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Abstract: This paper presents a definition of bifurcation-type abrupt changes based on the bifurcation
features of Lorenz trajectories. These abrupt changes are the result of the transition behavior of
dynamical system trajectories among different equilibrium regions. We demonstrate that these
bifurcation-type jumps can better reflect the nature of abrupt change. In analyzing the features of
Lorenz equation trajectories, a dynamical method for detecting bifurcation-type abrupt changes
is presented. A numerical solution of the Lorenz equation is adopted, using a curve integral or
vector product to construct a time series of positive and negative values. Changes in the sign
of this time series accurately determine whether the trajectory is in the right or left equilibrium
region, and the points at which the time series is equal to zero are the times at which the trajectory
jumps between different equilibrium regions, that is, the occurrence times of bifurcation-type abrupt
changes. This method is completely dependent on the dynamical characteristics of the system. A
theoretical approach for detecting abrupt climate changes based on the dynamical characteristics
of the atmospheric model is described. Compared with the original method of identifying abrupt
climate changes, this method has dynamic significance and can detect abrupt changes in multi-
dimensional time series. Although this method can be applied theoretically, applications to real
atmospheric data first require the data to be smoothed.

Keywords: abrupt climate change; detection method; curvilinear integral; bifurcation; dynami-
cal system

1. Introduction

Abrupt changes are common phenomena in nature, and in human and social activ-
ities. Such phenomena have been studied in atmospheric science [1], oceanography [2],
geology [3], geography [4], botany [5], zoology [6], medical science [7], economics [8], and
sociology [9]. The popular description of an abrupt change is the process of jumping from
one state to some other state, leading to the transition of the system of interest from one
equilibrium state to another. In this transition process, some properties of the system will
change significantly, which may have some unpredictable consequences. This is the main
focus of research on abrupt changes.

Catastrophe theory uses mathematical models to explain sudden change behavior
in the process of system evolution. The mathematical model may be discrete or con-
tinuous, and the results may be exact analytical solutions or numerical approximations.
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The establishment of catastrophe theory can be traced back to 1972 and the systematic
research conducted by the French mathematician Thom [10]. Subsequently, the British
mathematician Zeeman developed and improved catastrophe theory [11].

Catastrophe theory is related to the stability of the solution of a differential equation.
In 1953, Hadamard solved the Cauchy problem of Laplace’s equation, showing that the dif-
ferential equation is sensitive to the initial value, which means that the solution is unstable,
and constructing a famous counter example [12]. The construction of the Lorenz equation
in 1963, in which each term has a clear physical meaning, showed that instabilities are not
simply an abstract mathematical concept, such as in Hadamard’s counter example. There
are also unstable systems in nature, characterized perhaps by the uncertainty of trajectory
motion [13], where the origin of this motion uncertainty lies in the trajectory jumping
among different equilibrium points. Catastrophe theory has been applied in various disci-
plines, such as gene mutations in biology [5,6], the adjustment of industrial structures in the
field of economics [8], and the study of abrupt climate change in atmospheric science [14].
In all of these fields, catastrophe theory has been used to predict the changing behavior of
complex and disordered systems.

In 1992, Fu et al. proposed a universal definition of abrupt climatic change: “the
abrupt change is the jumpy transformation phenomenon from one steady state (the stable
and sustainable change trend) to another steady state (the stable and sustainable change
trend), the performance is a sharp change from one statistical feature to another statistical
feature in space and time” [14]. There has been considerable research on abrupt climate
change. For instance, Chu discussed the sudden onset of the East Asian monsoon [15,16],
Tu et al. derived approximate times for the advance and retreat of the summer monsoon in
China [15,17], and in the analysis of the atmospheric circulation over Asia in 1956, Tao et al.
identified a jump change during the transitional period from spring to summer [15,18].
On the basis of surface temperature and precipitation data for China from 1961–2006, the
variations and abrupt changes in these variables on the Qinghai Tibet Plateau and six
other regions of China were detected and compared by Ding et al. [19]. Krishnamurti
discussed the characteristics of the Indian monsoon onset using observational station
data [20], while Shinoda et al. analyzed the characteristics of seasonal abrupt changes
in the global precipitation distribution in 1979 [21]. All of the above studies are based
on observational data, which shows that abrupt changes are a common phenomenon in
atmospheric motion. The definition of abrupt climatic change proposed by Fu et al. is
founded on statistical features [14], but it is important to clarify the meaning of abrupt
climatic change from the viewpoint of the dynamic features of the atmospheric system.

