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Abstract: Land surface models with detailed urban parameterization schemes provide adequate
tools to estimate the impact of climate change in cities, because they rely on the results of the regional
climate model, while operating on km scale at low cost. In this paper, the SURFEX land surface
model driven by the evaluation and control runs of ALADIN-Climate regional climate model is
validated over Budapest from the aspect of urban impact on temperature. First, surface temperature
of SURFEX with forcings from ERA-Interim driven ALADIN-Climate was compared against the
MODIS land surface temperature for a 3-year period. Second, the impact of the ARPEGE global
climate model driven ALADIN-Climate was assessed on the 2 m temperature of SURFEX and was
validated against measurements of a suburban station for 30 years. The spatial extent of surface urban
heat island (SUHI) is exaggerated in SURFEX from spring to autumn, because the urbanized gridcells
are generally warmer than their rural vicinity, while the observed SUHI extent is more variable.
The model reasonably simulates the seasonal means and diurnal cycle of the 2 m temperature in
the suburban gridpoint, except summer when strong positive bias occurs. However, comparing
the two experiments from the aspect of nocturnal UHI, only minor differences arose. The thorough
validation underpins the applicability of SURFEX driven by ALADIN-Climate for future urban
climate projections.

Keywords: urban climate modelling; land surface modelling; urban heat island; surface urban heat
island; model validation

1. Introduction

Urbanized surfaces are characterized by highly different surface properties (e.g.,
imperviousness, large roughness, large heat capacity, and heat admittance of materials)
from natural surfaces, that leads to altered energy budget components and boundary layer
properties. One of the most studied and well-known manifestations of these differences
is the higher surface, subsurface and air temperature in the city, forming the urban heat
island (UHI) [1]. More than half of the world’s population lives now in urban settlements,
although the impervious surfaces occupy less than 0.5% of the Earth [2]. Such high
population density can be observed in Hungary as well; for example, the Budapest urban
agglomeration occupies 2.7% of the territory of Hungary, while its 2.5 million inhabitants
represent one quarter of the whole country’s population [3]. As a consequence of the
high population density and elevated temperatures, cities are exposed to more severe heat
related risks compared to rural areas. With climate change, this exposure may be further
exacerbated, negatively affecting for example human health, environment and energy
demand [4].

By the increasing resolution and complexity of global and regional climate models
(GCMs and RCMs), urban processes tend to be parameterized, giving a first approxima-
tion about the impact of climate change on cities [5]. For example, it was shown that
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global climate models with urban parameterization schemes portray urban heat island
and altered surface fluxes over the cities [6,7]. In [8,9] a slab model (i.e., cities are repre-
sented by rocks) and the town energy balance (TEB) urban canopy model implemented
in the climate version of the Aire Limitée Adaptation dynamique Dévéloppement IN-
ternational (ALADIN-Climate) RCM and the ALadin-AROme (ALARO, where AROME
stands for Application of Research to Operations at MEsoscale) limited area numerical
weather prediction model, respectively, were compared and found that the more complex
parameterization improves the UHI representation. A subset of the Euro-CORDEX (the
European branch of the COordinated Regional Downscaling EXperiment) 0.11◦ resolution
regional climate models (which approximate urban processes with bulk formulas) were
evaluated from the aspect of temperature and humidity over Berlin and demonstrated that
the models are capable of resulting in substantially drier and warmer conditions over the
city compared to rural areas [10]. Despite the positive impact of urban parameterization in
global and regional climate models, these models cannot necessarily resolve the intra-urban
and subdaily features of urban climate (e.g., daily humidity cycle) due to their relatively
coarse resolution and in some cases due to the simple bulk formulas [10].

In contrast, convection permitting climate models resolve urban climate processes
on km scale and show added value on simulating cities’ feedback to the atmosphere. For
example, the UHI impact on precipitation using the Weather Research Forecast (WRF)
model was investigated over northern Taiwan [11]. The drawback of such fine scale models
is that they require vast computer capacity. Therefore, to date it is hardly possible to apply
them on transient mode or downscale a large number of GCMs.

The offline land surface models (LSMs) that comprise detailed urban parameterization
scheme [12–14] provide adequate tools to eliminate the abovementioned drawbacks. These
models are directly forced by the RCM outputs, therefore they can simulate the long-term
impact of climate change on cities at high resolution (a couple of hundred meters to a couple
of km) but at low cost. In this paper, the SURFace EXternalisée (SURFEX) land surface
model that uses the TEB scheme over urbanized surfaces is evaluated for temperature and
UHI, following the classical validation process applied in regional climate modelling. For
this reason, SURFEX is forced by an evaluation and a control experiment of an RCM (in
which case the RCM is driven by a reanalysis and a GCM, respectively).

