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Abstract: Over the past decades, industrialization has resulted in radical economic development
in Korea. The resulting urban sprawl and unsustainable development have led to considerable air
pollution. In this study, using spatial regression models, we examine the effects of the physical
and socioeconomic characteristics of neighborhoods on particulate matter (PM10, PM2.5), NO2,
CO, and SO2 concentrations in the Daegu Metropolitan area. Results reveal the following: (i) the
socioeconomic characteristics were not statistically significant regardless of the air pollutant type;
(ii) the effects of the built environment characteristics of the neighborhoods were different for each
air pollutant. Compared with other pollutants, PM2.5 was affected more by the built environment.
Concerning the neighborhoods’ main roads, the SO2 concentration was higher, that of PM2.5 was
higher in neighborhoods with more bus stops, and those of CO and PM2.5 were possibly higher in
the neighborhood of industrial zones. In neighborhoods with parks and green areas, air pollutant
concentrations are likely to be lower. When the total used surface of residential buildings was
higher, the air pollutant concentrations were lower. Contextually, similar neighborhoods with more
single-family houses seemed to have high pollution levels. Overall, this study is expected to guide
policymakers and planners in making smart decisions for eco-friendly and healthy cities.

Keywords: air pollutants; built environment; spatial regression model; PM10; PM2.5; NO2; CO; SO2

1. Introduction

Industrialization has led to major economic development in Korea over the past
decades. Urban sprawl and indiscreet development have resulted in an increase in the use
of automobiles and the construction of industrial facilities [1]. Air pollution is considered
one of the most serious urban environmental problems worldwide [2]. Accordingly, various
studies aimed at reducing air pollution have been conducted to achieve a sustainable urban
environment [3–7]. Despite these efforts, air pollution is still a serious problem in many
developed and developing countries worldwide for various reasons, including the use
of fossil fuels and the increasing use of automobiles [8]. Moreover, air pollution poses a
severe threat to people’s health [9]. The World Health Organization (WHO) had reported
that ~4.2 million people die annually from air pollution-related diseases. Moreover, ~91%
of the world’s population live in areas with air quality that does not meet the WHO’s air
quality standards [10]. Subsequently, many studies aiming at reducing air pollution have
been conducted in Korea [11–15].

Prolonged exposure to high pollution levels due to particulate matter (PM) increases
the risk of respiratory diseases and may even promote severe health problems such as
diabetes [16,17]. In particular, PM2.5 can cause heart disease. Moreover, it has been
designated as a Group 1 carcinogen by WHO [18]. However, as of 2017, the average annual
concentrations of PM10 and PM2.5 in Korea were 45 and 25 µg/m3, respectively, which
exceeded the WHO standards of 20 and 10 µg/m3. A 2016 Organization for Economic
Cooperation and Development (OECD) report projected that among the OECD countries,
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premature deaths from air pollution in 2060 are expected to be the highest in Korea [19].
Therefore, Korea needs significant efforts to reduce overall air pollution and the PM10
and PM2.5 concentrations. Although the severity of the PM2.5 concentration in Korea
is considerably high, it was not officially measured at the national level until 2015; as
such, few studies on reducing PM2.5 concentration exist. In addition, it is interesting that
concentration of other pollutants, such as NO2, CO, and SO2, are not significant in Korea.
The average annual concentrations of NO2, CO, and SO2 in Korea in 2017 were 0.022 ppm,
0.5 ppm, and 0.004 ppm, respectively, which were lower than the national ambient air
quality standards. However, NO2, CO, and SO2 are considered major air pollutants and
have been continuously managed for environmental sustainability. Therefore, in this study,
we aimed to investigate the relationship between neighborhood characteristics and air
pollutants by considering PM10 and PM2.5, both of which are crucial for improving air
quality in Korea, in addition to other pollutants, such as NO2, CO, and SO2. In particular,
this study aims to identify the relationship between the socioeconomic characteristics of
neighborhoods and various air pollutants.

Many studies have determined the correlation between air pollutants and the envi-
ronmental characteristics of neighborhoods. In recent studies, among many such charac-
teristics, land use characteristics, road and traffic characteristics, and land development
characteristics have been frequently considered [20–25].

Chen et al. [26] classified heating and non-heating seasons and investigated the factors
affecting NO2 and PM10 concentrations in Tianjin, China; they reported that regardless of
the air pollutant type, increased NO2 and PM10 concentrations were observed in residential
areas. This result is similar to those of the NO2 study of Liu et al. [27] in Shanghai, China
and the PM10 study of Wolf et al. [28]. However, Kim and Guldmann [29] analyzed the
factors affecting the NO2 levels as per the season in Seoul and demonstrated that the NO2
concentration is low in residential areas in summer. Moreover, Weichenthal et al. [30]
reported that the concentrations of PM2.5 and ultrafine particles in Toronto, Canada, are
generally low in residential areas. Furthermore, many studies have reported that unlike
residential areas, regardless of the type of air pollutants, the concentrations of the pollutants
are high in commercial areas [29,31,32]. Moreover, in many other studies, similar results
were found for industrial areas [33–45].

In addition, parks and green areas have been considered land use factors affecting
air pollution. It has been shown that the increase in green infrastructure lowers the
concentrations of air pollutants [39,46–50]. Selmi et al. [49] analyzed the effect of air
pollution by trees in Strasbourg, France, and found that the city-managed trees removed
~88 tons of pollutants in a year. However, they argued that although the trees in the
city are an important factor in reducing air pollution, they are not the only solution.
Therefore, it was recommended that urban environmental characteristics such as building
structures and road design should be considered together. Cho and Choi [51] analyzed the
factors affecting air pollutants in 17 regions in Korea and revealed that in the regions with
higher percentages of green areas, the reduction in the PM10, CO, and SO2 concentrations,
excluding NO2 and O3, is more effective. This result is similar to that of the study of
Wolf et al. [28] in Augsburg, Germany. Moreover, Weichenthal et al. [30] investigated the
effect of urban forms on air pollution in three Canadian cities: Montreal, Toronto, and
Vancouver; their results revealed high concentrations of both PM2.5 and ultrafine particles
(UFP) in parklands, which was unexpected.

