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Abstract: An initial condition that closely represents the true atmospheric state can minimize errors
that propagate into the future, and could theoretically lead to improvements in the forecast. This study
aims to evaluate and understand the impacts of 3DVAR on the state-of-the-art Weather Research
and Forecasting (WRF) model with a two nested domains setup. The domain configuration of the
model covers China with an emphasis on Guangdong province, with a resolution of 27 km, 9 km,
and 3 km. Improvements in the forecasts for the Winter and Summer season of all the domains are
systematically compared and are quantified in terms of 2 m temperature, 10 m wind speed, sea level
pressure, and 2 m relative humidity. The results show that 3DVAR provides significant improvements
in the winter case and surprisingly improvements were also found after the 48 h of the forecast.
Evaluations of performance of 3DVAR in different domains and between two different seasons were
done to further understand the reasons behind the discrepancies.

Keywords: data assimilation; numerical prediction modelling; model sensitivity

1. Introduction

Applying new methods to improve the accuracy of regional non-hydrostatic numerical
weather prediction (NWP) has always been one of the most heavily investigated topics in
the meteorological research society. To improve the model’s accuracy could be understood
as reducing the errors of the model. The origin of the errors of a regional mesoscale model
can be dissected into three main categories. First, errors can come from the imperfect inte-
gration method applied in maintaining the stability of the discretized model [1]. Secondly,
errors can arise from the underlying physics within the model, as the parameterizations are
heavily dependent on the scale of the weather phenomena that it aims to predict. Last but
not least, errors can also originate from the data inputs used for generating the forecasts.
With erroneous input data, even a perfect model will be prone to generating erroneous
simulation results. The first two categories are more related to the internal errors that exist
in the model itself; however, the last one is more related to the quality of the input data.
Thus producing input data that closely resemble the true state of the atmosphere for the
model is very important to generate an accurate forecast, and as essential as improving the
underlying dynamics, physical schemes and the structure of model.

In order to reduce the error of the input data used for initializing the model, one
of the most popular methods is to assimilate observations onto the initial atmospheric
field, and this method is known as data assimilation. Kalnay [2] provides readers with a
fundamental understanding of data assimilation, as well as introducing different state-of-
the-art data assimilation methods that were applied and are being applied in most of the
meteorological agencies. As we are aiming for an efficient and less resource-demanding
data assimilation strategy, the three-dimensional variational (3DVAR) data assimilation
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method is considered to be the best option to be apply to the forecasting model to improve
the initial condition. Numerous studies applied 3DVAR on a non-nested regional mesoscale
model or a single domain ([3–6], etc.). While these studies show that 3DVAR leads to
significant improvements in the initial conditions and has proven to have positive effects
on the initial 48 h of forecasts, limited efforts were made to investigate the effect of applying
3DVAR to several nests of a regional mesoscale model and how it impacts the post-48 h
time period of the forecasts. Additionally, most 3DVAR applications are event-based and
short-term forecasting. Fan [7] applied 3 h cycling 3DVAR to a nested 27 km/9 km/3 km
domain, focusing on the prediction of 0–6 h accumulated rainfall of a specific heavy rain
event that occurred in Beijing, China. Jianfeng [8] targeted a specific typhoon case to
evaluate the effectiveness of 3DVAR. They improved the initial condition by optimizing
the background error statistics (BES) and tuning the scale-length parameter. Many other
3DVAR-related studies also aimed to investigate specific weather phenomena ([5,9–11],
etc.). While these studies make a notable contribution to the short-term forecasting of
severe weather events, they are not representative enough to demonstrate the performance
of 3DVAR for general day-to-day weather forecasting.

In the Environment and Sustainability department of Hong Kong University of Science
and Technology (HKUST), one of our goals is to be able to accurately predict the dispersion
of pollutants within the Pearl River Delta (PRD) region, in which the atmospheric input
heavily relies on the accuracy of the weather forecasting model. In order to create a more
accurate atmospheric condition to drive the air pollution model, numerous methods have
been researched, tested, and applied to our weather forecasting model, such as considering
the frictional force induced by urban effects in the ACM2 PBL scheme [12] as well as
utilizing the multi-layer urban canopy model (WRF-BEP) model [13], which provides direct
information exchange between the planetary boundary layer (PBL) and the buildings. With
more sophisticated building height parameters, more accurate weather forecasts could
be achieved [14] within an urban landscape. However, these are improvements which
reduce errors that are within the aspect of the model itself. While efforts were also spent
on reducing the errors that lie within the input data, through updating the soil map and
the soil moisture to improve the realism of the model regarding the latent heat energy that
is stored in the ground [15], the changes regarding the atmospheric field are affected in a
passive way.

With the PRD region situated within the sub-tropical region and along the coastline
of South-Eastern China, the weather patterns are season-dependent. In the summer, the
South-Westerly monsoon dominate. The maritime air stream brings in moist and warm
air mass from the ocean towards the region. In the winter, the north-easterly monsoon,
together with the southward movement of Siberian continental air-mass, brings dry and
cold weather to the region. Due to the drastic difference in weather patterns, focusing
on a specific weather phenomena within a particular season does not show a complete
analysis of the performance of 3DVAR. Therefore, in this study, we would like to evaluate
and understand how 3DVAR behaves in general, without focusing on any specific weather
event, and to focus on the post-48-h impacts of applying a 3DVAR data assimilation method
using conventional observations on the Weather Research and Forecasting (WRF) model,
which has a two-nested domains setup.