The traditional method for climate model validation is to compare the simulation
results with gridded dataset constructed from in situ observations [15]. Nevertheless, this
approach is not representative enough for urban areas, since the resolution of the avail-
able gridded observational datasets are generally not more than 10 km (e.g., E-OBS [16];
CarpatClim-Hu [17]). Therefore, a very dense station network would be needed for the
validation, which can represent different built-up classes within a city and the spatial
characteristics of urban climate [18,19]. This need has been recognized and a number of
measurement initiatives have been started in recent years [20–22]. In Hungary such an
observation network has been operating since 2014 in Szeged, although its measurement
period does not intersect with the common evaluation period of climate models that ends
before 2005. Therefore, two alternatives can be used to evaluate fine scale urban simula-
tions. (1) Satellite land surface temperature (LST) products have become widely available
since the 2000s having appropriate spatial resolution for reflecting urban atmospheric
characteristics [23] and global coverage [24]. (2) A few station measurements from the city
and from the suburban region are available for assessment the temporal characteristics of
the urban impact in the LSM on climate timescale [25].

The aim of the present study is to evaluate the SURFEX LSM over Budapest and its
rural surrounding. SURFEX is driven by the ALADIN-Climate RCM that was driven by
the ERA-Interim and the Action de Recherche Petite Echelle Grande Echelle (ARPEGE),
that is the atmospheric component of the Centre National de Recherches Météorologiques
Coupled global climate Model (CNRM-CM) GCM. The focus of this paper is to scrutinize
SURFEX from the aspect of urban surface impact on 2 m and surface temperature, and the
spatial and temporal characteristics of urban climate. Therefore, the model simulations
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are validated against Moderate Resolution Imaging Spectroradiometer Sensor (MODIS)
LST data on a 3 year period and against the synoptic station measurement on a 30 year
period. Section 2 presents the SURFEX model, the evaluation and control simulation of
the ALADIN-Climate providing forcings for SURFEX, the considered observations and
the evaluation methods and measures. Section 3 is dedicated to presenting the spatial
characteristics of LST and surface UHI (SUHI), and the temporal characteristics of urban
climate in one suburban gridpoint. The results are discussed in Section 4 and finally,
Section 5 summarizes our conclusions and presents future perspectives of our research.

2. Data and Methods
2.1. The SURFEX Land Surface Model

SURFEX [26] describes land surface processes in the lower 10% (a few 10 m) of the
planetary boundary layer, called surface layer. The surface heterogeneity is handled by the
tiling method, i.e., in each grid cell, the fractions of sea, inland water, town and natural
land surface are given, and for each surface type (i.e., tile) a dedicated scheme computes
the prognostic variables and turbulent fluxes. The total flux of the grid box is resulted by
addition of the individual fluxes over the composing tiles. The land cover information is
provided for the model by the first version of the ECOCLIMAP database [27]. From urban
climate perspective, the continental cities and their vicinity can be described dominantly
by the town and natural land surface types, therefore the schemes applied for them are
presented hereinafter.

Over natural land surfaces the 3-layer Interaction Soil Biosphere Atmosphere scheme
(ISBA-3L) [28] is used, that computes the surface and soil temperature and moisture
with the force-restore method. This scheme divides the soil into three layers (a thin
layer representing the surface, and two thicker layers for middle and deep soil), and
the prognostic evolution of the temperature and moisture is described with a relatively
simple formula.

The urban physical properties are calculated with the TEB scheme [29] that approxi-
mates the complexity of urban morphology with street canyons. Prognostic equations for
the roof, wall and road specify the surface temperature and (except for wall) water content.
The surfaces are divided into three layers in order to consider heat conductivity. Only
domestic heating was considered as the source of anthropogenic heat flux by preventing
the indoor temperature to fall below 19 ◦C. Note that in SURFEX there is a simple building
energy model that can simulate the interaction of internal building temperature and the
outdoor temperature. The near surface variables (e.g., 2 m temperature, humidity, 10 m
wind speed) are calculated with the surface boundary layer (SBL) scheme [30,31] that
divides the surface layer into six sub-layers and prognostically computes the temperature,
humidity, wind and turbulence, taking into account the canopy and canyon effect and
drag forces.