For road and traffic characteristics, the road width and proportion of roads in the area
have been considered important factors in many studies, most of which have shown that
regardless of the type of air pollutants, the air pollution concentration is higher when the
road width or proportion of roads is higher [32,36,39,44]. Furthermore, Kim and Jun [12]
analyzed the impact of urban characteristics on the air pollutant concentrations in the Seoul
Metropolitan Region, Korea; they revealed that when the proportion of roads is higher, the
concentrations of O3, PM10, and SO2 are lower. Furthermore, traffic volume has been con-
sidered an important factor that significantly affects air pollutant concentrations [29,52–54].
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Weichenthal et al. [31] examined the factors affecting air pollutants on a road segment in
Toronto, Canada; they reported that the existence of more intersections leads to a higher
PM2.5 concentration. However, Kim and Jun [12] reported that in Korea, when the in-
tersection rate is higher, the PM10 concentration is lower. Betancourt et al. [55] argued
that having a dedicated bicycle lane on the sidewalk has a significant effect on reducing
pollution exposure for cyclists compared with bicycles using mixed lanes. Furthermore,
bus routes [13,31] and bus stops [35] have been considered road and traffic characteristics.

Land development characteristics have been considered in various studies [33,36,43].
Shi et al. [56] analyzed the association between the PM2.5 concentration and building mor-
phological design factors according to the season and revealed that regardless of the season,
when the building height, building coverage proportion, and building volume density
are higher, the PM2.5 concentration is higher. This result is similar to that of Weichen-
thal et al. [32], which was conducted in Montreal, Canada. However, Habermann et al. [44]
analyzed the factors affecting the NO2 concentration in Gothenburg, Sweden, and re-
ported that in areas where there are more skyscrapers, the NO2 concentration was lower.
Mavroidis and Griffiths [57] showed a similar result from an experimental simulation study
on atmospheric pollution. He indicated that the presence of taller building facilitates the
vertical detrainment of pollutants, thereby decreasing their ground-level concentrations.
Moreover, Oh and Chung [58] investigated the effect of NO2 and PM10 concentrations on
the urban development density in Seoul, Korea, and reported that when the gross residen-
tial floor area is high, the NO2 and PM10 concentrations are high. However, the high gross
commercial and business floor areas seemed to increase only the NO2 concentration and
not the PM10 concentration. Furthermore, Farrell et al. [45] argued that a greater number of
commercial facilities is likely to increase the PM2.5 concentration.

Hence, the association between air pollutants and the built environment has been
investigated in many countries. Nevertheless, environmental damage such as air pollution
may be concentrated mainly in areas that are socioeconomically disadvantaged [59,60]. The
socioeconomically disadvantaged population is more likely to live in areas with relatively
vulnerable environments. This environmental inequality, in addition to the social inequal-
ities of income, health, employment, education, and housing, has become the primary
factor of social inequality among income classes and is expected to worsen over time [61].
Therefore, research on air pollution needs to consider both the physical environment char-
acteristics and the socioeconomic aspects of a neighborhood. In fact, Pearce et al. [62]
studied the distribution of air pollution from the perspective of environmental justice
in Christchurch, New Zealand. The results showed that various social groups in the
Christchurch area were exposed to extreme air pollution. In particular, it was found that
pollution was quite high in communities where the vulnerable lived. However, very few
studies have investigated the link between air pollution and socioeconomic characteristics
of neighborhoods, as well as the built environment of neighborhoods. Therefore, this
study aimed to investigate the correlation between air pollutants and the overall neigh-
borhood environment characteristics while considering both the built environment and
socioeconomic factors.

2. Materials and Methods
2.1. Study Area

The present research was conducted in the Daegu Metropolitan City, which is an
industrial metropolis in Korea. In this study, the administrative district (Dong), which is
generally recognized as a neighborhood in Korea, was defined as a spatial unit. In this
study, we investigated the PM10, PM2.5, NO2, CO, and SO2 concentrations for an average
of three years (from 2016 to 2018). The air pollution data were provided by the Air Korea,
Korea Environment Corporation, which is a government organization under the Ministry
of Environment in Korea.

As of 2018, the Daegu Metropolitan City had a population of ~2.46 million and an area
of ~884.15 km2. The total area was divided into residential area (49.3%), commercial area
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(12.3%), industrial area (3.9%), and other green and management areas (34.5%). Based on
the annual average of the PM10 concentrations by region, Daegu City ranked second among
the cities with the highest concentration in Korea [63]. In 2017, mean PM2.5 concentrations
in Daegu City reached 24 µg/m3, which was more than double the WHO standard [63].
Moreover, it had higher air pollution concentrations of SO2, NO2, and CO in comparison
with other cities in Korea [63]. As of 2017, the number of vehicles registered in Daegu
Metropolitan City was approximately 1.16 million, with the city ranking the 4th highest
among seven metropolitan cities in Korea. In particular, the ratio of passenger cars to
all vehicles in Daegu Metropolitan City accounts for 82.7%, which is slightly lower than
the average passenger car ratio of 83.1% in seven metropolitan cities in Korea. However,
the percentage of heavy vehicles (17.1%) in Daegu Metropolitan City was higher than the
average of 16.6% in seven metropolitan cities [63]. The data clearly shows that Daegu
Metropolitan City has more heavy vehicles than other metropolitan cities in Korea.

2.2. Air-Monitoring Stations

Information on air monitoring stations and air pollutant concentrations was obtained
from Air Korea, which provides the data on the outdoor air quality nationwide under
the Korean Ministry of Environment [64]. There are 11 types of air-monitoring stations,
with a total of 533 stations located in 111 cities nationwide. Daegu Metropolitan City
has 15 air-monitoring stations in operation, including 13 urban and two roadside air–
monitoring stations. The height of urban air-monitoring stations is deliberately set in
the range of 1.5 m to 10 m above the ground, where people normally live. Similarly,
roadside air-monitoring stations are usually set between 1.0 m to 10 m above the ground.
Additionally, they are installed in places where buildings or topographical obstacles would
not interfere, in order to accurately record the level of pollution in the area. Urban and
roadside air-monitoring stations take measurements at 1-hr intervals, and concentrations
of SO2, CO, NO2, PM10, PM2.5, and O3, as well as wind direction, wind speed, temperature,
and humidity are measured. Figure 1 shows the locations of the 15 air-monitoring stations
distributed across Daegu.
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2.3. Data Analysis

In this study, we considered the road traffic characteristics, land-use characteristics,
land development characteristics, and socioeconomic characteristics of the neighborhoods
that can be associated with air pollutants. Table 1 gives the definition of variables. The
socioeconomic factors include the proportions of the population below the age of 15 and
over the age of 65 and the proportion of the national basic livelihood security recipients.
Data of socioeconomic factors were obtained by contacting Korean Statistical Information
Service (KOSIS) [65] and Daegu City directly.