On the basis of mathematical physics and atmospheric observation data, Feng et al.
have studied various methods of detecting abrupt climate changes. In particular, heuristic
segmentation, permutation entropy, and power-law exponent methods have been proposed
for detecting and analyzing abrupt changes in climate, allowing the underlying mecha-
nisms to be identified [22–28]. Against the backdrop of global warming, the mechanisms
and features of abrupt climate change have been extensively studied [29–32]. However,
these previous studies are all based on single time series, such as temperature or precipita-
tion time series. To the best of our knowledge, there has been no research on abrupt changes
in real-world time series of multiple meteorological elements. Thus, we study an abrupt
change detection method for real-world time series. Additionally, whereas statistical algo-
rithms have been used to study abrupt changes in previous papers, we describe a method
for abrupt change detection of the atmospheric system’s dynamic features. Atmospheric
motion is described by nonlinear fluid dynamics equations. Due to the high degree of
nonlinearity and complexity of these equations, and the limitations of mathematical theory,
analytical solutions cannot be obtained. Instead, only numerical approximations can be
achieved, whereby the atmospheric dynamic equations are discretized into ordinary differ-
ential equations that give the atmospheric numerical model. The atmospheric observations
or model output data are the solutions to these ordinary differential equations, and the
trajectories of the solutions to these ordinary differential equations in the normed linear
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space Rn can completely describe the state of atmospheric motion. From the study of these
trajectories, we can discuss the underlying mechanism of abrupt climate change in terms of
geometry and dynamics. This paper presents a definition and detection method for abrupt
climate changes from the perspective of ordinary differential equation trajectories.

2. Dynamic Definition and Detection Method of Abrupt Changes
2.1. Abrupt Changes Based on Bifurcation Features

In the study of atmospheric motion, the optimal ordinary differential equations form
the ideal atmospheric numerical model, but the dimension n is very high. Thus, the
trajectories cannot be drawn in the normed linear space Rn, and so the Lorenz equations
are taken as the research object. This is beneficial because, first, theoretical research can be
carried out to obtain an abrupt change detection method based on the trajectory evolutions,
and second, the Lorenz system is highly simplified, but qualitatively represents certain
features of atmospheric dynamics. The Lorenz system comprises the following set of
nonlinear equations: 

dx
dt = σ(−x + y)
dy
dt = rx− y− xz
dz
dt = xy− bz

. (1)

Here, x is the flipping velocity of convection, y is the temperature ratio, z is the tempera-
ture gradient in the vertical direction, σ is the Prandtl number, r is the relative Rayleigh num-
ber, and b is the velocity damping constant. When r is less than or equal to 1.0, there is only
one equilibrium point at O(0,0,0)—this is the static state of the fluid. When r is greater than
1.0, there are three equilibrium points, namely, O(0,0,0), L(−

√
b(r− 1),−

√
b(r− 1), r− 1),

and R(
√

b(r− 1),
√

b(r− 1), r− 1), where L and R denote left and right. In this case, the
solution of the equation exhibits a bifurcation phenomenon. We take σ = 10, r = 28, and
b = 8/3. By taking the initial position as (6, 20, 33) (or any other random value), numerical
solutions of the dynamical system in Equation (1) can be determined using the four-rank
Runge–Kutta algorithm with an incremental step of 0.001 over the integral interval [0, 50]
and a truncation error of 0.013.

In Figure 1a, the black point is the left equilibrium point L and the blue point is the
right equilibrium point R; the yellow curve is the trajectory of Lorenz Equation (1). One
quasi-periodic trajectory (light gray bold segment) and one quasi-semi-periodic trajectory
(light blue bold segment) are selected at random. The motion of these two sections of the
trajectory is confined to one equilibrium point, representing the evolution of the solution
of the dynamic system in one equilibrium region (the arrows indicate the direction of the
trajectory). The green curve is a transition trajectory from the left equilibrium point region
to the right equilibrium point region, and the pink curve is a transition trajectory from the
right equilibrium region to the left equilibrium region. These two trajectories represent the
transitions of the solution curves of the dynamical system between different equilibrium
regions. The solution to the Lorenz Equation (1) changes significantly in the pink and
green sections, demonstrating a kind of abrupt change. This abrupt change is caused by
the bifurcation of Lorenz Equation (1), so it should have some physical meaning. For a
dynamical system with more than two equilibrium points, the trajectory motion must
have jump characteristics among the different equilibrium states. Therefore, these abrupt
changes are relatively common, and can be defined as bifurcation-type abrupt changes.
This type of abrupt change is the main focus of our study.
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Figure 1. Trajectory of the Lorenz equation and y component. (a) Trajectory of the Lorenz equation, (b) y component
of one periodic trajectory, (c) y component of semi-periodic trajectory, (d) y component of transition trajectory from left
equilibrium region to right equilibrium region, and (e) y component of transition trajectory from right equilibrium region to
left equilibrium region.

In Figure 1b, the horizontal direction is the time coordinate, and the curve is the y
component of the light gray trajectory segment in Figure 1a. Figure 1c–e show the curves of
the y component of the light blue, green, and pink trajectory segments in Figure 1a. Abrupt
change detection can be applied to the time series in Figure 1b,c, and the abrupt change
points are indicated by red stars. However, the time series in Figure 1d,e have no obvious
characteristics of abrupt changes (of course, with different detection methods, there may
be different detection results).

