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Abstract: Knowing the relationship between pollution sources and air pollution concentrations is
crucial. Mathematical modeling is a suitable method for the assessment of this relationship. The aim
of this research was to compare the results of the Analytical Dispersion Modelling Supercomputer
System (ADMOSS), which is used for air pollution modeling in large areas, with the results of
moss biomonitoring. For comparison purposes, air pollution mathematical modeling and the col-
lection of moss samples for biomonitoring in the Czech–Polish–Slovak border area in the European
Grouping of Territorial Cooperation (EGTC) Tritia were carried out. Moss samples were analyzed
by multi-element instrumental neutron activation analysis (INAA). The INAA results were statisti-
cally processed using the correlation-matrix-based hierarchical clustering and correlation analysis
of the biomonitoring results and ADMOSS results. Biomonitoring using bryophytes proved to be
suitable for the verification of mathematical models of air pollution due to the ability of bryophytes
to capture the long-term deposition of pollutants and the resulting possibility of finding the real dis-
tribution of pollutants in the area, as well as identify the specific chemical elements, the distribution
of which coincides with the mathematical model.

Keywords: air; pollution; mathematical; modeling; moss; biomonitoring; comparison; bryophytes;
correlation; analysis

1. Introduction
1.1. Background

Understanding the relationship between pollution sources and air pollution con-
centrations is crucial for effective air quality management. Mathematical modeling is
an appropriate method for the assessment of this relationship, however, it is necessary to
take into consideration that various types of errors occur during mathematical modeling:

• Problem formulation error;
• Real-world abstraction error;
• Inputting data error;
• Human factor error;
• Rounding error.

Therefore, a comparison of modeling results with real measured concentrations is
required. The ADMOSS includes standard air pollution monitoring in the modeling pro-
cess. Consequently, it is essential to use alternative methods, including biomonitoring.
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The present study brings a unique approach to the verification of air pollution mathe-
matical modeling using a comparison of the results of mathematical modeling and moss
biomonitoring. In the literature, there was only one study which the authors found that
compared mathematical modeling results and biomonitoring results [1]. Based on this
fact, the given issue can be considered unsurveyed. This study is based on the research
published in the Ph.D. thesis [2].

1.2. Air Pollution

Air pollution is an undesirable phenomenon that entails a multitude of negative
health, economic and social impacts [3–5]. Previous studies show that PM has significant
adverse effects on human health in the form of black lungs, asthma, cardiovascular diseases
and lung cancer [6–8]. The process that causes air pollution is called polluting. Polluting
the air is a process of emitting pollutants into the air from pollution sources (emissions).
A pollutant is any substance that can harm the health of organisms, ecosystems or cause
irritation by odor (Act No. 201/2012 Coll., on air protection) [9]. Sources are anthropogenic
or natural. The characteristic properties of natural sources are their equal distribution
in a large area (lightning—NOx; forest fires—NOx; PMx; volcanic activity—PMx; SO2, etc.).
Anthropogenic pollution is related to human activities, and pollution sources are usually
concentrated in inhabited areas [5]. This study focuses on particulate pollution.

1.3. Air Pollution Protection and Modeling

Air protection is the prevention of and reduction in pollutants so that they are not
harmful to human health, the environment and ecosystems. The creation of suitable condi-
tions for the regeneration of already damaged components of the environment is also part
of air protection. Air quality in the Czech Republic is monitored by air pollution monitoring
stations, which perform standard measurements of air pollution concentrations. The law
on air protection (Act No. 201/2012 Coll., on air protection) [9] defines the maximum
permitted concentrations for specific substances, i.e., limit values. If the limit values are ex-
ceeded, the current air quality management system, intermediate air quality developments
and expected scenarios of polluting need to be evaluated. The mathematical modeling
of air pollution is an ideal tool for evaluating these scenarios [10]. Subsequently, suitable
strategies to reduce air pollution are to be determined on the basis of relevant information.