Table 1. Variable descriptions.

Classification Variables Descriptions

Dependent
variables

PM10 2016–2018 average PM10 concentration in Daegu
PM2.5 2016–2018 average PM2.5 concentration in Daegu
NO2 2016–2018 average NO2 concentration in Daegu
CO 2016–2018 average CO concentration in Daegu
SO2 2016–2018 average SO2 concentration in Daegu

Socioeconomic
characteristics

Children under 15 years Ratio of people under 15 years to the total population
Elderly above 65 years Ratio of people above 65 years to the total population

National basic livelihood security recipient Ratio of national basic livelihood security recipients to the
total population

Road
characteristics

Neighborhoodstreet Ratio of neighborhood
streets to the total road

Main road Ratio of main roads to the total road
Intersection Number of intersections per unit area

Bus stop Number of bus stops per unit area

Land-use
characteristics

Residential area Ratio of residential areas to the total area
Commercial area Ratio of commercial areas to the total area

Industrial area Presence of industrial areas (1 = presence, 0 = otherwise)
Park and green area Ratio of park and green areas to the total area

Mixed land use Degree of mixed land uses (0(single use) to 1(mixed use))

Land development
characteristics

Total used surface of residential buildings Sum of total used surfaces of residential buildings
Total used surface of commercial buildings Sum of total used surfaces of commercial buildings

Single-family housing Number of single-family houses per unit area
Multifamily housing Number of multifamily houses per unit area

Road and traffic characteristics include intersection density, bus stop density, and
the proportion of streets and main roads in the neighborhoods, which were considered
to understand the difference in the effect according to road width. These road and traffic
data were obtained from the National Spatial Data Infrastructure (NSDI) portal [66], Road
Name Address Developer Center [67], and Korean Transport Database (KTDB) [68].

For the land-use characteristics, the proportion of the residential areas, commercial
areas, parks, and green areas and the presence of industrial areas were considered. Land
use data were obtained from the NSDI portal [66] and Road Name Address Developer
Center [67]. Finally, for the land development characteristics, the total used surface of
residential and commercial buildings, density of single-family houses, and density of
multifamily houses were considered. These land development data were obtained from
the NSDI portal [66] and analyzed.

2.4. Methods
2.4.1. Spatial Measures

In this study, an interpolation was performed to measure the air pollution concentra-
tion at the neighborhood level [11]. This analysis method is appropriate for reasonably
calculating the values of unmeasured points [69]. All air-monitoring stations in Daegu
were geocoded with the help of the geocoding tool of GIS (Geographic Information System).
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Additionally, the three–year (2016–2018) average concentrations of PM10, PM2.5, NO2, CO,
and SO2 measured at each air-monitoring station were geocoded. The interpolation was
conducted by GIS to measure the distribution of air pollutants at the neighborhood level
using zonal statistics.

2.4.2. Spatial Regression Model

Air pollutants generally exhibit spatial attributes when moving in air. Therefore, be-
cause the spatial correlation between nearby regions is highly probable, a spatial regression
model that can control the spatial autocorrelation should be used. If an ordinary least-
squares (OLS) regression model is used instead of the spatial regression model, the spatial
autocorrelation cannot be controlled and the results of the analysis can be biased [70]. In
this study, we employed the spatial regression model to control the spatial autocorrelation
using GeoDa program. GeoDa is a free and open-source software program for the spatial
data analysis developed by Dr. Luc Anselin and his team [71]. GeoDa can facilitate the new
understanding of spatial econometric models by conducting the spatial lag model (SLM)
and spatial error model (SEM) [72].

SLM is a method for controlling the spatial autocorrelation of a dependent variable
when the dependent variable has a spatially dependent relationship. A statistically signifi-
cant value of ρ indicates that the spatial autocorrelation of the dependent variable needs to
be considered. This is because the focus of attention is an assessment of the existence and
intensity of spatial interactions. The SLM equation is then expressed as follows:

y = ρWy + Xβ + ε (1)

where ρ denotes a spatial autoregressive coefficient, W is a spatial weight matrix (N ×
N spatial lag operator), Wy is a spatially lagged dependent variable, X is an explanatory
variable, β is a K by 1 vector of parameters, and ε is a vector of error terms. Unlike SLM,
SEM is a method that controls the error portion of the error term when the error terms
are dependent on each other. For SEM, when a lambda value is statistically significant, it
indicates that the spatial autocorrelation of the error term is controlled. The SEM equation
is then expressed as follows:

y = Xβ + ε (2)

ε = λWε + u (3)

where X is an explanatory variable, β is a K by 1 vector of parameters, ε is a spatially
dependent error term, λ is a spatial autoregressive parameter, W denotes a spatial weight
matrix, and u is a spatially uncorrelated error term. In this study, y denotes the average
air pollution concentration in the neighborhood for three years according to the type of
air pollutants, X denotes the socioeconomic and built environment characteristics of the
neighborhoods, and W denotes the spatial correlation among the neighborhoods.

3. Results and Discussion
3.1. Spatial Distribution of Air Pollutants

Figures 2–6 show the spatial distributions of the air pollutants measured in a neigh-
borhood in the Daegu Metropolitan City through spatial interpolation.

In general, the air pollution in Daegu was low in the eastern and southern regions
and high in the western and northern regions. The spatial distribution of the air pollutants
demonstrates a difference in the spatial distribution by the type of air pollutants. The PM10
concentration is likely to be high in the northwestern part of Daegu, given that since 1970,
major industrial facilities have been located in the northwestern region of Daegu, such as
the Seodaegu Industrial Complex that is mainly occupied by textile companies and the
Dyeing Industrial Complex. These industrial areas are located very close to the downtown
area of Daegu City, where other air pollution concentrations are high.
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The spatial distribution of PM2.5 was less than that of PM10, but the PM2.5 concen-
tration was relatively low in the downtown area of Daegu, unlike PM10. In particular,
unlike other pollutants, the spatial distribution of PM2.5 tended to be extremely high in
specific areas. This finding indicates that PM2.5 is a very light pollutant compared with
other pollutants and that the PM2.5 concentration is primarily high in the area where the
source of PM2.5 exists. Therefore, PM2.5 does not seem to spread to other areas and seems
to be easily diluted in the atmosphere.