The intention of applying variational data assimilation to any NWP model is to
generate the most precise and accurate estimate, close to the true state of the atmosphere
at a specific analysis time, using the iterative method to find the solution of a prescribed
cost-function, such as Equation (1) [16]. In this paper, the term WRF-Var will refer to
the data assimilation component, which is responsible for the minimization and iterative
process that consists of Equation (1), while the term WRFDA refers to the entire WRF data
assimilation system, including various other components.

J(xa) = Jb + Jo =
1
2
(xa − xb)T B−1(xa − xb) +

1
2
(y − yo)T(E + F)−1(y − yo). (1)
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The essence of the variational method is to find an analysis state xa that could minimize
J(xa). This could be done by minimizing Equation (1) iteratively until a suitable xa is found,
which contributes to obtaining a minimum of J(xa). With the given priori data and error
matrices, such as the background state xb (including model error B) and the observations
Yo (including observation errors E and F), xa could be shown as the posteriori maximum
likelihood estimate of the real atmospheric condition [17,18]. The entire data assimilation
system consists of several components: observation preprocessing (OBSPROC) unit, the
background error unit (gen_be utility), the WRF-Var unit, and the update lateral boundary
conditions unit (WRF_BC). These processing units are supplied with various observation
data and model analysis, which are then processed to generate data files to input into the
WRF-Var to perform the assimilation process.

When data assimilation is applied on a regional domain, WRF-Var extends the ob-
servation information and relays it beyond its original location using recursive filters as a
diffusion operator [19]. Updating the existing wrfbdy lateral boundary condition files (xlbc)
is an essential step and could be done via the WRF-BC utility [1]. This update process allows
xlbc to remain consistent with xa to avoid unexpected gravity waves being generated.

The objective of this paper is to understand the sensitivity of the NWP model towards
the application of 3DVAR. The paper focuses on two parts. First, the effectiveness of the
application of 3DVAR on different domain setups and evaluate its contribution towards
different prediction times. Second, the seasonal effects on the response of the model towards
the 3DVAR application. We organized the paper in the following fashion. Section 2 (Model
and data assimilation setup) would focus on the setup of the NWP model and the data
assimilation protocol. Section 3 (Data) would show the data we used for both the model
and the data assimilation process. Then, in Section 4 (Methodologies and Results), the
methodologies of the studies would be laid out and the results of those studies would
be presented. Lastly, Section 5 (Conclusions) summarizes the study by highlighting the
findings of the experiments carried out in this paper.

2. Model and Data Assimilation Setup

One of the most important inputs for variational data assimilation systems is the
background error covariance B. It performs several important roles in data assimilation,
such as: (i) determining the weight of the background state xb, so that the analysis can be
defined to either match the observations more or less closely; (ii) projection of the spatial
and multivariate characteristics of the model error; (iii) maintaing the physical balance
between variables when applying increments.

The background error can be understood as the deviation of the model from the true
state of the atmosphere. However, we do not possess the information of the truth, thus
refraining us from producing the true background error. Therefore, a best estimate of
the true atmospheric condition (xest) has to be produced to substitute xt, such that we
can determine the background error via the forecast difference National Meteorological
Center (NMC) method. In 3DVAR systems, the background error covariances are estimated
offline and have similar characteristics to climatological statistics, which do not evolve
with time, it is also not flow-dependent. This allows for a more computationally efficient
NMC method to be applied. The NMC method uses forecast differences (e.g., T + 48 minus
T + 24 for global model and T + 24 minus T + 12 for regional model) statistics to generate
the background error covariances, with the assumption that both forecasts have the same
model BIAS and uncorrelated errors [20].

The WRF model with the Advanced Research WRF (ARW) dynamical core is used
for generating the simulations. A parent domain and two nested domains are applied
in this research, namely, domain 1 (D1), domain 2 (D2), and domain 3 (D3). The first
domain D1 focuses on converting synoptic scale weather phenomena into mesoscale-β
scale events that propagate through or develop within China. The second domain D2 collects
information from D1 and acts as a buffer region for the conversion between mesoscale-β and
mesoscale-γ scales weather events that propagate or develop within the southeastern part
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of China. D3 focuses on the propagation and development of mesoscale-γ scale weather
within the Guangdong region of China. The specifications of these three domains are listed in
Table 1 and a spatial representation is shown in Figure 1. The model applied in this study
was being run in parallel and the domains are one-way nested with the static terrestrial
data downloaded from the WRF download website [21]. The geographical data include
various geographical information which consists of the characteristics of the terrain on
which the model is running. The model does not use restart and we consider the first 24 h
as the spinning-up time for the model. We selected the two time periods for the model
simulation, June 2015 and December 2015. In general, they represent the summer season
and the winter season for our study, respectively, and in some experiments, only the winter
season was evaluated (Section 4).

Table 1. The general configuration of the parent and the child domains of the WRF model.

WRF Model Setup

Configurations Domain 1 Domain 2 Domain 3

West-East Grids 283 223 172
South-North Grids 184 163 250
Bottom-Top Grids 39 39 39

Resolution 27 km 9 km 3 km
Nesting / One-way nested

MP physics WRF Single-Moment (WSM) 3-class simple ice scheme [22]
RA LW, SW physics New Goddard Shortwave and Longwave Schemes [23,24]

Bl PBL physics Asymmetric Convection Model 2 Scheme ACM2 [25]
CU physics Grell–Freitas Ensemble Scheme [26] No cumulus

D1

D2
D3

Figure 1. The domain configuration of the model. There are a total of 3 domains with 2 nests. Domain
1 (27 km) is being shown as D1, domain 2 (9 km) is being shown as D2, and domain 3 (3 km) is being
shown as D3.