2.2. The Driving ALADIN-Climate Model

The atmospheric forcings of SURFEX are temperature, humidity, wind speed and wind
direction at a few 10 m above ground level, downward shortwave and longwave radiation,
surface pressure, snow and rain. In our case the forcings are provided by the ALADIN-
Climate version 5.2 [32] hydrostatic spectral RCM. The physical parameterization package
of ALADIN-Climate is derived from the ARPEGE-Climat version 5 [33] atmospheric GCM.
The longwave radiation transfer is described by the Rapid Radiation Transfer Model
(RRTM) scheme [34], while the shortwave radiation transfer is parameterized according
to Fouquart and Bonnel [35]. The large-scale precipitation is determined by the Smith
scheme [36], and the convective cloud and precipitation formation are described according
to Bougeault [37]. The surface scheme of ALADIN is SURFEX version 5, in which ISBA-3L
was applied over natural land surfaces. The vertical profile of temperature, humidity and
windspeed in the surface layer is parameterized according to Geleyn [38]. Urbanized areas
are substituted with rocks and the physical processes are described by the ISBA scheme.
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2.3. Experimental Design

In this study, two urban climate simulations are performed with the 5.1 version of
SURFEX for Budapest driven by the evaluation and control run of ALADIN-Climate
5.2 RCM. The ALADIN-Climate simulations were achieved at 10 km horizontal resolution
on a domain covering Central and South-Eastern Europe (Figure 1). First, a 10-year
long simulation was performed for 1996–2005 with SURFEX, where the lateral boundary
conditions for ALADIN-Climate were derived from ERA-Interim [39]. This experiment
allows to examine the RCM model’s influences on the behavior of SURFEX (hereinafter
the RCM and LSM simulations are referred to ALADIN-EI and SURFEX-EI, respectively).
Then, SURFEX was driven by the control simulation of ALADIN-Climate for 1960–2005 to
evaluate SURFEX from a climate perspective. In this case, the lateral boundary conditions of
ALADIN-Climate were the CNRM-CM5 GCM (hereinafter the RCM and LSM simulations
are referred to ALADIN-ARP and SURFEX-ARP, respectively).
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Figure 1. Flow chart about the use of SURFEX. Upper panel: domain and orography of the 10 km 
resolution ALADIN-Climate and its selected part covering Budapest, for which model fields are 
Figure 1. Flow chart about the use of SURFEX. Upper panel: domain and orography of the 10 km
resolution ALADIN-Climate and its selected part covering Budapest, for which model fields are
interpolated to 1 km resolution. Lower panel: land cover types according to the ECOCLIMAP
database for the Budapest domain. Black X marks the closest gridpoint to the considered station
measurement, which is also shown on orthophoto on the lower left corner (Google Earth image).

The SURFEX domain covers Budapest and its vicinity (Figure 1). It consists of
61 × 61 gridpoints with 1 km horizontal resolution. The main urban cover types over
the domain are dense urban, temperate suburban, industrial and commercial areas, mineral
extractions and construction sites, sport facilities, urban parks and airport according to
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ECOCLIMAP. The dominant natural cover types are Central European crops and temper-
ate woodlands. 3 hourly outputs of ALADIN-Climate simulations derived at 30 m above
ground level are considered as forcings. The ALADIN simulations are interpolated from
10 km to 1 km resolution using the 927 configuration of ALADIN-Climate (in general this
configuration is used to prepare lateral boundary conditions for the RCM). The advantage
of this method–in contrast to simply multiplying the gridpoints in each 10 km × 10 km
gridcell–is that it takes into account the orography effect during interpolation, and it is
crucial for a hilly domain. The integration timestep of SURFEX is 300 s, to which the 3 h
forcings are linearly interpolated.

2.4. Observations
2.4.1. MODIS LST Product

Simulated surface temperature and SUHI over Budapest is studied against the MODIS
Terra (from 1999) and Aqua (from 2000) LST product (version 6 of MOD11A1 and MYD11A1,
respectively) [40,41]. The two polar orbit satellites acquire data in 36 spectral bands from
0.4 to 14.4 µm wavelengths [42]. The LST products are produced by the split-window
method based on 7 spectral bands 4 times a day [43]. Table 1 shows the averaged satellite
overpass time in UTC for Aqua and Terra over Budapest. The spatial resolution of the
retrieved LST images are 1 km [19], which coincides with the spatial resolution of SURFEX
LST fields.

Table 1. The overpass time in UTC of MODIS satellites.

Aqua Terra

Day 11:30 9:54
Night 0:43 20:42

The satellite observation data was first cleaned from the cloud contaminated grid
cells in the following way: those times were excluded where the cloudy cells coverage
exceeded 25 per cent of the whole domain. This filtering was applied for the SURFEX data
as well using the mean total cloud cover of ALADIN-EI over Budapest, in order to keep
the cloud-free cases only.

Finally, we applied the MODIS Terra + Aqua Combined Land Cover product [44,45]
that includes the IGBP (International Geosphere-Biosphere Programme) land-use classi-
fication system which enabled us to select urban and non-urban grid cells in the MODIS
LST analysis.