The spatial distributions of NO2 and CO generally exhibit a similar spatial pattern.
Similar to PM10 and PM2.5, the concentrations of NO2 and CO are likely to be high in the
northwestern regions. However, the NO2 and CO concentrations were extremely high in
the western regions of Daegu, where the concentrations of PM10, PM2.5, and SO2 were
relatively low. In the western region of Daegu City, the Daegu Seongseo Industrial Complex
was established as a scientific industrial complex between 1990 and early 2010. These results
indicate that pollution emissions even in the same industrial areas are different depending
on the type of industrial facilities. In particular, unlike other pollutants, the concentration
of SO2 is likely higher in the downtown area of Daegu. In conclusion, in the case of Daegu,
the factories are concentrated in a specific area and the traffic of vehicles is also relatively
concentrated in the downtown area; thus, air pollutants interacting with specific factors
are not continuous but appear high in specific areas.

3.2. Verification of the Spatial Autocorrelation

Table 2 presents the results of the spatial autocorrelation analysis of air pollutants using
Moran’s I test. Moran’s I test is used to evaluate whether the spatial pattern distributed is
clustered, dispersed, or random [71]. Moran’s I value ranges from −1 to +1. A value close
to +1 indicates clustering of similar values, while a value close to −1 indicates clustering
of dissimilar values. These results confirm that all the air pollutants considered in this
study have a spatial autocorrelation. Therefore, a spatial regression model that can control
the spatial autocorrelation should be used. In this study, the effects of the neighborhood
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environment characteristics on the PM10, PM2.5, NO2, CO, and SO2 concentrations in
Daegu were investigated using spatial regression models that can control the spatial
autocorrelation rather than an ordinary least-squares regression model.

Table 2. Results of the spatial autocorrelation analysis.

Dependent Variable Moran’s I Z-Score

PM10 0.435 31.752
PM2.5 0.287 21.148
NO2 0.394 28.835
CO 0.338 24.753
SO2 0.459 33.417

3.3. Descriptive Statistical Analysis

The descriptive statistics of the neighborhood environment variables are given in
Table 3.

Table 3. Descriptive statistics.

Classification Variables Units Mean Std. Dev

Dependent
variables

PM10 µg/m3 41.370 3.930
PM2.5 µg/m3 19.720 2.180
NO2 ppm 0.020 0.002
CO ppm 0.427 0.028
SO2 ppm 0.003 0.000

Socioeconomic
characteristics

Children under 15 years % 10.651 4.000
Elderly above 65 years % 16.180 4.947

National basic livelihood
security recipient % 5.375 4.425

Road
characteristics

Neighborhood street % 41.887 24.260
Main road % 49.093 25.308

Intersection Number/km2 121.30 135.32
Bus stop Number/km2 11.242 6.850

Land use
characteristics

Residential area % 49.330 29.426
Commercial area % 12.325 16.818

Industrial area 0 or 1 0.19 0.397

Park and green area % 5.364 9.337
Mixed land use 0–1 0.322 0.157

Land development
characteristics

Total used surface of
residential buildings m2 524,222 378,931

Total used surface of
commercial buildings m2 195,895 151,254

Single-family housing Number/km2 955.83 914.23
Multifamily housing Number/km2 86.337 106.17

The average concentrations of dependent variables are calculated based on the average
of all administrative districts in Daegu. The average concentrations of PM10 and PM2.5 in
Daegu were ~41.37 and 19.72 µg/m3, respectively. These concentration levels were more
than double WHO’s recommended PM10 and PM2.5 annual averages of 20 and 10 µg/m3,
respectively, which indicates that Daegu’s particulate matter contamination was very
serious from 2016 to 2018. Furthermore, the average concentrations of NO2, CO, and SO2
were 0.02, 0.427, and 0.003 ppm, respectively. The NO2 concentration is close to the WHO
standard of 0.021 ppm, while the SO2 concentration is lower than the WHO standard of
0.019 ppm.
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For the socioeconomic characteristics of neighborhoods, the proportion of the popula-
tion below 15 years was ~10.65% and that over 65 years was ~16.18%. In Daegu City, the
population of elderly people over 65 years was higher than that of young people below
15 years. Furthermore, the proportion of the national basic livelihood security recipients
was ~5.4% of the total population.

For the road characteristics, the neighborhood streets, which were primarily designed
for pedestrian traffic, accounted for ~42%. However, the proportion of the main roads,
which were designed for vehicle traffic, accounted for ~49%. The average density of the
intersections in the neighborhood was ~135 intersections per km2, and the average density
of the bus stops in the neighborhood was about seven bus stops per km2.

For the land-use characteristics, on average ~49% of the neighborhoods were residen-
tial, whereas commercial areas were less common (~12%). Furthermore, ~20% of all the
neighborhoods in Daegu had industrial areas. The neighborhoods in Daegu had ~5.4%
parks and green areas, and the mixed land use had a value between 0 and 1. A value closer
to 0 indicates single use, whereas a value closer to 1 indicates mixed land use [72]. The
average mixed land use of the neighborhoods in Daegu was ~0.322.

For the land development characteristics, the average sum of the total used surface
of residential buildings in the neighborhood was ~524,222 m2, and the average sum of
the total used surface of commercial buildings was ~195,895 m2. On average, there were
~914 single-family houses and ~106 multifamily houses per km2 in the neighborhood.