The WRF Data Assimilation (WRFDA) System is being used for the data assimilation
process and the gen_be utility is used to generate the background error covariances (BE) via
the NMC method. One month of 12 h initiated WRF simulation data, set prior to the study
period, are supplied to the gen_be_wrapper to estimate the forecast error covariance CV5 [27].
Two sets of BE are generated, one for the summer and the other for the winter. Together with
the BE, the observations are assimilated onto the initialization timestep with a window size of
10 min to maximize the usable data. We increased the VAR_SCALING (VS) of all the variables
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from 1.00 (default) to 3.00, following [28]. The increase in VS is mainly because the error of the
model error is generally underestimated, as shown in [11,29,30]. Since observations that lie
above five σ of the error covariance are automatically rejected, the increase in VS increases
the underestimated model error, thus allowing more observations to be assimilated into
the model.

VAR_SCALING1 = 3.00, 3.00 (ψ)
VAR_SCALING2 = 3.00, 3.00 (χu)
VAR_SCALING3 = 3.00, 3.00 (T_u)
VAR_SCALING4 = 3.00, 3.00 (rh)
VAR_SCALING5 = 3.00, 3.00 (Psfc_u)

3. Data

The data used for the WPS unit of the WRF-ARW and WRFDA data assimilation
system are described as follows.

Meteorological data: WPS requires an external meteorological source to provide at-
mospheric information to initialize the simulation. In this research, we use the NCEP
operational Global Forecast System (GFS) analysis and forecasts, as the initial meteorologi-
cal fields for the simulation. The data are 0.25 degree resolution, which has time steps at a
3-h intervals from 0 h to 240 h, initiated at 00, 06, 12, and 18 UTC daily, stored as GRIB2
format. The GFS analyses contain various variables, which include air temperature, albedo,
cloud frequency, cloud liquid water/ice, sea surface temperature, skin temperature, soil
temperature, upper air temperature, vorticity, etc. More information about the dataset can
be found in [31].

Two sets of observation data are applied in this research and they serve a different
purpose during the simulation process. The two sets of observation data will be described
as follows:

(1) NCEP ADP Global Upper Air and Surface Weather Observations (ds337.0): These
datasets are provided by the National Centers for Environmental Prediction (NCEP), and
they compose of a set of global operational surface and upper air reports. The observation
data are reported at a time interval ranging from 1 to 12 h. All the data are stored in
the PREPBUFR format, while ASCII and NetCDF formats are also available [32]. Each
observation in the dataset comes with a quality marker (qm), and a qm less than 3 are kept
to ensure that good-quality observations are assimilated in this study. All the observations
which passed the QC and are within the domain of our study are assimilated into the
initial condition;

(2) The Environmental Central Facility Atmospheric and Environmental Database:
These datasets are provided solely for educational and research purposes, by the Envi-
ronmental Central Facility (ENVF) within the Institute for the Environment (IENV) of the
Hong Kong University of Science and Technology (HKUST). They comprise reports of
conventional surface observations gathered from GTS, Meteorological Terminal Aviation
Routine Weather Report (METAR), and Surface Synoptic Observations (SYNOP), and the
data went through several quality control measures. More information regarding these
datasets can refer to [33]. The purpose of these observation data is to evaluate the result of
simulations both before and after 3DVAR which are applied to the model, so that we can
understand the changes made by the data assimilation system, with the assumption that
the observations used by WRF-VAR for the data assimilation and the observations used
to evaluate the results are uncorrelated with each other. We selected four variables—2-m
surface temperature, 10-m zonal and meridional wind, and 2-m relative humidity—as the
variables for the evaluation process. In this research, since we are mostly interested in the
behaviour of the model within the Pearl River Delta region, some of the evaluation on
the middle domain (domain 2) would be shown for a more complete study, but only the
outermost domain (domain 1) and the innermost domain (domain 3) would be evaluated
in detail. All results were evaluated by the observation data located within the Guangdong
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province (Figure 2), except the evaluation on the 27 km domain for the seasonal sensitivity
study (Figure 3).

Figure 2. The distribution of the observation data that are used to evaluate the performance of the model. All the
observations are situated within the Guangdong province which is covered by domain 3 (D3) of the model (Figure 1).

Figure 3. The distribution of the observation data that are used to evaluate the performance of the model of domain 1 (D1)
for seasonal sensitivity forecast (Figure 1).

4. Methodologies and Results
4.1. Background

The results are analyzed in terms of how sensitive the model is with the application
of 3DVAR and they can be separated into three parts, namely, domain sensitivity, which
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is the sensitivity of the domain’s reaction towards the application of 3DVAR, time period
sensitivity, which is the sensitivity of the model at different time period of the simulation,
and seasonal sensitivity, which is the sensitivity of the model, with 3DVAR application,
towards the change in atmospheric conditions due to seasonal variations. Thus, two studies,
namely the general (domain and time period) sensitivity study and seasonal sensitivity
study, meaning that information from the child would not pass back to the parent; thus,
observations assimilated in the child domain should also be assimilated again on the parent
domain. Nearest grid point prediction value is used to calculate the evaluation metrics.