1.4. Study Area

The survey focused on the verification of the model in the area of interest of the AIR
TRITIA project [11,12]. This project deals with the issue of air quality management in the Eu-
ropean Grouping of Territorial Cooperation (EGTC) Tritia (Figure 1). The region com-
prises the Moravian-Silesian Region (Czech Republic), the Opole Voivodeship, the Silesian
Voivodeship (Republic of Poland) and the Žilina Region (Slovak Republic). Its area is
34,069 km2 with a population of approximately 7.8 million.
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Figure 1. EGTC Tritia regions.

The Moravia–Silesian Region is located on the southwestern side of the EGTC Tri-
tia. It borders the Silesian Voivodeship in the east, the Opole Voivodeship in the north
and the Žilina Region in the southeast. The most important geomorphological formations
in the EGTC Tritia area are the Bohemian Massif and the Western Carpathians. Between
these two formations, there are the Moravian Gate and the Ostrava Basin, which turn
into the Silesian Lowland in the east and northeast, with the Odra River flowing through.
The southern part of the territory is mountainous because the Western Carpathians massif
originates from there. The Váh river valley passes through this massif [13,14].

The regions grouped into the EGTC Tritia combine common environmental and social
problems and intensive socio–economic relations. Given the high population density,
improving air quality is a crucial issue for these regions.

2. Material and Methods
2.1. Mathematical Modeling

Air pollution monitoring provides information on air quality only in measurement
points, where each monitoring site represents its limited vicinity. The pollution monitoring
station network is also usually rather sparse since professional monitoring equipment is
costly and demands professional calibration and maintenance [15]. Mathematical mod-
elling is an important tool that complements air quality monitoring. It provides more
detailed information on the spatial distribution of air pollution in the area of interest. It can
also provide information on the share of various air pollution source groups on air quality
and allows studying the effects of “what if” scenarios.
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Air pollution models can be classified according to various criteria. Based on the time
component, models can be divided into static and dynamic. Static models do not take time
into account. The model classification according to the most frequently used types is more
detailed [16]:

• Empirical;
• Gaussian;
• Numerical;
• Physical.

This classification is the most general, dividing models into groups based on the gen-
eral principle of constructing the model. A more subtle classification can be created for
each category listed above. For example, numerical models are usually classified into
Lagrangian, Eulerian and chemical balance models.

This article focuses on the verification of the Gaussian model. Gaussian models
are mathematically based on Sutton’s diffusion theory (Sutton [17]) which is derived
from the equations for the Lagrange function in order to represent atmospheric diffusion.
The diffusion of pollutants in the axis x direction is characterized by the parameters Cy,
Cz. These parameters are derived on the basis of Taylor’s statistical correlation theory of
turbulence and the classical diffusion equation.

To evaluate air quality in large areas, the Analytical Dispersion Modelling Super-
computer System (ADMOSS) was developed at the VSB—Technical University of Ostrava
(VSB-TUO). The ADMOSS system uses Geographic Information System (GIS), a mathemat-
ical model and computing clusters. Currently, the ADMOSS system uses the SYMOS’97
methodology for the mathematical modeling of air pollution. The SYMOS’97 modeling
methodology is a Gaussian dispersion model recommended by the Ministry of the Environ-
ment of the Czech Republic for assessing the effects of gas or dust emissions. The method-
ology is capable of evaluating the degree of air pollution by gases and solid pollutants
that are released by point, linear or area sources. Pollution values are computed in a net-
work of reference points called receptors. SYMOS’97 calculates the atmospheric pollution
characteristics based on the following input data [18]:

• Data describing the sources of air pollution;
• Data describing the receptor point network;
• Data describing the terrain;
• Meteorological characteristics of the modeled areas and time period.

These several characteristics can be calculated for each point:

• Maximum possible short-term (hourly) air pollution concentrations in all wind flow
velocity and air stability classes;

• 8 h moving average;
• Annual average concentrations;
• Duration of exceeded limit values (pollution limits);
• Particulate deposition.