2.4.2. Gridded Observational Dataset and Station Measurements of 2 m Temperature

The 2 m temperature of SURFEX and ALADIN is evaluated against gridded and
synoptic station measurements. The CarpatClim-Hu [17] gridded observation dataset was
constructed based on homogenized and interpolated station measurements, and widely
used for regional climate model evaluation for Hungary. Note that due to its 10 km
resolution and the missing urban stations, urbanized areas are not emerging with higher
temperatures in this dataset.

One station was chosen for pointwise validation based on the criteria of being contin-
uously operated since 1970 and located in urbanized area. This station is situated in the
Southeastern agglomeration area of Budapest (in Pestszentlőrinc) at 19◦10′56′′ E, 47◦25′45′′

N and at 139 m above sea level. The vicinity of the synoptic station is covered by grass, but
the observatory is surrounded by houses with gardens except from south that is covered by
forest (Figure 1). According to ECOCLIMAP, the closest gridpoint to the station is classified
as temperate suburban, which consists of 60% urban area and 40% natural area.

In order to eliminate temporal inhomogeneities (originated from e.g., station relocation
or change of instruments or measurement methods), the daily observation data was ho-
mogenized with the Multiple Analysis of Series for Homogenization (MASH) method [46].
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2.5. Evaluation Methods
2.5.1. Surface Temperature and SUHI in SURFEX-EI

Since four measurements per day are available from the end of 2002 in MODIS
(Table 2), we considered only the SURFEX-EI experiment on the period of 2003–2005 on a
domain containing mainly urbanized and cropland areas (Figure 2).

Table 2. Main characteristics of the different reference datasets used for validation.

Reference Resolution Temporal Frequency Investigation Period Validated Variable

MODIS 1 km 4 times/day 2003–2005 LST, SUHI
CarpatClim-Hu 10 km daily 1971–2000 2 m temperature

Station measurement - daily, 3 h 1971–2000 2 m temperature

1 
 

 

二 
 
 

Figure 2. Land-use types for Budapest metropolitan area based on MODIS Land Cover Products. Blue rectangle represents
the area that was considered for computing the SUHI affected area.

SURFEX-ARP cannot be evaluated for such a short period, because it does not reflect
the observed characteristics of the individual years (since it is driven by a GCM, in which
only the observed greenhouse gas concentration describes the past reality, see Figure 8).

To compare the simulated value with the satellite data, the gridcell average surface
temperature had to be computed beforehand, because it is not given by SURFEX v5. The
mean surface temperature (LSTSURFEX) was derived based on the Stefan-Boltzmann law.
Therefore, the emitted longwave radiations (LW) given by the TEB and ISBA schemes
were taken (roof, wall and road values were averaged in TEB) using the same emissivity
values (ε) as the model. Emissivity is constant in time and identical (0.97) for all natural
land cover types, and for roof, wall and road as well (0.90, 0.85 and 0.94, respectively).
Radiative surface temperature was produced for TEB and ISBA separately and the results
were linearly combined according to the fraction of urban and nature land cover (xurban
and 1 − xurban, respectively; Equation (1):

LSTSURFEX = xurban
4

√
LWTEB
σεTEB

+ (1− xurban)
4

√
LWISBA
σε ISBA

(1)
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First, SURFEX simulations at 0 and 12 UTC–representing nighttime and daytime cases–
were considered and compared with measurements of the Aqua satellite. Note that the
measurements happen 30 min earlier around noon and 43 min later at night. We analyzed
the seasonal mean daytime and nighttime LST and its variability to investigate how
SURFEX is able to describe the spatial and temporal distribution of surface temperature
over the urban and rural areas.

Afterwards SUHI affected area was determined based on the method of Zhang and
Whang [47], which statistically defines the size of the area, which significantly differs
in temperature from its environment. Following the method, we calculated the spatial
mean surface temperature (T in ◦C) and standard deviation across gridpoints (σ in ◦C) in
each timestep. Then, LST (T) in each gridpoint and timestep was categorized based on
Equation (2): {

T ≥ T + σ, SUHI a f f ected gridpoint
T < T + σ, omitted gridpoint

(2)

Therefore, we identified those gridpoints as affected by SUHI where the temperature
was higher than T + σ. The sum of the gridpoints, which fulfill this criterium were taken
and divided by the number of all gridpoints for each timestep. This gave the relative
SUHI affected area. In this analysis we considered a smaller domain bounded by the
administrative border of Budapest (blue rectangle on Figure 2), because otherwise the
relative SUHI affected area values (i.e., the proportion of SUHI affected gridcells and the
all gridpoints of the domain) would be too low. The observed and modelled daily values
are compared on histograms.