4.2. General Sensitivity Study

This general sensitivity study aims to understand the effectiveness of 3DVAR on different
domains and time periods of a model run. Four cases were conducted in this experiment,
as shown in Table 2. A Control case (CONTROL_DOMAIN) was run without applying
3DVAR to any of the domains so that the performance of the model without 3DVAR ap-
plication can be used as a reference for comparison. The second (3DVAR_DOMAIN_D1),
third (3DVAR_DOMAIN_D12) and forth (3DVAR_DOMAIN_ D123) cases apply 3DVAR on
Domain 1 only, Domains 1 and 2, and Domains 1, 2 and 3, respectively. The data assimilation
and simulation settings used the same settings as mentioned in Section 2. The BE was gener-
ated using a month-long simulation of November 2015 via the NMC method of WRFDA.
Four days of hourly WRF forecasts are initiated, using the NCEP GFS analysis by WRF
Standard Initialization (WRF_SI) as the control case (CONTROL) or WRF_SI plus WRFDA
(3DVAR_DOMAIN cases), every 24 h, from 1200Z of 1 December 2015 to 31 December
2015. The results of domain 1 and domain 3 of the cases are compared against the reference
case (CONTROL) and the effectiveness of the application of 3DVAR on the designated
domains are examined based on the scale of improvements in the initial condition, as well
as the result of the forecasts compared with the ENVF observation dataset, using BIAS and
RMSE statistical evaluation methods. Four evaluation metrics were used, namely, BIAStime
(Equation (2)), BIASstation (Equation (3)), RMSEtime (Equation (4)), and RMSEstation (Equa-
tion (5)), where the subscript “time” indicates that the metric is calculated along the forecast
period for each validation station, while the subscript “station” indicates that the metric is
calculated across all the validation stations for each forecast hour.

BIAStime =
∑n

i=1(Pi − Oi)

n
(2)

BIASstation =
∑s

i=1(Pi − Oi)

s
(3)

RMSEtime =

√
∑n

i=1(Pi − Oi)2

n
(4)

RMSEstation =

√
∑s

i=1(Pi − Oi)2

s
(5)

where:

Pi = Prediction value
Oi = Observation value
n = Number of forecast hours
s = Number of stations
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Table 2. The application of 3DVAR for the general sensitivity study. 7 refers to 3DVAR not being
applied and 3 refers to 3DVAR being applied.

General Sensitivity Study: 3DVAR Application

Cases Domain 1 Domain 2 Domain 3

CONTROL_DOMAIN 7 7 7

3DVAR_DOMAIN_D1 3 7 7

3DVAR_DOMAIN_D12 3 3 7

3DVAR_DOMAIN_D123 3 3 3

4.2.1. Domain Sensitivity Experiment

A total of four cases, three with 3DVAR and one without, as shown in Table 2, were
evaluated on all three domains. The observations we used for the comparisons are 2 m
temperature (T2), 2 m relative humidity (RH2), sea level pressure (SLP), and 10 m wind
speed (10 m wind).

Figure 4a,b shows the distribution of BIAStime and RMSEtime of all stations. It is clear
that the 3DVAR_DOMAIN_D1 enjoys the greatest benefit from the application of 3DVAR.
The differences between CONTROL_DOMAIN and 3DVAR_DOMAIN_D1 is the greatest
among all other 3DVAR cases. The mean BIAStime is always being shifted more closely
towards 0 and the mean RMSEtime is mostly being reduced. Among all the variables, 2 m
temperature sees the most significant improvements, as the mean BIAStime sees a correction
of +0.68 ◦C and +0.51 ◦C for 27 km and 3 km domain, respectively. The RMSEtime is also
reduced by 0.31 ◦C in the 27 km domain, with the entire distribution shifting lower. Further
applying 3DVAR to domain 2 (3DVAR_DOMAIN_D12), the improvements are less signifi-
cant compared to those seen with the application domain 1 only (3DVAR_DOMAIN_D1).
Even though the improvements are small, the mean BIAStime are generally shifted closer
to 0, with lower mean RMSEtime values. If we continue to apply 3DVAR towards domain
3, we could see negligible improvements. The results show that there is an inverse relation-
ship between the application of 3DVAR and nested child domains. The more you apply
3DVAR on child domains, the fewer improvements there will be. This experiment shows
that, with the given setup, the most effective data assimilation configuration would be the
application of 3DVAR on domain 1 and 2 only (3DVAR_DOMAIN_D12). Having shown
that 3DVAR_DOMAIN_D12 is the most effective configuration, in the following sections, in-
stead of showing the statistics of all the cases, we would be focusing on comparing between
CONTROL_DOMAIN and 3DVAR_DOMAIN_D12, and show their respective differences.