3.4. Results of the Spatial Regression Models

The results of the spatial regression model analysis of the association between the
concentrations of the air pollutants and the neighborhood environment characteristics
according to the air pollutant types are given in Appendix A Tables A1 and A2. Some
differences were observed between the OLS model, which does not control the spatial
autocorrelation, and the SLM and SEM models, which control the spatial autocorrelation.
In this study, the spatial regression models were more suitable than the OLS model be-
cause the statistical significance of both the SLM and SEM models was obtained from
the Lagrange multiplier (LM) test for selecting the optimal model. Unlike some previ-
ous studies [36,39] that did not consider the spatial autocorrelation, these results indicate
that the spatial regression model that can control the spatial autocorrelation should be
used to consider the spatial properties of air pollutants. However, the robust LM results
indicate a statistical significance in the robust LM lag for all the air pollutants, but such
a significance was not observed in the robust LM error. Furthermore, the log-likelihood,
Akaike information criterion (AIC), and Schwarz criterion (SC) values, which present the
suitability of the models, indicate that regardless of the type of air pollutants, the SLM
model is the most suitable. Therefore, in this study we adopted the SLM model as the final
model. Table 4 gives a summary of the SLM results of analyzing the association between
the neighborhood environment characteristics and the air pollution concentrations by the
type of air pollutants.

No statistical significance was observed in the variables considered for examining
the effects of socioeconomic characteristics of the neighborhoods on air pollution. Spatial
statistical significance in the data is achieved when the z-score of variables falls outside the
range between −1.96 and +1.96 at the 95% confidence level, or between −2.58 and +2.58 at
the 99% confidence level [73]. However, Choi et al. [74] investigated 133 municipalities in
Korea and demonstrated that national basic livelihood security recipients had a negative
association with air quality. When inhaled, PM2.5 can cause serious health problems,
such as respiratory and cardiovascular diseases; moreover, it has a particularly serious
effect on both children and the elderly [75,76]. Therefore, in addition to cross-sectional
research, such as that in this study, a time-series study using panel data is required to have
a better understanding of the association between the socioeconomic characteristics of the
neighborhoods and the air pollutants.
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Table 4. Summary of the spatial lag models of the air pollutants.

Classification
PM10 PM2.5 NO2 CO SO2

Coefficient Z Coefficient Z Coefficient Z Coefficient Z Coefficient Z

Socioeconomic
characteristics

Children under 15 0.008 0.257 0.007 0.300 0.000 0.093 0.000 0.520 0.000 1.640
Elderly above 65 0.005 0.165 0.008 0.348 −0.000 −0.406 −0.000 −0.206 0.000 1.315

National basic
livelihood security

recipient
0.011 0.431 0.005 0.253 −0.000 −0.264 0.000 0.029 0.000 1.310

Road
characteristics

Neighborhood road 0.002 0.230 0.006 0.989 0.000 0.766 0.000 1.705 0.000 1.645
Main road 0.004 0.530 0.005 0.818 0.000 0.551 0.000 1.509 0.000 * 2.214

Intersection −0.099 −0.725 −0.197 −1.902 −0.000 −1.057 −0.001 −1.314 −0.000 −0.949
Bus stop 0.073 0.404 0.278 * 2.0247 −0.000 −0.225 0.002 0.167 0.000 1.865

Land-use
characteristics

Housing area −0.013 * −2.017 −0.004 −0.881 −0.000 −1.422 −0.000 −0.857 −0.000 * −2.220
Commercial area −0.017 −1.941 −0.015 * −2.323 −0.000 −0.864 −0.000 0.343 −0.000 −1.568

Industrial area 0.504 1.661 0.453 * 1.984 0.000 1.666 0.006 * 2.196 0.000 1.739
Park area −0.160 −1.810 −0.132 * −2.001 −0.000 −1.034 −0.001 −1.289 −0.000 −1.933
Mixed use 0.503 0.617 −0.220 −0.359 0.000 0.449 0.007 0.920 0.000 0.452

Development
density

characteristics

Total used surface of
residential buildings −0.000 * −2.229 −0.000 −1.176 −0.000 * −2.199 −0.000 * −2.067 −0.000 −1.906

Total used surface of
commercial buildings 0.000 0.419 0.000 0.563 −0.000 −0.000 0.000 0.016 0.000 1.615

Single-family housing 0.381 ** 2.963 0.138 1.430 0.000 ** 2.950 0.002 1.920 0.000 ** 3.287
Multifamily housing 0.034 0.251 0.066 0.646 0.000 0.203 0.000 0.501 −0.000 −0.268

Rho 0.959 ** 49.953 0.966 ** 54.931 0.936 ** 36.302 0.932 ** 35.142 0.915 ** 32.374
Lagrange multiplier (LM) lag 186.04 ** 172.21 ** 152.90 ** 160.48 ** 123.41 **

LM error 120.86 ** 123.84 ** 103.49 ** 111.16 ** 60.612 **
Robust LM lag 65.344 ** 50.356 ** 49.563 ** 49.575 ** 62.952 **

Robust LM error 0.160 1.985 0.148 0.256 0.154
Log likelihood −214.80 −175.92 785.33 426.75 1061.94

N 139 139 139 139 139
R2 0.938 0.886 0.888 0.880 0.925

Akaike information criterion (AIC) 465.60 387.85 −1534.66 −817.51 −2087.88
Schwarz criterion (SC) 518.42 440.67 −1481.84 −764.69 −2035.06

* p < 0.05, ** p < 0.01.
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For the road and traffic characteristics, the main roads did not have a statistical sig-
nificance with the air pollutants, except for SO2 (coefficient = 0.000, p = 0.02). In areas
with more main roads, the SO2 concentration was higher. However, studies have previ-
ously reported contradictory results. Major roads are likely to increase the PM2.5 [35,39],
NO2 [37,77], CO [78], and PM10 [26] concentrations, and the neighborhood streets are not
associated with all the air pollutants. However, Muttoo et al. [24] and Cordioli et al. [33]
indicated that when minor and major roads are longer, the NO2 concentration is higher.
Weichenthal et al. [30] demonstrated that local roads as well as highways are likely to
increase the PM2.5 concentration. Han and Naeher [79] indicated that CO is one of the
major traffic-related air pollutants because of incomplete combustion of fuels in traffic
engines. They also showed CO concentration in urban areas is highly influenced by traffic
congestion and traffic density. The results of this study, which are contrary to those of the
previous studies, suggest that it is necessary to consider the hierarchy of the roads and
influencing variables such as traffic volume.

There is no statistically significant correlation between density of intersections and any
of the pollutants. However, Hankey and Marshall [35] investigated the on-road particular
air pollution using mobile monitoring in Minneapolis, USA, and reported that when the
number of intersections is higher, the PM2.5 concentration is lower. Therefore, special
attention should be drawn to the effect of the negative direction of the intersections on all
the air pollutants in this study.