Finally, the seasonal mean diurnal cycle of SUHI and its variability was studied.
SURFEX results were compared to all four measurements of Aqua and Terra, and SUHI
was computed in the following way: in every timestep and in every gridpoint the LST was
subtracted from the mean rural temperature. The mean rural temperature was determined
as the average temperature of pure rural grid cells according to ECOCLIMAP in SURFEX
and IGBP in MODIS.

2.5.2. 2 m Temperature in SURFEX-ARP

Besides short-term validation focusing on the urban surface temperature, the ability of
SURFEX to reproduce long-term climate characteristics is assessed based on the SURFEX-
ARP experiment. First, the temperature bias of ALADIN, and the interaction between
ALADIN and SURFEX is briefly validated on 10 km resolution considering CarpatClim-Hu
as reference (Table 2). Moreover, the performance of SURFEX is studied in one gridpoint,
closest to the synoptic meteorological station in Pestszentlőrinc (Table 2). Measurements of
3-hourly and daily mean temperature were used to validate SURFEX in the period of 1971–
2000. Annual and seasonal yearly mean values, distribution of daily mean temperatures
and the mean diurnal cycle of 3 h temperature were assessed.

2.5.3. UHI in SURFEX-EI and SURFEX-ARP

Finally, SURFEX-EI and SURFEX-ARP was jointly evaluated and compared against
each other, considering spatial distribution and seasonal mean diurnal cycle of UHI, and
seasonal mean diurnal cycle of surface energy fluxes on a common 10-year period (1996–
2005). The UHI were computed following the same method as was presented for SUHI in
Section 2.5.1.

3. Results
3.1. Surface Temperature and SUHI

Figure 3 shows the seasonal mean surface temperature in MODIS and in SURFEX-EI
in daytime and nighttime (12 and 0 UTC in SURFEX, respectively).
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Figure 3. Seasonal mean land surface temperature (◦C) in MODIS and radiative temperature in ALAD-EI driven SURFEX
at 00 and 12 UTC in 2003–2005. Surface temperature over the Danube is masked out in the SURFEX results.

Note that the surface temperature over the river is prescribed and kept constant
throughout the simulation, therefore these gridpoints were masked out. Considering the
nighttime results, the core of the city is emerging with the highest temperature in all seasons
in SURFEX. This pattern can be detected in the observation too; however, it has different
magnitude and shape. Generally, the isotherm lines portray roughly concentric circles
around the downtown in the MODIS, while in SURFEX, except the warmest downtown
area, the rest of the city is approximately equally warm. The spatial pattern of the observed
daily SUHI largely differs from the nocturnal results, and the differences between the
model and observation are larger as well. In MODIS, the hilly area of the domain (west
from the Danube, mainly forests) is much colder than the plain areas from spring to autumn.
The influence of topography and partly the cooling effect of trees on the daytime surface
temperature can be seen in SURFEX as well, however over a smaller area, not propagating
into the western edge of the city. Due to this orographic and land cover effect, the warmest
area is observed over the Pest side of Budapest (east from the Danube), while in SURFEX
almost the overall urban area is significantly warmer than its environment.

The daytime and nighttime land surface temperatures averaged over the urban and
rural areas are seasonally shown on boxplots for SURFEX and MODIS (Figure 4) and
temporally averaged values are shown in Table 3. The urban LST is overestimated almost
in all seasons and in daytime and nighttime as well (as it was suggested earlier); while in
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winter, the model performs the best over the whole domain. The rural temperatures are
colder in spring and autumn at night and in spring at noon in SURFEX than in MODIS,
which-in line with the exaggerated urban temperatures-leads to stronger simulated SUHI.
It can be also mentioned that variability is well described by the model with slightly
overestimated variability of the mean urban temperature.
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the distribution, while the extent of the whiskers shows the minimum and maximum values. The median is represented by
horizontal lines inside the boxes.

Table 3. Seasonal mean urban and rural temperature (◦C) in MODIS and SURFEX at nighttime and
daytime in 2003–2005.

Nighttime (around 00 UTC) Daytime (around 12 UTC)

