooling more essential after 2030 AD and at
least up to 2045 AD (the end of model extrapolation).

4. According to the 2nd and 3rd conclusions, we could assume that predicting human
caused global warming as well as regional warming effects is overestimated. On other
hand if it stays on the position of pure solar forcing on the climate it is non-realistic
to expect an event like the “Little Ice Age” in 15th–17th centuries. That is why such
events are related to the “Maunder-type” solar minima and 2200–2500 year Hallstadt
cycle. The started new grand solar minimum is “Dalton-type” and relates to the
200 year de Vries/Suess cycle. The planetary cooling effect relating to these grand
solar minima is about 0.5–0.8 ◦C vs. 1.5–2 ◦C for Maunder-type minima and “little
ice age”. Thus, any extreme climatic (“very warm” or “very cold”) scenarios could
be excluded.

5. The presented kinematic models of tree rings widths time series and the obtained
results by their extrapolations are in support of the suggestion that the grand solar
minima are better expressed as quasi regular than stochastic events.

6. The general trends in many of tree rings widths data series could have much more
complex nature as it usually takes for them. Except the “age-effect”, which is com-
monly considered as the main or even the single one reason for the general trends
there could also be a damaging effect of the long term solar activity variations. In
relative non-large part of tree ring widths data series, for which the “age-effect” is
small or even negligible due to specific circumstances, the long-term solar cycles
influences could be a main reason for forming of the general trends. That is why in
some tree rings widths data series the general trends as a quasi-periodic “hyper wave”
by periods closely to the ~200 year solar de Vries/Suess cycle or to some components
of the solar (50–120 year) multiplet. This circumstance could be taken into account for
improving of the dendrochronological primary data processing as well as for a better
understanding of the solar influence on the climate and biosphere.
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