4.2.2. Time Period Sensitivity Experiment

In this experiment, we look at the BIASstation and RMSEstation which are the metrics
that averaged of the validation stations along the forecast period. Taking a closer look
at RMSEstation of 2 m temperature and 2 m relative humidity of the 27 km domain in
the Figure 5a, we observe that there are dramatic improvements in RMSEstation at the
beginning of the model due the application of 3DVAR but diminished quickly within
the first 24 h of the model run. The diminishing property is within expectations with
Barker [18], and Hou [5] also show similar diminishing results in their forecast runs. The
main reason which causes the retrograding effect within the first 24 h is that when the
model approaches towards the 24 h mark, the boundary effect takes over the effects brought
by the initial condition, which ultimately becomes the major factor in driving the model’s
forecast. Since only the initial condition and the initial boundary condition is improved,
the model will have a tendency to follow a track similar to a pre-3DVAR forecast, due to
the predetermined information contained within the unimproved boundary layer of the
parent domain.
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——CONTROL_DOMAIN ——3DVAR_DOMAIN_D1
——3DVAR_DOMAIN_D12 ——3DVAR_DOMAIN_D123

(a) BIAS

——CONTROL_DOMAIN ——3DVAR_DOMAIN_D1
——3DVAR_DOMAIN_D12 ——3DVAR_DOMAIN_D123

(b) RMSE

Figure 4. The distribution statistics of the BIAStime and RMSEtime for variables 2 m temperature, 2 m relative humidity,
sea level pressure, and 10 m wind speed for all the general sensitivity study cases [CONTROL_DOMAIN (leftmost),
3DVAR_DOMAIN_D1 (center-left), 3DVAR_DOMAIN_D12 (center-right), 3DVAR_DOMAIN_D123 (rightmost)] evalu-
ated at the 27 km (left), 9 km (center) and 3 km (right) resolution domains.

The previous research rarely shows the effects of 3DVAR after the 48 h time period,
mainly due to the lack of interest in the post-48-h time period or due to the assumption that
3DVAR mainly provides plausible improvements within the first 24–48 model hours. To our
surprise, we found that the effect of 3DVAR is not totally replaced by the boundary layer
information; instead, some improvements are sustained after the 48 h time period. From
Figure 5a the results show that, in the 27 km domain, observable improvements in both the
BIASstation and RMSEstation can be found between 48 and 96 h of forecast. The difference
in the mean and the span between 3DVAR_DOMAIN_D12 and CONTROL_DOMAIN
continues to grow towards the end of the simulations, indicates that the improvements, due
to the application of 3DVAR, grows instead of diminishing. Since 3DVAR is not applied
on the 3 km domain, there is no initial enhancement. All the improvements appear in
this domain are solely due to the enhancements made in 27 km and 9 km domain, which
is then passed in. From Figure 5b), all variables show a certain degree of improvement.
The BIASstation of the 2 m temperature and 10 m wind are improved after 12 h of forecast,
which shows that these variables are the most sensitive towards the changes made by
3DVAR. While the improvements under 2 m temperature are sustained throughout the
simulation, improvements under 10 m wind were only sustained until 72 h of forecast.
Regarding the RMSEstation, the 10 m wind reacts the quickest to changes made by 3DVAR,
with the greatest improvements between 24 and 72 h of forecast. Although 2 m temperature
and 2 m relative humidity also show improvements, they appear to occur mostly after
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48 h of forecast. Figure 6a,b shows the BIAStime and the RMSEtime distribution statistics
for the all the cases between 48 and 96 h of forecast. From these figures, one could easily
observe that there are some degrees of improvement regarding BIAStime or RMSEtime on
all of four variables, with 2 m temperature and 2 m relative humidity being the better
performers. Looking at the numbers, Figure 7a shows the percentage of improvements
in BIAStime of 27 km and 3 km domain. Other than 10 m wind, all other variables have
at least a 20% improvement, with 2 m temperature having a 40% of improvement in
the 27 km domain and 65% of improvements in the 3 km domain. Figure 7b shows the
percentage of improvements in RMSEtime of 27 km and 3 km domain. In the 27 km domain,
where 3DVAR is applied, the RMSEtime improved, on average, by more than 10% for 2 m
temperature, 6% for 2 m relative humidity and sea level pressure, and 4% for 10 m wind.
Regarding the 3 km domain, the mean RMSEtime generally improved by 4% to 8% for all
variables. The surprising results show that the improvement in 3DVAR is not constrained
within the first 24 h of model runs. It has the potential to provide significant improvements
after 24 h of simulation runs.

(a) 27 km domain. (b) 3 km domain

Figure 5. The BIASstation and the RMSEstation statistics of 3DVAR_DOMAIN_D12 (red) comparing to the control case
CONTROL_DOMAIN (blue) for the 27 km and 3 km domain. The solid lines represent the mean, the dotted lines represent
the median and the shaded areas indicate the upper and lower quartile of the distribution. The statistics of the variables 2 m
temperature, 2 m relative humidity, sea level pressure, and 10 m wind speed are shown.
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——3DVAR_DOMAIN_D12
——CONTROL_DOMAIN

(a). BIAS

——CONTROL_DOMAIN
——3DVAR_DOMAIN_D12

(b). RMSE

Figure 6. The distribution statistics of BIAStime and RMSEtime for variables T2, RH2, SLP, and 10 m wind for all the time
period sensitivity experiment cases [CONTROL_DOMAIN(left), 3DVAR_DOMAIN(right)] between the 48 and 96 h time
window, evaluated at the 27 km (left), 9 km (center) and 3 km (right) resolution domains. The blue dots refer to the mean.
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Figure 7. The percentage improvements of BIAStime and RMSEtime for the case 3DVAR_DOMAIN_D12, comparing to
CONTROL_DOMAIN.