The bus stops were only associated with PM2.5 (coefficient = 0.278, p = 0.04). In areas
with more bus stops, the PM2.5 concentration was higher. This result is consistent with the
study of Hankey et al. [35], which confirms that when the number of bus stops is higher
and the bus routes are longer, the pollution level of PM2.5 is higher. Therefore, exhaust gas
reduction systems such as diesel particulate filters (DPFs) should be mandatory for heavy-
duty diesel buses so as to reduce the PM2.5 emissions [80]. Furthermore, the development of
various policies and programs is required, such as sustainable management and restrictions
on old buses that emit more air pollution owing to lack of particulate filters and incomplete
combustion. In addition, human behavioral factors such as smoking while waiting for a
bus were reported to increase the PM2.5 concentration around bus stops [81]. Since 2011,
Korea has designated all bus stops as no-smoking areas. However, the management of
or penalties on this regulation are still insufficient. To reduce the concentration of PM2.5
in terms of public health, smoke supervision around bus stops should be strengthened.
Furthermore, Sahu et al. [82] conducted a study on the emission inventory of anthropogenic
PM2.5 and PM10 in Delhi, India, and revealed that PM2.5, unlike PM10, accounts for 45% of
the emissions by vehicles such as buses in comparison with other factors.

Among the five land-use characteristics, only industrial areas exhibited a positive
correlation with any of the pollutants, regardless of statistical significance. The positive
association of the industrial areas with all the air pollutants (PM10: coefficient = 0.504,
p = 0.09; PM2.5: coefficient = 0.453, p = 0.04; NO2: coefficient = 0.000, p = 0.09; CO: coeffi-
cient = 0.006, p = 0.02; SO2: coefficient = 0.000, p = 0.08) indicates that special environmental
management of the industrial areas is necessary. Moreover, the mixed land use had no
effect on all air pollutants. The residential areas were found to be associated with PM10
(coefficient = −0.013, p = 0.04) and SO2 (coefficient = −0.000, p = 0.02); this result may
reveal the distinctive characteristics of residential areas in Korea. Generally, most of the
residential areas in Korea are highly and densely developed neighborhoods that primarily
comprise multifamily houses. In Korea, high-density, multifamily residential development
projects should construct green parks in their residential complexes according to the devel-
opment regulations. Green areas and parks in multifamily housing complexes can play
a significant role in reducing the concentrations of air pollutants [83]. This result agrees
with the negative direction between air pollutants and green areas. In particular, parks and
green areas have proven effective in reducing PM2.5 (coefficient = −0.132, p = 0.04) concen-
trations. Moreover, when the total used surface of residential buildings was higher, the
concentrations of all the air pollutants were lower. In particular, CO (coefficient = −0.000,
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p = 0.03), NO2 (coefficient = −0.000, p = 0.02), and PM10 (coefficient = −0.000, p = 0.02)
had a negative association with the total used surface of residential buildings. Therefore,
promoting eco-friendly development is necessary for high-density, multifamily residential
projects, which can be realized by providing more parks and green spaces.

This study demonstrates that commercial areas were negatively associated with only
PM2.5 (coefficient = −0.015, p = 0.02). The concentration of PM2.5 was lower when there
were more commercial areas in a neighborhood. Figure 3 shows a possible explanation for
this finding of the spatial distribution of PM2.5. The concentration of PM2.5 was relatively
low in the downtown area located at the center of the Daegu Metropolis. Commercial areas
tend to have a higher pedestrian flow than other land-use areas. PM2.5 is composed of very
small particulate matter, unlike other air pollutants in gaseous form. Therefore, the static
electricity generated on the clothes of many pedestrians in commercial areas can attract
PM2.5 [84–86]. Therefore, to minimize the exposure to PM2.5, which is designated as a class
1 carcinogen and has adverse effects on the human body, various policies and programs
must be considered at the micro level, including projects that are related to architecture,
urban design, and macro-level approaches.

The industrial areas were reported to be associated with CO (coefficient = 0.006,
p = 0.02) and PM2.5 (coefficient = 0.453, p = 0.04), and the concentrations of PM2.5 and CO
were higher when there were industrial areas in the neighborhood. This result is consistent
with the results of previous studies [27,30,34,35,39,45]. Therefore, eco-friendly policies must
be developed to transform existing factories into smart ones [87]. In particular, industrial
areas are regions where many cargo trucks and heavy-duty diesel vehicles operate and
factories emit air pollutants. Kim [88] reported the seriousness of the air pollutant emissions
caused by diesel vehicles in Seoul. Generally, obligatory and continuous policies for the
emission regulation of heavy-duty diesel vehicles operating in the city and the installation
of DPFs are required.

The parks and green areas had a statistical significance only with PM2.5 (coeffi-
cient = −0.132, p = 0.04). When there were more parks and green areas in the neighborhood,
the concentration of PM2.5 was lower. This result is consistent with those of the previous
studies [28,31,52]. However, green areas can exhibit a negative correlation with all the air
pollutants regardless of the statistical significance. This finding has implications on the
impact of parks and green areas on the reduction of air pollution.

For the land development characteristics, when the total used surface of residential
buildings in the neighborhoods was higher, the concentrations of CO (coefficient = −0.000,
p = 0.03), NO2 (coefficient = −0.000, p = 0.02), and PM10 (coefficient = −0.000, p = 0.02)
were lower. However, Oh and Chung [58] examined a case study in Seoul and reported
that when the density of residential buildings was higher, the concentrations of NO2 and
PM10 were higher. Therefore, these inconsistent research results, even for the studies in
Korea, indicate that even cities in the same country should have different policies and
programs for reducing air pollution. In this study, we subdivided the residential area
buildings into single-family and multifamily houses. Interestingly, the concentrations of
NO2 (coefficient = 0.000, p = 0.00), PM10 (coefficient = 0.381, p = 0.00), and SO2 (coeffi-
cient = 0.000, p = 0.00) were higher in neighborhoods with more single-family houses.
Furthermore, multifamily housing did not have statistical significance. In general, single-
family housing in Korea is an area where older buildings are denser than multifamily
housing and is relatively poorly managed compared to multifamily housing. In Korea,
which mainly uses Liquefied petroleum gas (LPG) and oil for indoor heating, air pollutants
such as NO2 and sulfur are likely to be discharged from sources such as old boilers existing
in old single-family houses. These are the areas concentrated by the relatively socioeco-
nomically vulnerable population. In fact, the high-poverty cluster in LA, USA, showed
similar NO2 and PM2.5 concentrations compared to the low-poverty cluster; however, the
concentrations of other pollutants were higher [89]. In addition, a study conducted in
Montreal, Canada, found that NO2 concentration was associated with the distribution of
the low-income population [90]. Accordingly, it is necessary to consider replacing the old
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boilers in single-family houses and supporting the installation of boilers with low emission
of air pollutants such as NO2 and sulfur. Meanwhile, this result may suggest that in-depth
research on the causes of air pollution in neighborhoods with more single-family houses
rather than multifamily houses is required.