MAM JJA SON DJF MAM JJA SON DJF

Rural
MODIS 3.4 14.4 5.9 −7.9 24.6 31.9 18.7 1.7

SURFEX 2.8 16.9 5.3 −7.1 18.6 35.7 22.0 2.6

Urban
MODIS 4.7 15.7 7.0 −6.4 26.3 34.7 20.0 2.5

SURFEX 6.8 21.0 8.4 −5.9 25.5 43.0 25.4 3.3

The SUHI-affected area was investigated and validated following the method of
Zhang and Wang [47]. Figure 5 shows the seasonal distribution of the relative area of SUHI
affected gridpoints (the sum of the gridpoints where T > T + σ) over the city of Budapest.
In MODIS at night the histograms are skewed left in each season except winter (when it is
rather symmetric) with the most frequent values of 25–30%. The general overestimation
of SUHI extent in SURFEX is obvious, because except winter the histogram is shifted
towards the larger values. The most frequent SUHI area is between 35–40%, which occurs
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in the great majority of time in spring and summer. However, in winter, the histogram of
SURFEX has a bimodal shape and most often the SUHI area is below 5%, therefore in this
season MODIS shows a more developed SUHI area. At daytime, SURFEX shows a similar
distribution to nighttime results both in the shape and most frequent SUHI relative area.
While the histogram of observed value portrays different shape than at nighttime, because
they are rather symmetric except summer (when it is skewed left). The most frequent
areas are 10–30% that is lower than of SURFEX again. In winter the same can be observed,
SURFEX underestimates the SUHI affected area. Based on this analysis we can conclude
that there is much smaller variability in the SUHI affected area in SURFEX both at day and
at night in all seasons compared to MODIS measurement.
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Finally, the seasonal mean daily cycle of SUHI is shown in Figure 6. It is obvious that
besides the general overestimation in SURFEX, there is a much larger intraday variability
in LST compared to MODIS, especially in spring and summer. SUHI varies between 1 ◦C
and 4 ◦C in spring and summer, 0.5 ◦C and 2 ◦C in autumn and 0.5 ◦C and 1 ◦C in winter
in SURFEX, while in MODIS it does not exceed 1.5 ◦C in any seasons. The best agreement
is found in winter at 12 and 0 UTC compared to the Aqua results.
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Figure 6. Seasonal mean SUHI (◦C, black and blue dots) daily cycle based on 3 h data of SURFEX
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3.2. 2-m Temperature and UHI Climatology

In the following, 2 m temperature simulated by SURFEX-ARP is studied and compared
in one suburban gridpoint with station measurements in the period of 1971–2000. Before
the SURFEX results are assessed, it can be mentioned that the ALADIN (providing forcings
to SURFEX) largely (with 2.9 ◦C) overestimates the 2 m temperature in summer, while
underestimates it in the rest of the year over the SURFEX domain with respect to the 10 km
resolution CarpatClim-Hu gridpoint dataset (Table 4).

Table 4. Seasonal mean temperature bias (◦C) of ALADIN-ARP and SURFEX-ARP with respect to
the CarpatClim-Hu database on the SURFEX domain. All datasets were interpolated to the 10 km
resolution CarpatClim-Hu grid. Period: 1971–2000.

Annual MAM JJA SON DJF

ALADIN-ARP −0.4 −2.0 2.9 −0.7 −2.0
SURFEX-ARP 0.4 −1.2 3.0 0.6 −0.7

Comparison of the 2 m temperature in ALADIN and SURFEX reveals that SURFEX
heats not only the urban gridpoints (due to the detailed land cover and parameteriza-
tion), but in autumn and in winter the lower elevated rural gridpoints are warmer as well
(Figure 7). In the gridpoint nearest to the station located in the suburban area, SURFEX
overestimates the measured value in summer and autumn, with 3.5 ◦C and 1.1 ◦C respec-
tively (Figure 8). In spring and in winter smaller underestimation can be observed. The
variance of the mean values are similar in SURFEX than the observation in the 30 year
period, apart from summer, when SURFEX overestimates the interannual variability of the
mean temperature (Table 5).
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Figure 7. Seasonal mean 2 m temperature (◦C) in ALADIN-ARP (first row) and SURFEX-ARP (second row) for the period
of 1971–2000.
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Table 5. Standard deviation (◦C) of annual and seasonal yearly 2 m temperature of SURFEX-ARP
and of the suburban station measurement (Pestszentlőrinc) in 1971–2000.

Annual MAM JJA SON DJF

Observation 0.7 1.0 0.9 0.9 1.6
SURFEX-ARP 1.0 1.4 1.7 1.2 1.7

The seasonal distribution of daily temperatures is presented on histograms (Figure 9).
In spring and winter the distributions of the simulated and observed temperature are in
good agreement. In summer, the systematic overestimation is clear: the histogram based
on SURFEX outputs has the same shape as the one based on the observations, but it is
shifted towards higher values. The largest inconsistency is in autumn, when the model
values show bimodal distribution, which (i.e., the lower occurrence of the values between
the most frequent values) is not visible in the observation. The underestimation of the
mean values can be explained with the higher frequency of higher temperature values.
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The diurnal evolution of 2 m temperature in the suburban area is best simulated
in spring and winter (Figure 10), especially at 0 and 12 UTC. However, in the morning
hours the temperature is slightly underestimated, while in winter in the afternoon hours
overestimation occurs too. In summer in addition to the general overestimation, the
temperature after 15 UTC does not drop as fast as in the observation. Moreover, the lowest
temperature is simulated to occur later at 6 UTC instead of 3 UTC (note, that data was
available in 3 h frequency for both the observation and the simulation) and it increases
faster in the morning compared to observations. In autumn a smaller overestimation is
detected from noon to 6 UTC.
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Figure 10. Seasonal mean daily cycle of 2 m temperature (◦C) according to SURFEX (red line) and
observation (black line with dots). The pink area and the black vertical lines represent the standard
deviation computed from the yearly values. Period: 1971–2000.