4.3. Seasonal Sensitivity Study
4.3.1. Background and Setup

The seasonal sensitivity study is the extension of the first study (General sensitivity
study). Seasonal variations are a major factor affecting the performance of 3DVAR data
assimilation, as the dynamics of the monsoon affecting the winter and the summer season
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in the South Eastern China differ greatly. Therefore, it is essential to understand how
3DVAR performs in different seasons. In this study, we selected December 2015 as the
simulation period for the winter case and June 2015 as the simulation period for the summer
case. Four cases, namely, CONTROL_SUMMER, CONTROL_WINTER, 3DVAR_WINTER,
and 3DVAR_SUMMER, are used to evaluate the seasonal performance of 3DVAR, where
CONTROL_WINTER, 3DVAR_WINTER are duplicates of the cases CONTROL_DOMAIN
and 3DVAR_DOMAIN_D12 used in the general sensitivity study. The data assimilation and
simulation settings of the four cases use the same settings mentioned in Section 2. For the
3DVAR_SUMMER and 3DVAR_WINTER cases, 3DVAR is applied only on the 27 km and
9 km domain base (similar to the settings of 3DVAR_DOMAIN_D12) on the result of the
domain sensitivity study. Four days of hourly WRF forecasts are initiated, using the NCEP
GFS analysis by WRF_SI (CONTROL) or WRF_SI plus WRFDA (SUMMER/WINTER cases),
every 24 h, from 1200Z of 1 June 2015 to 30 June 2015 for the summer cases, and every 24 h
for 1200Z of 1 December 2015 to 31 December 2015 for the winter cases. The simulation
results of the 27 km and 3 km domain of the 3DVAR_SUMMER and 3DVAR_WINTER cases
are compared with the reference cases CONTROL_SUMMER and CONTROL_WINTER
between the 48 and 96 forecast hours, to understand the performance of the model with
and without 3DVAR application. The results of the forecasts of the 3DVAR applied cases
are also be cross-compared with the ENVF observation dataset, using various statistical
and spatial analyses methods. From hereonin, we would refer to CONTROL_DOMAIN
as CONTROL_WINTER and 3DVAR_DOMAIN_D12 as 3DVAR_WINTER, and, since the
results have been shown in the previous section (time period sensitivity experiment), they
ware not be presented again in this section. In this section, we emphasize the results of
the summer case and compare the improvements between the CONTROL_SUMMER and
3DVAR_SUMMER cases.

4.3.2. The Summer Case Result

Figure 8a,b shows the difference between CONTROL_SUMMER and 3DVAR_SUMMER,
and we can quickly observe that the model has a consistent cold BIASstation and overestimates
the 2 m relative humidity, which is very similar to that in the winter case. However, the
improvements are marginal compared to 3DVAR’s performance in the 3DVAR_WINTER
case. ck intended meaning has been retained. In the 27 km domain, we could observe
improvements in BIASstation of 2 m temperature and 2 m relative humidity in the first 12 h
of simulation, which corresponds to most of the literature, but converges quickly towards
CONTROL_SUMMER. If we look more closely at the 48–96 h time period (Figures 9a,b
and 10a,b), where major improvements were found in 3DVAR_WINTER, we see that, in
the 3DVAR_SUMMER cases, there are minor but insignificant improvements for 2 m
temperature (BIAStime and RMSEtime) and 2 m relative humidity (RMSEtime only). Even
though the mean BIAStime of 2 m relative humidity performs quite poorly, with a more than
15% decrease in performance, the error is less than 1% in magnitude. Sea level pressure,
vastly different from that in the winter, is a consistent poor performer in the summer time.
In general, the application of 3DVAR does not worsen the performance of the model but
nor does it provide benefits to improve the model’s performance in the summer period of
the model simulation.
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(a). 27 km domain (b). 3 km domain

Figure 8. The BIASstation and the RMSEstation statistics of 3DVAR_SUMMER (red) comparing to the control case CON-
TROL_SUMMER (blue) for the 27 km and 3 km domain. The solid lines represent the mean, the dotted lines represent the
median and the shaded areas indicate the upper and lower quartile of the distribution. The statistics of the variables 2 m
temperature, 2 m relative humidity, sea level pressure, and 10 m wind speed are shown.

——CONTROL_DOMAIN
——3DVAR_DOMAIN_D12

(a). BIAS

——CONTROL_DOMAIN
——3DVAR_DOMAIN_D12

(b). RMSE

Figure 9. The distribution statistics of BIAStime and RMSEtime for variables T2, RH2, SLP, and 10 m wind for all the time
period sensitivity experiment cases [CONTROL_DOMAIN(left), 3DVAR_DOMAIN(right)] between the 48 and 96 h time
window in the summer. The blue dots refer to the mean.
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Figure 10. The percentage improvements of BIAStime and RMSEtime for the case 3DVAR_SUMMER, comparing to CON-
TROL_SUMMER.

4.3.3. Seasonal Comparison

The application of 3DVAR on WRF at different seasons produces significantly different
results. In both the winter and summer seasons, WRF has a cold BIASstation when the
forecast is 2 m temperature and the underestimation of 2 m relative humidity is more
serious in winter than in summer. In the winter season, those large BIASstation in the 2 m
temperature were significantly improved and the RMSEstation is also reasonably improved.
However, in the summer season, the BIASstation of the 2 m temperature is not improved,
nor is the RMSEstation. Most of the errors that exist in CONTROL_SUMMER were passed
onto 3DVAR_SUMMER with unnoticeable changes. In order to understand the reason
behind the huge discrepancy between these two cases, the spatial difference between the
3DVAR cases and the control cases, and the general wind pattern have to be examined.