4. Conclusions

In this study, we examined the effects of the physical and socioeconomic character-
istics of neighborhoods on the PM10, PM2.5, NO2, CO, and SO2 concentrations. A spatial
regression analysis was conducted on the air pollution data of Daegu Metropolitan City,
Korea’s leading industrial city, for three years (from 2016 to 2018); the main results are
as follows.

First, the socioeconomic characteristics considered in this study were not statistically
significant regardless of the air pollutant types. However, from the perspective of an
inclusive city, continuous research and focus are required to ensure that socially vulnerable
groups, such as those aged below 15 years and above 65 years, and basic livelihood security
recipients, are not environmentally disadvantaged.

Second, the effects of the built environment characteristics of the neighborhoods
were different for each air pollutant. In particular, PM2.5 was more affected by the built
environment in comparison with other pollutants. Therefore, new policies and programs
must address the reduction of air pollution for each air pollutant.

Third, when there were more main roads in the neighborhoods, the SO2 concentration
was found to be higher. Therefore, green spaces should be built along main roads to
help prevent air pollution in these areas. The concentration of PM2.5 was higher in the
neighborhoods with more bus stops. Therefore, in the long term, outdated diesel buses
need to be replaced by CNG buses or electric buses. Moreover, smoking needs to be
prohibited at temporary stops and vehicle parking around bus stops.

Fourth, regarding the land-use characteristics, the concentrations of CO and PM2.5
are likely to be high in industrial neighborhoods. This result suggests that the existing
factory facilities need to be replaced by smart and eco-friendly factory systems, which need
the support of the government. When the parks and green areas in the neighborhoods
were larger, their positive impact on the air pollutant concentrations was reported to be
greater. Specifically, for PM2.5, the positive influence of the parks and green areas seemed
to be significant. Therefore, air pollution concentration must be reduced, and places for
improving the quality of life of people, such as rest areas, must be provided by constructing
more parks and green areas.

Finally, when the total used surface of residential buildings was higher, the concentra-
tions of the air pollutants were reported to be lower. Contextually, similar neighborhoods
with more single-family houses tend to have high levels of air pollution. Therefore, because
of the characteristics of the residential development system in Korea, single-family housing
areas are likely to have fewer parks and green spaces than multifamily housing areas.
This result suggests that more parks and green spaces should be considered in the urban
redevelopment and regeneration of single-family housing areas.

Traffic volume and vehicle type can be expected to be significant factors affecting
the concentration of air pollutants. However, this study could not examine the influence
of these factors due to the lack of construction and management of traffic-volume and
vehicle type at the local level in Korea. Moreover, urban climatological characteristics, such
as precipitation, temperature, and wind, can be associated with the concentration of air
pollutants. However, these characteristics could not be measured in this study because
of the limited number of monitoring systems in Korea. Finally, the concentration of air
pollutants and the factors affecting them are dependent on the characteristics of cities.
Therefore, there is a need for continuous studies in various cities in Korea to improve their
understanding. In addition, it is necessary to conduct a nationwide study and develop a
policy in a large framework for reducing the concentration of air pollution in Korea. The
significance of this study is expressed in examining the association between various air
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pollutants and the socioeconomic characteristics, as well as in the built environment of
the neighborhoods. This study is expected to guide policymakers and planners in making
smart decisions for eco-friendly and healthy cities.
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Appendix A

Table A1. Results of spatial regression models.

Classification

PM10 PM2.5

Ordinary Least
Square (OLS)

Spatial Lag Model
(SLM)

Spatial Error Model
(SEM)

Ordinary Least
Square (OLS)

Spatial Lag Model
(SLM)

Spatial Error Model
(SEM)

Coef. t Coef. z Coef. z Coef. t Coef. z Coef. z

Socioeconomic
characteristics

Children under 15 −0.072 −0.693 0.008 0.257 0.012 0.334 −0.004 −0.074 0.007 0.300 0.002 0.081
Elderly above 65 −0.076 −0.728 0.005 0.165 0.039 1.011 −0.058 −0.876 0.008 0.348 0.020 0.713

National basic livelihood
security recipient −0.041 −0.485 0.011 0.431 0.024 0.866 −0.056 −1.044 0.005 0.253 0.010 0.518

Road
characteristics

Neighborhood street 0.023 0.812 0.002 0.230 0.001 0.127 0.029 1.670 0.006 0.989 0.002 0.348
Main road 0.074 ** 2.724 0.004 0.530 0.002 0.259 0.043 * 2.514 0.005 0.818 0.000 0.072

Intersection 0.154 0.344 −0.099 −0.725 −0.131 −0.693 −0.668 * −2.372 −0.197 −1.902 −0.254 −1.838
Bus stop 0.246 0.415 0.073 0.404 0.119 0.644 0.613 1.638 0.278 * 2.0247 0.255 1.882

Land use
characteristics

Housing area −0.016 −0.748 −0.013 * −2.017 −0.007 −0.988 −0.016 −1.172 −0.004 −0.881 0.001 0.200
Commercial area −0.048 −1.676 −0.017 −1.941 −0.009 −0.807 −0.049 *

* −2.712 −0.015 * −2.323 −0.007 −0.930
Industrial area 0.997 1.008 0.504 1.661 0.581 1.518 0.959 1.540 0.453 * 1.984 0.559 * 1.995

Park area −0.651 * −2.272 −0.160 −1.810 −0.165 −1.766 −0.383 * −2.122 −0.132 * −2.001 −0.093 −1.361
Mixed use 1.688 0.635 0.503 0.617 0.415 0.548 −1.026 −0.613 −0.220 −0.359 −0.153 −0.276