We can see from Figure 1a that the trajectory in the left equilibrium region rotates
clockwise, whereas that in the right equilibrium region rotates counter-clockwise. Therefore,
the rotation direction of the pink and green transition trajectories is bound to change. In
view of these characteristics of the bifurcation-type abrupt change, we propose a method for
their detection that is helpful in classifying and detecting abrupt changes in the atmosphere.
It is also expected to provide a geometric and dynamic explanation for extreme weather
events, such as abrupt changes between drought and flood in climate forecasts, and an
early warning signal for abrupt climate change.

2.2. Bifurcation-Type Abrupt Change Detection Method

To determine the direction of a plane curve as either clockwise or counter-clockwise,
consider the directional curve L in Figure 2. We select the points P1(x1, y1), P2(x2, y2),
P3(x3, y3), . . . , Pn(xn, yn) on L in turn, and obtain the point sequence {Pn(xn, yn)}. For
different curves, we can adjust the density of the selected points. For the trajectory of a
dynamical system, point sequence {Pn(xn, yn)} can be taken as the numerical solution. The
three vertices of triangle D in Figure 2 are Pi(xi, yi), Pi+1(xi+1, yi+1), and Pi+2(xi+2, yi+2);

these are enclosed by the directional line segments
→

PiPi+1,
→

Pi+1Pi+2, and
→

Pi+2Pi, and the
boundary of triangle D is l. We can write the integral of this curve as

Si ≡
1
2

∮
l
xdy− ydx =

1
2
(
∫

.
pi pi+1

xdy− ydx +
∫

.
pi+1 pi+2

xdy− ydx +
∫

.
pi+2 pi

xdy− ydx). (2)
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Figure 2. Diagram of curve integral.

In the above formula, 1
2

∮
l xdy− ydx is the second type of curve integral on curve l,

and the direction is indicated by the arrow. The geometrical meaning is the directed area of
the triangle ∆PiPi+1Pi+2. The integral can be obtained as

Si =
1
4 [(yi+1 − yi)(xi + xi+1)− (xi+1 − xi)(yi + yi+1)

+(yi+2 − yi+1)(xi+1 + xi+2)− (xi+2 − xi+1)(yi+1 + yi+2)
−(yi+2 − yi)(xi + xi+2) + (xi+2 − xi)(yi + yi+2)].

(3)

Simplifying this expression, we get

Si =
1
2
(xiyi+1 − xi+1yi + xi+1yi+2 − xi+2yi+1 − xiyi+2 + xi+2yi), (4)

where i = 1, 2, 3, . . . , n − 2 gives the series {Si}. The definition of the second type of curve
integral states that if Si > 0, the directional curve L is rotating counter-clockwise around the
triangle ∆PiPi+1Pi+2, and when Si < 0, the directional curve L is rotating clockwise around
the triangle ∆PiPi+1Pi+2; if Si = 0, the curve is a straight line in the triangle ∆PiPi+1Pi+2,
that is, Pi, Pi+1, and Pi+2 are collinear. The direction of curve L can also be determined by
the sign of the vector product of the following vectors:

→
pi pi+1 = (xi+1 − xi, yi+1 − yi) (5)

→
pi+1 pi+2 = (xi+2 − xi+1, yi+2 − yi+1). (6)

If the vector product of
→

pi pi+1 and
→

pi+1 pi+2, i.e.,

→
pi pi+1 ×

→
pi+1 pi+2 = xi+1yi+2 − xiyi+2 + xiyi+1 − xi+2yi+1 + xi+2yi + xi+1yi, (7)

is greater than zero, then L is rotating counter-clockwise; if the vector product is less than
zero, L is rotating clockwise. Comparing Equations (4) and (6), they differ by a factor of two:
this is obvious, because the vector product in Equation (6) is twice the area of the triangle
∆PiPi+1Pi+2. We call the time series {Si} the area index time series, as the directional curve
L is in the coordinate plane xoy. The area index time series is recorded as {Sxoy

i}.
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2.3. Bifurcation-Type Abrupt Change Detection Test

For ease of exposition, the trajectory of the Lorenz equation in the region of the left
equilibrium point is colored light gray and that in the right equilibrium region is colored
light blue. The abrupt change points from the left equilibrium point area to the right
equilibrium point area are marked with green points (curve segment), and the abrupt
change points from the right equilibrium point area to the left equilibrium point area are
marked with pink points (curve segment). This provision extends to the projection of the
trajectory of the Lorenz equation on every coordinate plane.