Figure 11 shows the 2 m temperature and 2 m relative humidity monthly averaged
difference between 3DVAR_WINTER and CONTROL_WINTER. The averaged spatial
differences and the averaged wind speed and direction are plotted every 24 h. The purple
box is where the evaluation observations for evaluating the 27 km domain are located
(Figure 3) and the green box is where the evaluation observations for evaluating the 3 km
domain are located (Figure 2). 3DVAR mainly increased the 2 m temperature and the 2 m
relative humidity of the inland area. With the wind blowing from inland towards the
sea and the wind direction at the upper latitude mainly parallel to that of the northern
boundary layer, the boundary layer does not appear to provide an extensive amount of
new information to the domain. Although the effects of 3DVAR become weaker between 24
and 48 h, the increments from 3DVAR still persist, as changes from the 3DVAR process are
still preserved. After 48 h, the wind direction allows the effects of 3DVAR to be propagated
into the 27 km domain’s evaluation zone and the 3 km domain. These results correspond
to the reduction in BIASstation and BIASstation in the 3 km domain after the 48 h period,
shown in Figure 5b.

Figure 12 shows the 2 m temperature and 2 m relative humidity monthly averaged
difference between 3DVAR_SUMMER and CONTROL_SUMMER. It can be seen that the
3DVAR has the majority of effects in the inland. However, different from that of the
winter case, the wind in the summer case blows from the sea towards inland and the wind
direction along the boundary layer suggest that an extensive amount of new information is
fed into the domain via the boundary condition. Due to this, the effects of 3DVAR quickly
dissipate and the effects of 3DVAR after the 24–h forecast are very insignificant.
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Figure 5.6: The contour plots show the di↵erence of the (a) 2m temperature and (b) 2m
relative humidity at four di↵erent time periods, (1) 0-24 hours, (2) 24-48 hours, (3) 48-72
hours, and (4) 72-96 hours, between the 3DVAR WINTER and the CONTROL WINTER
in the 27km domain. The blue arrows indicate the monthly averaged wind speed and
direction to show the general wind pattern of this season. The purple box is where the
observations for evaluating the 27km domain are located and the green box is the 3km
domain.

b)

a)

3DVAR_WINTER minus CONTROL_WINTER 27km 2m temperature

0-24 hour 24-48 hour
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(a)

 48-72 hour  72-96 hour

24-48 hour0-24 hour
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Figure 5.6: The contour plots show the di↵erence of the (a) 2m temperature and (b) 2m
relative humidity at four di↵erent time periods, (1) 0-24 hours, (2) 24-48 hours, (3) 48-72
hours, and (4) 72-96 hours, between the 3DVAR WINTER and the CONTROL WINTER
in the 27km domain. The blue arrows indicate the monthly averaged wind speed and
direction to show the general wind pattern of this season. The purple box is where the
observations for evaluating the 27km domain are located and the green box is the 3km
domain.

b)

a)

Figure 11. The contour plots show the difference of the (a) 2 m temperature and (b) 2 m relative
humidity at four different time periods, (1) 0–24 h, (2) 24–48 h, (3) 48–72 h, and (4) 72–96 h, between
the 3DVAR_WINTER and the CONTROL_WINTER in the 27 km domain. The blue arrows indicate
the monthly averaged wind speed and direction of CONTROL_WINTER to show the general wind
pattern of this season. The purple box is where the evaluation observations for evaluating the 27 km
domain are located (Figure 3) and the green box is where the evaluation observations for evaluating
the 3 km domain are located (Figure 2).
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This comparison shows that the performance of 3DVAR is heavily dependent on the
location of increments generated by 3DVAR, the wind flow pattern and the location of the
evaluation zone. In this comparison, most of the observations used for data assimilation
are situated inland and the evaluation zone is at the southern part of China, close to the sea.
The wind field of the December case, which has a wind flow from inland towards the sea,
benefited the propagation of improved information towards the evaluation zone. In the
summer case, the wind field is from the sea towards inland, and the wind flow does not
provide a substantial amount of improved information to the evaluation zone. Aside from
this, the wind field plays a major role in bringing information from the boundary layer into
the domain. The comparison shows that, with a weaker wind field along the boundary, the
effect of 3DVAR could be preserved for a longer time period. With the comparison results
and the seasonal sensitivity results, it can be concluded that the 3DVAR is able to bring
significant improvements to the model forecasts in the winter season.

3DVAR_WINTER minus CONTROL_WINTER 27km 2m temperature

0-24 hour 24-48 hour

 72-96 hour 48-72 hour

3DVAR_SUMMER minus CONTROL_SUMMER 27km 2m temperature

(a)

3DVAR_WINTER minus CONTROL_SUMMER 27km 2m relative humidity

0-24 hour 24-48 hour

 72-96 hour 48-72 hour

3DVAR_SUMMER minus CONTROL_SUMMER 27km 2m relative humidity

(b)

Figure 5.7: The contour plots show the di↵erence of the (a) 2m temperature and (b)
2m relative humidity at four di↵erent time periods, (1) 0-24 hours, (2) 24-48 hours,
(3) 48-72 hours, and (4) 72-96 hours, between the 3DVAR SUMMER and the CON-
TROL SUMMER in the 27km domain. The blue arrows indicate the monthly averaged
wind speed and direction to show the general wind pattern of this season. The purple
box is where the observations for evaluating the 27km domain are located and the green
box is the 3km domain.