For this analysis, a PM10 deposition model was computed. PM10 was chosen be-
cause suspended particles with a diameter of 10 micrometers deposit on the Earth’s sur-
face or vegetation with a decreasing diameter, and this phenomenon is less significant.
In Leoni et al. [19], the authors studied the origin and chemical composition of dust par-
ticles from samples collected in the vicinity of Liberty’s steelworks in Ostrava. The PMF
analysis detected the association of several chemical elements in dust particles with pol-
lution sources. Coal combustion was responsible for the S, As, Se, and Br concentrations,
the origin of Al, Si, Ca, Ti, and Cu came from the Earth’s crust, Na, Cl and Zn origi-
nated from sintering and steel production, and Mn, Fe and Co corresponded with raw
iron production.

The input data for the model were obtained from the Air Tritia [11,12] dataset, AND
the modeling year was 2015. The receptor point network was generated from the coor-
dinates of the sampling sites. This made it possible to compare the moss survey results
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and deposition model results. The emission data used in modeling are summarized as
follows in Table 1 and Figure 2.

Table 1. Emission of PM10 in the area of interest.

Country Pollution Sources No. of Sources Emission (t/y)

Czech Republic

Industrial sources 4728 1325

Domestic heating 52,669 1225

Car traffic 59,651 514

Poland

Industrial sources 17,485 9962

Domestic heating 131,741 20,603

Car traffic 403,451 1965

Slovakia

Industrial sources 1366 233

Domestic heating 33,576 2686

Car traffic 34,009 301

Total 738,676 38,814

Figure 2. PM10 emission distribution in the Tritia region.

The modeling data were corrected by the pollution monitoring data. Two correction
coefficients (additive + multiplicative) were added. The additive coefficient represents air
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pollution from all pollution sources that were not considered in the model, i.e., natural sources,
long-range pollution transport, etc. The multiplicative coefficient is a correction of the model
(the SYMOS’97 model is known to underestimate pollution), as well as a correction of emission
data (emissions can be under- or overestimated) and secondary pollution.

The modeling results can be considered reliable in the vicinity of pollution monitoring
stations. However, there are relatively few such stations in the vast monitoring area, so
additional model verification is valuable.

2.2. Moss Survey

At present, there are many traditional direct methods for monitoring air pollution. These
methods are often costly, hindering extensive long-term studies. Thus, there is space for
indirect monitoring methods, including biomonitoring. Biomonitoring refers to the use of
organisms (plants, fungi or animals) to assess the condition of the biosphere [20]. Information
is obtained by studying the behavior of the organism, the presence of substances in the body,
or simply by the presence of the organism. These organisms are called bioindicators. A prop-
erly selected bioindicator should reflect and cumulate the monitored element quantitatively
and qualitatively (occurrence, color, shape, size). Therefore, grass [21], tree leaves [22], human
tissues [23], bryophytes [24], lichens [25], or wood [26] can be used as bioindicators.

Bryophytes are ideal bioindicators of air pollution due to their specific properties.
Bryophytes receive only a small amount of nutrients through the root system since they
are not rooted in the substrate [27,28]. The intake of substances from the soil can be
completely eliminated by active biomonitoring. This is based on the exposure of known
bioindicators to the influences in the monitored area and on the monitoring of their reaction
or subsequent analysis.

A long-term survey of the atmospheric deposition of heavy metals using bryophytes
in Sweden was carried out between 1968 and 1995. The study focused on elements related
to metallurgical industry and combustion processes (Cd, Cu, Fe, Pb, Hg, Ni, Va and Zn).
A decrease between 1968 and 1995 was recorded for Fe (80%), Pb (89%), Cd (76%), Ni (72%),
Hg (69%), V (57%), Zn (49%) and Cu (48%) [29,30].