2.3.1. Single-Index Time Series Abrupt Change Detection

Take the projection of the trajectory of Figure 1a on the coordinate plane xoz as
the directional curve L, and consider the time interval [0, 10]. P1(x1, z1), P2(x2, z2), and
P3(x3, z3) are taken on the curve L, where x1, x2, x3 and z1, z2, z3 are the x and z components
of the numerical solution of Equation (1). According to Equation (4), we can obtain Sxoz

1,
where the superscript xoz denotes that the curve is in the coordinate plane xoz and the
subscript 1 indicates the first point; then, we take P2(x2, z2), P3(x3, z3), and P4(x4, z4) to
obtain Sxoz

2, etc., to give the area index time series {Sxoz
i}. In Figure 3a, this area index

time series is shown by the red line; the black line is the zero line, and the pink and green
stars are the intersection points between the red curve and the black line. The pink stars
(denoted as Tp2n

1, Tp2n
2, Tp2n

3) indicate the points at which the time series {Sxoz
i} changes

from positive to negative (the corresponding times are approximately 1.23, 3.63, and 9.39),
while the green stars (denoted as Tn2p

1 and Tn2p
2 ) indicate the points at which {Sxoz

i}
changes from negative to positive (the corresponding times are approximately 2.76 and
4.50). For convenience, Tp2n

1 is also used to represent the time 1.23, and Tp2n
2 is used to

represent the time 3.63.

Figure 3. Area index time series and trajectory of the Lorenz equation. (a) Area index time series {Sxoz
i}(b) Trajectory of

the Lorenz equation in coordinate plane xoz. (c) Trajectory of the Lorenz equation.

In the calculation of the numerical solution of Lorenz Equation (1), the integration
step is 0.001. If we take the integration step to be 0.01, the length of the time series {Sxoz

i}
is smaller, but we obtain similar results. Figure 3b shows the projection of the Lorenz
trajectory in the xoz plane, where the light blue curve corresponds to Sxoz

i > 0, the light
gray curve corresponds to Sxoz

i < 0, and the times corresponding to the pink stars are
Tp2n

i (i = 1,2,3) (note that two of these points are very close to each other, labeled as two).
The times corresponding to the green stars are Tn2p

j (j = 1,2). Figure 3c shows the trajectory
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of Lorenz Equation (1) in R3; the corresponding time intervals of every directed curve in
the graph are exactly the same as in Figure 3b, and the corresponding times of the pink
and green stars are also the same as in Figure 3b.

Figure 3b illustrates that when time series {Sxoz
i} is greater than zero, the trajectory

rotates counter-clockwise in the region of the right equilibrium point; conversely, when
the time series is less than zero, the trajectory rotates clockwise in the region of the left
equilibrium point. There are two cases when {Sxoz

i} is equal to zero. At times Tp2n
i

(i = 1,2,3), the trajectory passes from the right equilibrium area to the left equilibrium area,
while at times Tn2p

j (j = 1,2), the trajectory passes from left to right. Figure 3c shows that
the position of the trajectory can be determined by the positive and negative values of the
time series {Sxoz

i}, that is, for Sxoz
i < 0, the trajectory is in the left equilibrium region, and

for Sxoz
i > 0, the trajectory is in the right equilibrium region. However, when Sxoz

i = 0,
the trajectory transitions between the different equilibrium regions, and these are the times
when the bifurcation-type abrupt changes occur.

We denote jumps from the right equilibrium region to the left equilibrium region
as SCR2L; these correspond to the pink stars in Figure 3c and Tp2n

i (i = 1,2,3). Jumps
from the left equilibrium region to the right equilibrium region are defined as SCL2R;
these correspond to the green stars in Figure 3c and Tn2p

j (j = 1,2). We can see from
Figure 3c that there are three instances of SCR2L and two instances of SCL2R in the time
interval [0, 10]. Thus, our detection method did not produce any false or missed detections.
This new method for detecting bifurcation-type abrupt changes is based on the dynamic
characteristics of the Lorenz equation.

In conclusion, bifurcation-type abrupt changes occur when the time series {Sxoz
i} is

equal to zero. Tp2n
i correspond to SCR2L abrupt changes, and Tn2p

j correspond to SCL2R

abrupt changes.

2.3.2. Multi-Index Time Series Abrupt Change Detection

The trajectory of Lorenz Equation (1) can be projected into the yoz and xoy coordinate
planes to obtain two directional curves. According to Equation (4), time series {Syoz

i}
and {Sxoy

i} are obtained. {Sxoz
i}, {Syoz

i}, and {Sxoy
i} are plotted in the same coordinate

plane over the time interval [0, 10] in Figure 4. In this figure, the red curve is {Sxoz
i}, the

purple curve is {Syoz
i}, and the cyan curve is {Sxoy

i}; the black line is the zero line, the
pink regions correspond to the pink stars in Figure 3a, also identified by Tp2n

i (i = 1,2,3),
and the green regions correspond to the green stars in Figure 3a, also identified by Tn2p

j

(j = 1,2). The local map of the pink region Tp2n
3 is given in the lower right corner.