3.3. Comparison of SURFEX-EI and SURFEX-ARP for Simulating the UHI

Finally, the two experiments are compared on a common period (1996–2005) from the
aspect of simulating UHI. Figure 11 presents the seasonal mean UHI at 0 UTC in SURFEX-
EI and SURFEX-ARP. The differences are not large between the two simulations, however
the GCM driven model gives stronger temperature surplus (with 0.1–0.2 ◦C) over the city
than its reanalysis driven counterpart. Note that the differences for the 2-m temperature
are much higher (e.g., the 2 m temperature bias is 1.1 ◦C and 2.5 ◦C for SURFEX-EI and
SURFEX-ARP, respectively, compared to CarpatClim-HU over Budapest; not shown), but
the subtraction in UHI eliminates the great majority of the systematic bias.

The reasons behind the stronger UHI in SURFEX-ARP can be explained by comparing
the surface energy budget components (Figure 12). The ground heat flux over the urban
surfaces is larger in SURFEX-ARP in the morning hours, while it is smaller during the
night than in SURFEX-EI in all seasons except winter. Therefore, in the GCM driven
experiment the city absorbs more heat during the day and emits more during the night that
explains the stronger UHI. Moreover, less sensible heat and more latent heat are emitted in
SURFEX-ARP than SURFEX-EI.
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Figure 11. Seasonal mean urban heat island intensity (◦C) based on SURFEX-EI and SURFEX-ARP for the period of
1996–2005. The spatial averages of the urban gridpoints are indicated above the corresponding maps.

Figure 12. Difference (W/m2) of the seasonal mean diurnal cycle of surface energy budget components (RN: net radiation,
H: sensible heat flux, LE: latent heat flux, G: ground heat flux) for the urban and rural grid points between the SURFEX-ARP
and SURFEX-EI experiment. Period: 1996–2005.
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4. Discussion

The first part of this study focuses on the spatial and temporal characteristics of surface
temperature and SUHI simulated by SURFEX-EI, considering the MODIS LST product
as reference. The seasonal mean surface temperature is substantially warmer over the
whole city than the ambient rural areas from spring to autumn, resulting in large SUHI
extent and magnitude both at day and night. In contrast, MODIS shows that the highest
temperature surplus of the city concentrates in the core of the city at night and in the Pest
side (to the east of the Danube) by day. The less realistic variability and extent of SUHI in
SURFEX can be explained partly by the lack of modelling the full boundary layer and its
dynamics. Moreover, in the suburbs the canyon concept is less representative for the family
houses than in the downtown area of the city. To solve this problem, the Local Climate
Zone approach has been developed that classifies the urban areas based on compactness
and height of buildings [48].

On the Buda side (west of Danube), the city is hilly and very green. Studies demon-
strate that implementing trees in the urban canopy scheme can reduce surface temperature
overestimation with several degrees [49,50]. These suggests that the strong summer and
autumn surface temperature overestimation over the city (8.3 ◦C and 5.4 ◦C, respectively
over the urbanized gridcells) and especially over Buda and the suburbs may be significantly
lowered with a more explicit modelling of street trees’ effect.

The best agreement between the model and observation was found in winter, when
surface temperature bias remains below 1 ◦C for urban and rural areas both at day and
night. The small biases may be explained by that we only considered cloudy-free cases and
in winter there is no leafy vegetation.

Upon SURFEX limitations, it is worth noting that satellite LST products are burdened
with some considerable uncertainties [19,51] as well. For example, LST observations are
valid only during clear-sky conditions, that limits the meteorological conditions to be
potentially studied. In addition, satellite cloud-screening algorithms are often imperfect,
causing biases in LST estimation [19]. Moreover, large viewing angles enhance atmo-
spheric radiation extinction that can result in biases in observed LST [19,51,52]. Lastly,
the anisotropy of LST (caused by the high level of surface heterogeneity particularly in
urban areas) modifies the viewing angle of the satellite sensor above certain objects, hence
leads to the uncertainty of observation as well [19]. Finally, it must be also mentioned,
that since SURFEX results are saved 3-hourly, there is a 30–45 min difference between the
compared simulation and the Aqua satellite’s observation time, that may contribute to a
certain proportion of bias, especially during the day. Despite these limitations, the satellite
observations provide important reference to assess the model’s ability to simulate spatial
characteristics of urban temperature.