Development
density

characteristics

Total used surface of
residential buildings −0.000 * −2.280 −0.000 * −2.229 −0.000 −1.073 −0.000 * −2.434 −0.000 −1.176 −0.000 −0.345

Total used surface of
commercial buildings 0.000 0.700 0.000 0.419 0.000 0.501 0.000 0.632 0.000 0.563 0.000 0.457

Single−family housing 1.242 ** 2.973 0.381 ** 2.963 0.193 1.626 0.633 * 2.406 0.138 1.430 0.029 0.337
Multifamily housing 0.156 0.349 0.034 0.251 0.128 0.847 0.302 1.073 0.066 0.646 0.132 1.189

Rho 0.959 ** 49.953 0.966 ** 54.931
Lambda (λ) 0.983 ** 93.982 0.978 ** 77.821

Robust LM lag 65.344 ** 50.356 **
Robust LM error 0.160 1.985
Log likelihood −348.35 −214.80 −221.66 −284.10 −175.92 −177.67

N 139 139 139 139 139 139
R2 0.426 0.938 0.934 0.260 0.886 0.886

Akaike information criterion (AIC) 730.71 465.60 477.32 602.21 387.85 389.35
Schwarz criterion (SC) 780.59 518.42 527.21 652.10 440.67 439.24

* p < 0.05, ** p < 0.01.
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Table A2. Results of spatial regression models.

Classification
NO2 CO SO2

OLS SLM SEM OLS SLM SEM OLS SLM SEM

Coef. t Coef. z Coef. z Coef. z Coef. z Coef. z Coef. z Coef. z Coef. z

Socioeconomic
characteristics

Children under 15 −0.000 −0.923 0.000 0.093 0.000 0.015 −0.000 −0.469 0.000 0.520 0.000 0.617 0.000 ** 2.745 0.000 1.640 0.000 0.440
Elderly above 65 −0.000 −0.161 −0.000 −0.406 −0.000 −0.144 −0.000 −0.665 −0.000 −0.206 0.000 0.461 0.000 ** 2.684 0.000 1.315 0.000 0.739

National basic
livelihood security

recipient
−0.000 −0.706 −0.000 −0.264 −0.000 −0.231 −0.000 −0.996 0.000 0.029 0.000 0.554 0.000 0.101 0.000 1.310 0.000 1.829

Road
characteristics

Neighborhood street 0.000 1.556 0.000 0.766 0.000 0.692 0.000
* 2.546 0.000 1.705 0.000 1.431 0.000 ** 3.281 0.000 1.645 0.000 0.237

Main road 0.000
* 2.562 0.000 0.551 0.000 0.407 0.000

** 3.465 0.000 1.509 0.000 1.008 0.000 ** 4.780 0.000
* 2.214 0.000 0.790

Intersection −0.000 −0.346 −0.000 −1.057 −0.000 −0.784 −0.000 −0.042 −0.001 −1.314 −0.002 −1.373 0.000 0.188 −0.000 −0.949 −0.000 −0.929
Bus stop 0.000 0.389 −0.000 −0.225 −0.000 −0.150 0.005 1.181 0.002 0.167 0.002 1.545 0.000 * 2.113 0.000 1.865 0.000 1.240

Land use
characteristics

Housing area −0.000 −0.225 −0.000 −1.422 −0.000 −0.737 −0.000 −0.219 −0.000 −0.857 0.000 0.461 −0.000 −1.391 −0.000
* −2.220 −0.000 −1.283

Commercial area −0.000 −0.577 −0.000 −0.864 −0.000 −0.529 −0.000 −0.449 −0.000 0.343 −0.000 −0.012 −0.000 −0.939 −0.000 −1.568 −0.000 −0.902
Industrial area 0.001 1.951 0.000 1.666 0.000 0.913 0.015

* 2.035 0.006
* 2.196 0.005 1.542 0.000 0.931 0.000 1.739 0.000 * 2.032

Park area −0.000 −1.530 −0.000 −1.034 −0.000 −0.844 −0.004
* −2.009 −0.001 −1.289 −0.000 −0.477 −0.000 * −2.397 −0.000 −1.933 −0.000 * −2.543

Mixed use 0.001 0.660 0.000 0.449 0.000 0.215 0.021 1.086 0.007 0.920 0.004 0.609 0.000 0.407 0.000 0.452 0.000 0.317

Development
density

characteristics

Total used surface of
residential buildings −0.000 −1.891 −0.000

* −2.199 −0.000 −1.951 −0.000 −1.875 −0.000
* −2.067 −0.000 −1.867 −0.000 * −2.568 −0.000 −1.906 −0.000 −0.950

Total used surface of
commercial
buildings

0.000 0.572 −0.000 −0.000 0.000 0.222 0.000 0.625 0.000 0.016 0.000 0.206 0.000 * 2.383 0.000 1.615 0.000 1.206

Single−family
housing

0.000
* 2.470 0.000

** 2.950 0.000
* 2.241 0.005 1.617 0.002 1.920 0.001 1.528 0.000 ** 3.348 0.000

** 3.287 0.000 * 2.430

Multifamily housing 0.000 1.068 0.000 0.203 0.000 0.059 0.002 0.779 0.000 0.501 0.001 0.986 0.000 0.827 −0.000 −0.268 −0.000 −0.193

Rho 0.936
** 36.302 0.932

** 35.142 0.915
** 32.374

Lambda (λ) 0.964
** 51.457 0.964

** 51.898 0.980 ** 84.458
Robust LM lag 49.563 ** 49.575 ** 62.952 **

Robust LM error 0.148 0.256 0.154
Log likelihood 688.32 785.33 779.46 329.79 426.75 423.94 964.62 1061.94 1054.55

N 139 139 139 139 139 139 139 139 139
R2 0.403 0.888 0.882 0.368 0.880 0.881 0.610 0.925 0.924

Akaike information criterion (AIC) −1342.64 −1534.66 −1524.93 −625.58 −817.51 −813.88 −1895.24 −2087.88 −2075.11
Schwarz criterion (SC) −1292.76 −1481.84 −1475.04 −575.69 −764.69 −763.99 −1845.35 −2035.06 −2025.22

* p < 0.05, ** p < 0.01.
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