The variation of the time series {Sxoz
i} has been analyzed above. {Syoz

i} turns from
positive to negative in the pink regions Tp2n

i (i = 1,2,3), corresponding to times 1.13,
3.42, and 9.29, and turns from negative to positive in the green regions Tn2p

j (j = 1,2),
corresponding to times 2.65 and 4.43. It is positive in the intervals [0, 1.13], [2.65, 3.42],
and [4.43, 9.29], and negative in the intervals [1.13, 2.65], [3.42, 4.43]. Time series {Sxoy

i}
is slightly more complex. The series changes from negative to positive at times 1.14, 3.50,
and 9.29 and changes from positive to negative at times 1.38, 3.95, and 9.54. Thus, in the
pink transparent regions Tp2n

i (i = 1,2,3), corresponding to time intervals [1.14, 1.38], [3.50,
3.95], and [9.29, 9.54], {Sxoy

i} is positive. In addition, the series changes from negative to
positive at times 2.66 and 4.43 and from positive to negative at times 2.92 and 4.63. Thus,
in green transparent regions Tn2p

j (j = 1,2), corresponding to time intervals [2.66, 2.92] and
[4.43, 4.63], {Sxoy

i} is also positive. At all other times, {Sxoy
i} is negative.

The following conclusions can be drawn: the time series {Sxoz
i} and {Syoz

i} alternate
between positive and negative, and the transitions are broadly synchronized. However,
{Sxoy

i} is generally negative. The local map clearly shows that both {Sxoz
i} and {Syoz

i}
turn from positive to negative, but {Sxoy

i} turns from negative to positive, and then soon
afterwards (about 0.2 time units later) turns back from positive to negative. The occurrence
times of positive and negative transitions are largely in the time interval [9.28, 9.53]. The
changes in the time series are similar in the remaining pink transparent region Tp2n

i (i = 1,2).
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For the green transparent region Tn2p
j (j = 1,2), there are similar results. The times at which

{Syoz
i} and {Sxoz

i} are equal to zero are not consistent within the same pink or green area,
with {Syoz

i} passing through zero slightly ahead of {Sxoz
i}.

Figure 4. Multiple area index time series.

To discuss the effect of abrupt change detection, we consider Figure 5. Figure 5a is
the same as Figure 3b. Figure 5b is the projection of the trajectory of Lorenz Equation (1)
onto the coordinate plane yoz. The direction and color of the trajectory are exactly the same
as those in Figure 5a; however, every time interval is determined by the changes in the
sign of the time series {Syoz

i}. The points corresponding to the pink crosses in the figure
are 1.13, 3.42, and 9.29, where Syoz

i = 0, and Syoz
i turns from positive to negative. The

points corresponding to the green crosses are 2.65 and 4.43, where Syoz
i = 0, and Syoz

i turns
from negative to positive. Figure 5c is the projection of the trajectory onto the coordinate
plane xoy. As the initial field is in the right equilibrium region, the trajectory in interval
[0, 1.14] is shown in light blue, the trajectory in interval [1.14, 1.38] is shown in pink, and
the trajectory in interval [1.38, 2.66] is shown in light gray. That is, the trajectory color
is determined by whether the time series {Sxoy

i} is positive or negative. The trajectory
in R3 is shown in Figure 5, and the light blue and light gray trajectories are exactly the
same as in Figure 3c. The positive and negative elements of the time series {Sxoz

i} are
used to determine whether the trajectory is in the right or left equilibrium region. The
times corresponding to the pink stars are when {Sxoz

i} is equal to zero in the pink areas
in Figure 4, i.e., Tp2n

i (i = 1,2,3), and the times corresponding to the green stars are when
{Sxoz

i} is equal to zero in the green areas in Figure 4, i.e., Tn2p
j (j = 1,2). The pink and

green crosses indicate when the time series {Syoz
i} is equal to zero. This is similar to

the calibration method for the pink and green stars. The pink and green trajectories are
determined by the time series {Sxoy

i}: the time intervals of the pink trajectory correspond
to the pink area in Figure 4 when {Sxoy

i} is greater than zero, and the time intervals of
the green trajectory correspond to the green area in Figure 4 when {Sxoy

i} is greater than
zero. It is clear that the pink stars, crosses, and trajectories indicate jumps in the trajectory
of the Lorenz equation from the right equilibrium region to the left equilibrium region.
Similarly, the green stars, crosses, and trajectories indicate jumps in the trajectory of the
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Lorenz equation from the left equilibrium region to the right equilibrium region. Thus, the
occurrence of bifurcation-type abrupt changes has been detected.

Figure 5. Trajectory of the Lorenz equation. (a) Trajectory in xoz coordinate plane. (b) Trajectory in yoz coordinate plane. (c)
Trajectory in xoy coordinate plane. (d) Trajectory of the Lorenz equation.