After the surface temperature and SUHI analysis in SURFEX-EI on shorter timescale,
the 2 m temperature was studied in SURFEX-ARP for 30 years. The behavior of the driving
ALADIN model strongly affects the results of SURFEX, i.e., the strong positive summer
bias is dominantly caused by the 2.9 ◦C overestimation of ALADIN-Climate over the
model domain. According to [49] the more explicit parameterization of street trees does
not improve significantly the 2 m temperature overestimation of the LSM.

It was also found, that SURFEX heats not only the urbanized gridpoints, but in autumn
and in winter the lower elevated rural areas as well. The surface scheme of ALADIN is
also SURFEX version 5, but TEB and the SBL scheme was not activated in the climate
change runs. Instead, the screen level values were computed by the Geleyn diagnostic
formula [38]. One advantage of the SBL scheme is that it does not let the 2 m temperature
cool too much in very stable situations, in order to prevent the decoupling of the surface
model and the atmospheric component [31]. It was found in short term sensitivity studies
that the minimum temperatures computed with the SBL scheme are higher compared to
the diagnostic formula (not shown).

Apart from summer, the ALADIN-Climate is too cold compared to CarpatClim-HU.
The majority of this cold bias was eliminated by SURFEX resulting smaller underestimation
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in spring and winter (less than 1.5 ◦C) and small positive bias in autumn (less than 1 ◦C)
over the domain. The validation in the suburban gridpoint suggests that SURFEX is able
to sufficiently describe the seasonal distribution of the daily mean temperature and the
seasonal mean diurnal cycle. However, it must be mentioned that these investigations
were achieved only in one gridpoint and more long term station measurement is needed to
justify our results.

The limitations of ECOCLIMAP—i.e., it is a static database based on land cover data
from the mid-90s—can also explain parts of the mean 2-m temperature bias of SURFEX-
ARP. The importance of built-up fraction was studied in short sensitivity tests and was
found that the bias originated from the driving model is more important. e.g., if the
temperature is overestimated, reducing the urban fraction in the gridcell could moderate
the bias; however, in other periods when the model is too cold, a smaller built-up ratio
caused larger underestimation.

Comparing SURFEX-EI and SURFEX-ARP from the aspect of seasonal mean diurnal
cycle of UHI, it can be stated that the systematic bias of the land surface model (and
therefore the influence of the driving model) largely diminishes in the UHI.

5. Conclusions

The aim of this study was a thorough validation of the SURFEX LSM from the aspect
of simulating surface and 2 m temperature and the corresponding UHI over Budapest.
SURFEX was first forced by the ERA-Interim re-analysis driven ALADIN-Climate regional
climate model, in order to reveal how the ALADIN-Climate model itself influences the
LSM. Due to the strong correlation with observations, only a shorter 10-year past period
was modelled, and the results were compared to the MODIS satellite LST observations for
2003–2005. It was found that the spatial extent of warmer area and even the location of heat
island much more varies seasonally and between day and night in MODIS than in SURFEX.
The surface temperature of SURFEX is much warmer over all the urban gridpoints than
the measurement, resulting in larger SUHI extent from spring to autumn both at day and
night. It was statistically underpinned that the daily variability of SUHI affected area is
smaller than observed.

SURFEX was also forced by the GCM driven ALADIN-Climate model in the period
of 1960–2005. The RCM was evaluated against the CarpatClim-Hu gridded observational
dataset over the SUREX domain and 2 m temperature of SURFEX in one suburban gridpoint
was validated with respect to station measurement for the period of 1971–2000. The main
goal of this research was to assess the capability of SURFEX to simulate urban climate
on decadal timescale. It was found that over the Budapest domain the ARPEGE driven
ALADIN-Climate largely overestimates the temperature in summer, while underestimates
it in the other seasons. This summer positive bias is inherited in SURFEX as well, leading
to 3.5 ◦C warmer summer temperature compared to station measurement. In other seasons
the difference between the land surface model and observation does not exceed 1.5 ◦C.
The daily cycle of 2 m temperature is reasonably simulated and only smaller differences
were found in each season except the systematic bias of summer. The long term gridpoint
validation results of SURFEX are very promising, although to get more robust information
a dense measurement network would be important.

Finally, the two experiments were compared on a common 10-year period from the
aspect of simulating UHI. The spatial distribution and magnitude of UHI does not differ
too much, because the majority of the systematic model bias is eliminated in the UHI
calculation. However, small differences were found in the magnitude of the ground heat
flux, that explains the small differences in the temperature excess over the city.
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