a)

b)

Figure 12. Cont.
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3DVAR_WINTER minus CONTROL_WINTER 27km 2m temperature
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3DVAR_SUMMER minus CONTROL_SUMMER 27km 2m temperature

(a)
3DVAR_WINTER minus CONTROL_SUMMER 27km 2m relative humidity
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3DVAR_SUMMER minus CONTROL_SUMMER 27km 2m relative humidity
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Figure 5.7: The contour plots show the di↵erence of the (a) 2m temperature and (b)
2m relative humidity at four di↵erent time periods, (1) 0-24 hours, (2) 24-48 hours,
(3) 48-72 hours, and (4) 72-96 hours, between the 3DVAR SUMMER and the CON-
TROL SUMMER in the 27km domain. The blue arrows indicate the monthly averaged
wind speed and direction to show the general wind pattern of this season. The purple
box is where the observations for evaluating the 27km domain are located and the green
box is the 3km domain.

a)

b)
Figure 12. The contour plots show the difference of the (a) 2 m temperature and (b) 2 m relative humidity at four
different time periods, (1) 0–24 h, (2) 24–48 h, (3) 48–72 h, and (4) 72–96 h, between the 3DVAR_SUMMER and the
CONTROL_SUMMER in the 27 km domain. The blue arrows indicate the monthly averaged wind speed and direction of
CONTROL_SUMMER to show the general wind pattern of this season. The purple box is where the evaluation observations
for evaluating the 27 km domain are located (Figure 3) and the green box is where the evaluation observations for evaluating
the 3 km domain are located (Figure 2).

5. Conclusions

Both the general sensitivity study and the seasonal sensitivity study broaden the
understandings of the effect of the initial conditions and boundary conditions on the
model’s performance. It is clear that 3DVAR has an impact on the forecast quality by
generating initial conditions that represent the state of the atmosphere more accurately. The
studies also provide insights into other possible factors that could affect the performance
of 3DVAR. In this section, we summarize the findings of this study.

In the general sensitivity study, the domain sensitivity experiment shows that applying
3DVAR on both domain 1 (27 km) and domain 2 (9 km) is the optimal setup and yields the
best results. The parent domain (domain 1) shows the greatest improvement through the
application of 3DVAR, and it is observed that the effect of 3DVAR becomes less significant
as the nest grows deeper and area of the domain becomes smaller. This also shows
that applying 3DVAR on the parent domain is more essential than applying 3DVAR on
the nests, as the 3DVAR effect on the parent domain remains dominant and is capable
of spreading the information into the nests. The reduction in the spread and the shift
towards zero distribution and the mean of BIAStime and RMSEtime show that the majority
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of validation observations are benefited. It can be seen that the major improvements occur
in the 3DVAR_DOMAIN_D1 case, and the performance is marginally better with 3DVAR
applied on domain 2. This showcases the importance and the benefits of carrying out
data assimilation on the parent domain. Using the results from the time period sensitivity
experiment, we begin to understand the performance of 3DVAR on four time periods,
0–24 h, 24–48 h, 48–72 h, and 72–96 h, with 3DVAR only applied on domain 1 and domain
2. The results follow the conventional understanding that 3DVAR provides significant
improvements in the first 24 h of the model run. However, at the same time, the results also
show that there are significant improvements in BIAS and RMSE from 48 to 96 h, with 2 m
temperature and 2 m relative humidity being the better performers. The seasonal sensitivity
study indicates that 3DVAR performs better in the winter than in the summer for our model
configuration. When we compare the winter case and the summer case to understand their
discrepancy in the seasonal sensitivity study, it is shown that the location of the increments
and the wind field plays a dominant role in the propagation of information within the
domain. In this study, 3DVAR assimilates most of the observation data inland regardless of
the season. In winter, the general wind pattern is from inland to the ocean (offshore wind)
and the evaluation zone of the 27 km domain and the 3 km domain are situated downwind
of the wind flow. This allows the information of the increments in the 27 km domain to pass
down to the evaluation zone (3 km domain), allowing the nest to obtain a more accurate
boundary condition from the parent. The wind speed and direction along the boundary of
the parent reduce the influx of new information from the boundary, allowing the 3DVAR
increments to be sustained for a longer period of time. However, in the summer, the wind
pattern is directly opposite to that of the winter. The wind flow is from the ocean towards
inland (onshore wind). Since most of the assimilated observations are inland, there are
not a significant amount of observations in the ocean; with the evaluation zone situated
downstream of the onshore flow, 3DVAR did provide an equal amount of new information
to the evaluation region. Aside from this, the wind direction along the edge of the domain
promotes the transfer of new information from the parent’s boundary layer, aggravating
the unsustainable effect of the 3DVAR. With the combiniation of effects mentioned above,
3DVAR is more efficient in the winter than in the summer.

In this study, we performed several important sensitivity tests, and the results of
the experiments show that, in general day-to-day forecasting, the application of 3DVAR
on the 27 km and 9 km domain is shown to be the optimal setup, providing observable
and significant improvements in the winter season for the pearl river delta region. The
3DVAR performance excels when initial condition is not hugely affected by the boundary
condition and the evaluation zone is situated downstream of the area where the majority
of new information is assimilated. The study also shows that 3DVAR is not only suitable
for short-term forecasting. In the right conditions, 3DVAR has the ability to increase model
performance after a 24 h runtime, especially after 72 forecast hours.
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