In summary, we can adopt the time at which the time series {Sxoz
i} or {Syoz

i} is equal
to zero as the occurrence time of a bifurcation-type abrupt change in Lorenz Equation (1),
and can also judge the position of the trajectory from whether the time series {Sxoz

i}
and {Syoz

i} are positive or negative. This shows that when the rotation direction of the
trajectory changes, there will be a bifurcation-type abrupt change. We can see that the
time series {Syoz

i} provides an early warning (i.e., the crosses are very prior to the stars)
of an abrupt change, unlike {Sxoz

i}. Of course, this warning time scale is very small. If
we consider the changes that occur over long time scales, this can be ignored. This also
shows that the abrupt change time detected by different area index time series may be
different, but it can be considered as within the range of error. As for why the abrupt
change time is detected earlier or later in the different time series, we do not discuss this in
detail here. Time series {Sxoy

i} can detect the abrupt change process, that is, the pink and
green trajectory segments in Figure 5d, so we call these the transition trajectories.

2.3.3. Abrupt Change Detection Effect

Figure 5 shows that, as long as the abrupt change of trajectory can be detected in a
certain coordinate plane, we can detect the abrupt change of trajectory in R3. We now
consider the plane trajectory. First, we discuss the abrupt change detection using the time
series {Sxoz

i}. Figure 6 gives the trajectory in the xoz plane over the time interval [0, 2000].
The curves and points are colored as in Figure 5a. There are seven blue tracks on the upper
right side of the left equilibrium region, corresponding to the seven green stars and seven
pink stars, and there are eight gray tracks on the upper left side of the right equilibrium
region, corresponding to eight green stars and eight pink stars. Thus, this seems to indicate
30 abrupt changes, but these are actually false abrupt changes. The reasons for such false
detections may be that the trajectories in these locations are close to straight lines, and
when calculating the time series {Sxoz

i}, machine storage limitations and calculation errors
may cause nonzero values to be calculated as zero values, giving a false detection. The
abrupt change points are basically clustered on the pink and green star lines. There are
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602 SCR2L abrupt changes and 601 SCL2R abrupt changes, with a false detection rate of
2.5%. Note that our method cannot determine whether there are any missed detections.

Figure 6. Trajectory of the Lorenz equation in xoz coordinate plane.

Figure 7 shows the abrupt change detection for the trajectory in the yoz plane given
by time series {Syoz

i} over the time interval [0, 2000]. Compared with Figure 6, time
series {Syoz

i} is more accurate in the detection of abrupt changes, and there are no false
detections; again, we cannot comment on the possibility of missed detections.

Figure 7. Trajectory of the Lorenz equation in yoz coordinate plane.

Figure 8 shows the trajectory in the xoy plane for time intervals of [0, 30], [0, 100],
[0, 1000], and [0, 2000]. The trajectory colors are consistent with those in Figure 5c. From
Figure 8(a), the areas in which the trajectory dwells are easy to identify, and both SCR2L and
SCL2R abrupt change processes can be detected (as shown by the pink and green trajectories
in the figure). In Figure 8b, the SCR2L and SCL2R abrupt change processes are not easy to
distinguish, and the position of the trajectory cannot be accurately determined. Similar
conclusions can be reached for Figure 8c,d. The reason for this detection error is that the
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trajectory rotates clockwise in both the left and right equilibrium regions. Only in the green
region in Figure 8 does it rotate counter-clockwise. Therefore, it is difficult to detect the
position and abrupt change type, but the spatial location of the abrupt change must be in
the green area in Figure 8d.

Figure 8. Trajectory of the Lorenz equation in xoy coordinate plane. (a) Integral interval [0, 30]. (b) Integral interval [0, 100].
(c) Integral interval [0, 1000]. (d) Integral interval [0, 2000].

3. Conclusions and Implications

Based on the trajectories of the Lorenz equation, jumps among different equilibrium
points have been defined as bifurcation-type abrupt changes. According to the rotation
direction of the trajectories, a time series was constructed, and the positive and negative
elements of the time series allowed us to determine the regions where the trajectory dwells.
The points at which the time series are equal to zero are the moments when the trajectory
jumps among different equilibrium regions, which determine the occurrence times of
bifurcation-type abrupt changes. In conclusion, this method can accurately detect jumps
within the Lorenz system of equations.

The motion of the atmosphere can be described by a set of partial differential equations,
which can be discretized to give a set of ordinary differential equations. The atmosphere
is also a dynamical system, so observation data or the output from numerical models
can be regarded as the solution to this dynamical system, and the function image in the
normed linear space Rn is the corresponding trajectory. The abrupt change detection
method proposed in this paper has been applied to trajectories in the normed linear space
R3; therefore, it can theoretically be used on trajectories in any normed linear space Rn.
Consider the case in which T, u, v, w, p, and ρ denote time series of temperature, wind speed
(three components of velocity), pressure, and density, respectively. The time series {Sxoy

i}
associated with different meteorological elements can be constructed from Equation (4),
where x and y are two of T, u, v, w, p, and ρ. By identifying the points at which the
time series {Sxoy

i} is equal to zero, it is possible to determine the times at which abrupt
climate changes occur. It is important to note that, although this method can theoretically
be applied to climatic change, its application to real atmospheric data requires further
investigation in the future. Once the dimension becomes very high, the discreteness of the
observation data may cause some technical problems. In summary, the proposed abrupt
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change detection method has been established based on the dynamic significance of the
system trajectories, and is able to detect abrupt changes in multi-dimensional time series.

Author Contributions: C.D. wrote the main text of the manuscript and undertook most of the
theoretical research. B.S. wrote the introduction of the manuscript. J.S. translated the full text. B.S.
and C.X. designed and implemented all numerical experiments. G.F. contributed to the scientific
discussion. All authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by the National Natural Science Foundation of China (Grant
Nos. 41765004, 41530531 and 41875096), the National Key Research and Development Program of
China (Grant No. 2017YFC1502303), and the National Social Science Foundation of China (Grant No
19VJX139).

Data Availability Statement: The data that support the findings of this study are in this paper.

Acknowledgments: We thank Stuart Jenkinson, from Liwen Bianji (Edanz) (www.liwenbianji.cn 17
June 2021) for editing the English text of a draft of this manuscript, and the Innovation Team of Intel-
ligent Computing and Dynamical System Analysis and Application of Northwest Minzu University.

Conflicts of Interest: For both financial and non-financial interests, the authors declare no compet-
ing interests.

References
1. Li, Q.; Wu, Z.; Wang, X.; Zhang, D.; Xiao, M. The Characteristics of Summer Precipitation in China since 1981 and its Relationship

with SST and Pre-circulation. Plateau Meteorol. 2020, 39, 58–67.
2. Yu, R.; Zhai, P. Ocean and cryosphere change related extreme events, abrupt change and its impact and risk. Clim. Chang. Res.

2020, 16, 194–202.
3. Wang, G.; Lu, L.; Sun, J. Stability of Surrounding rock and Thrust Calculation of Shield Passing through Geological mediums.

Chin. J. Rock Mech. Eng. 2015, 34, 2362–2372.
4. Zeng, H.; Li, D.; Huang, H. Distribution Pattern of Ploidy Variation of Actinidia chinensis and A deliciosa. J. Wuhan Bot. Res.

2009, 27, 312–317.
5. Zhao, X.; Zhou, B.; Li, Y. Application of T-DNA Insertion Mutagenesis in Functional Genomics of Plant. Lett. Biotechnol. 2009, 20,

880–884.
6. Li, Z.; Zou, Y.; Jiang, Y.; Hu, Y.; Qin, Y.; Li, M.; Zhan, Y.; Wang, D.; Wang, N. Bioinformatics Analysis of Cap Protein Sequences of

Porcine Circovirus Type. Lett. Biotechnol. 2020, 24, 13–20.
7. Jin, C.; Zhao, Y. Progress in the study of KRAS mutation in lung adenocarcinoma. J. Int. Oncol. 2020, 47, 180–184.
8. Gao, Z. Human capital, industrial structure mutation and economic catching up. China Mark. 2007, 40, 28–29.
9. Liu, J. Social, Cultural and Psychological Factors of Network Language Variation. Xijiang Moon. 2013. Available online:

https://xueshu.baidu.com/usercenter/paper/show?paperid=ee3b00947b1b20c4b9861fc83f709e7d&site=xueshu_se (accessed on
17 June 2021).

10. Thom, R. Stabilité structurelle et morphogenèse. Poetics 1974, 3, 7–19. [CrossRef]
11. Zeeman, E.C. Catastrophe Theory: A reply to Thom (Dynamical Systems-Warwick 1974); Springer: Berlin/Heidelberg, Germany, 1975;

pp. 373–383.
12. Daniell, P.J. Lectures on Cauchy’s Problem in Linear Partial Differential Equations by J Hadamard; Dover Publications: New York, NY,

USA, 1953.
13. Lorenz, E.N. Deterministic non-periodic flow. J. Atmos. Sci. 1963, 20, 130–141. [CrossRef]
14. Fu, C.; Wang, Q. The definition and detection of the Abrupt Climatic Change. Chin. J. Atmos. Sci. 1992, 16, 15–21.
15. Fu, C. Studies on the Observed Abrupt Climatic Change. Sci. Atmos. Sin. 1994, 18, 373–384.
16. Zhu, K. East Asian monsoon and rainfall in China. Acta Geogr. Sinica. 1934, 1, 23–30.
17. Tu, C.; Huang, T. Advance and retreat of summer monsoon in China. Acta Meteorol. Sin. 1944, 28, 234–247.
18. Tao, S.; Chen, L. Structure of atmospheric circulation over Asian continent in summer. Chin. Sci. Bull. 1957, 7, 24–25.
19. Ding, Y.; Zhang, L. Intercomparison of the time for climate abrupt change between the Tibetan Plateau and other regions in China.

Chin. J. Atmos. Sci. 2008, 32, 794–805.
20. Krishnamurti, T.N.; Ramanathan, Y. Sensitivity of the Monsoon Onset to Differential Heating. J. Atmos. Sci. 1979, 39, 1290–1306.

[CrossRef]
21. Shinoda, M.; Mikami, T.; Iwasaki, K.; Kitajima, H.; Eguchi, T.; Matsumoto, J.; Masuda, K. Global Simultaneity of the Abrupt

Seasonal Changes in Precipitation during May and June of 1979. J Meteorol. Soc. Jpn. 1986, 64, 531–546. [CrossRef]
22. Feng, G.; Gong, Z.; Dong, W.; Li, J. Abrupt climate change detection based on heuristic segmentation algorithm. Acta Phys. Sin.

2005, 54, 5494–5499.
23. Hou, W.; Feng, G.; Dong, W.; Li, J. A technique for distinguishing dynamical species in the temperature time series of north China.

Acta Phys. Sin. 2006, 53, 2663–2668.

www.liwenbianji.cn
https://xueshu.baidu.com/usercenter/paper/show?paperid=ee3b00947b1b20c4b9861fc83f709e7d&site=xueshu_se
http://doi.org/10.1016/0304-422X(74)90010-2
http://doi.org/10.1175/1520-0469(1963)020&lt;0130:DNF&gt;2.0.CO;2
http://doi.org/10.1175/1520-0469(1982)039&lt;1290:SOTMOT&gt;2.0.CO;2
http://doi.org/10.2151/jmsj1965.64.4_531


Atmosphere 2021, 12, 781 13 of 13

24. Gong, Z.; Feng, G.; Dong, W.; Li, J. The research of dynamic structure abrupt change of nonlinear time series. Acta Phys. Sin. 2006,
53, 3180–3187.

25. Feng, G.; Gong, Z.; Zhi, R. Latest advances of climate change detecting technologies. Acta Meteorol. Sin. 2008, 66, 892–905.
26. Zhi, R.; Gong, Z.; Wang, D.; Feng, G. Analysis of the spatio-temporal characteristics of precipitation of China based on the

power-law exponent. Acta Phys. Sin. 2006, 53, 6185–6191.
27. Huang, J.P.; Yi, Y.H.; Wang, S.W.; Chou, J.F. An analogue-dynamical long-range numerical weather prediction system incorporat-

ing historical evolution. Q. J. R. Meteorol. Soc. 1993, 119, 547–565.
28. He, W.P.; Liu, Q.Q.; Gu, B.; Zhao, S.S. A novel method for detecting abrupt dynamic change based on the changing hurst exponent

of spatial images. Clim. Dyn. 2016, 47, 2561–2571. [CrossRef]
29. Halifa-Marín, A.; Lorente-Plazas, R.; Pravia-Sarabia, E.; Montávez, J.P.; Jiménez-Guerrero, P. Atlantic and mediterranean influence

promoting an abrupt change in winter precipitation over the southern iberian peninsula. Atmos. Res. 2021, 253, 105485. [CrossRef]
30. Guo, F.; Yan, M.; Zhang, K.; Lei, H.; Guo, L. The climate change in qingdao during 1899–2015 and its response to global warming.

J. Geosci. Environ. Prot. 2018, 6, 58–70. [CrossRef]
31. Rahman, M.R.; Lateh, H. Spatio-temporal analysis of warming in bangladesh using recent observed temperature data and GIS.

Clim. Dyn. 2016, 46, 2943–2960. [CrossRef]
32. Fang, S.; Yue, Q.; Han, G.; Li, Q.; Zhou, G. Changing trends and abrupt features of extreme temperature in mainland china from

1960 to 2010. Atmosphere 2016, 7, 22. [CrossRef]

http://doi.org/10.1007/s00382-016-2983-0
http://doi.org/10.1016/j.atmosres.2021.105485
http://doi.org/10.4236/gep.2018.69005
http://doi.org/10.1007/s00382-015-2742-7
http://doi.org/10.3390/atmos7020022

	Introduction 
	Dynamic Definition and Detection Method of Abrupt Changes 
	Abrupt Changes Based on Bifurcation Features 
	Bifurcation-Type Abrupt Change Detection Method 
	Bifurcation-Type Abrupt Change Detection Test 
	Single-Index Time Series Abrupt Change Detection 
	Multi-Index Time Series Abrupt Change Detection 
	Abrupt Change Detection Effect 


	Conclusions and Implications 
	References