Within 1985 and 2000, a heavy metal deposition study (Cd, Cr, Cu, Fe, Ni, Pb, Zn, V,
As and Hg) was conducted in Finland. In total, 1569 sampling sites were monitored at
the beginning and 2000 sampling sites at the end. The Pb (78%), V (70%) and Cd (67%)
values decreased during the monitored period. For the other elements, a decrease between
16 and 34% was observed [31].

Frontasyeva [24] use instrumental neutron activation analysis (INAA) to analyze
the bryophyte samples [32]. By means of INAA, the team of JINR’s Frank Laboratory of
Neutron Physics (FLNP) is able to determine mass concentrations of up to 45 elements of
Ag, Al, As, Au, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Dy, Eu, Fe, Hf, Hg, I, In, K, La, Lu, Mg, Mn,
Na, Nd, Ni, Rb, Sb, Sc, Se, Sn, Sm, Sr, Ta, Tb, Ti, V, U, W, Yb, Zn and Zr. However, elements
such as Cd, Cu, Hg, and Pb, important for environmental studies, can be additionally
determined using Atomic Absorption Spectroscopy (AAS).

Biomonitoring using bryophytes was carried out in the Czech Republic by the Research
Institute of Ornamental Gardening (RIOG). Various elements were analyzed within 1991/1992,
1995/1996, 2000/2001, 2005/2006 and 2010. In total, 273 sampling sites were monitored,
and the concentrations of Ag, Al, As, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, In, La, Li, Mn,
Mo, Nd, Ni, Pb, Pr, Rb, S, Sb, Se, Sn, Sr, Th, Tl, U, V, Y and Zn was measured in 2010 [33,34].

Biomonitoring is widely used to assess air pollution in large areas, especially in Eu-
rope and Asia. That is why biomonitoring is a suitable method for verifying the results
of the Analytical Dispersion Modelling Supercomputer System (ADMOSS). Since 2014,
the VSB-Technical University of Ostrava (VSB-TUO) has been participating in the project
of the International Cooperative Programme on Effects of Air Pollution on Natural Veg-
etation and Crops (ICP Vegetation) [35], which aims to assess the impact of air pollution
on vegetation. The ICP Vegetation project started in the 1980s. Currently, scientific teams



Atmosphere 2021, 12, 656 7 of 24

from more than 40 countries are involved. The Joint Institute for Nuclear Research (JINR)
in Dubna is one of the organizations participating in this project.

The ICP Vegetation project focuses on the impact of air pollution in large areas (at
the continental scale). Investigations conducted by the VSB-TUO team applied the princi-
ples of ICP Vegetation at a regional scale to identify specific source groups.

In 2015, based on the results of the AIR SILESIA project [36], a sampling area of
1600 km2 (40 × 40 km) in the center of the polluted area in the Czech-Polish border area
was selected. A regular network of 41 sampling points was established in the selected area.
In 2016, the original sampling network was extended by 44 more sampling sites. In June
2017, the last 244 samples were taken. In the area of interest of the AIR TRITIA [11,12]
project, covering an area of 36,000 km2 and its surroundings, an irregular collection network
was created (Figure 3). This sampling network encompasses the measurements of air
pollution monitoring, mathematical modeling and previous collection campaigns carried
out by VSB-TUO. The collection network consists of a regular 20 × 20 km collection
network, which is concentrated in areas with an expected higher gradient of pollutant
concentrations by a 7 × 7 km network. Within 2015, 2016, and 2017, 285 moss samples
were collected in the area of interest of the Air Tritia project.

Figure 3. Sampling sites of the AIR TRITIA project.

2.3. Instrumental Neutron Activation Analysis

The collected mosses were analyzed using INAA, which belongs to the analysis rec-
ommended by the ICP Vegetation guideline. INAA is a radiological analytical method
in which a sample of interest is placed in a neutron field. INAA is not sensitive to the bond-
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ing between elements or to the oxidation state of the analyzed substance. It provides
qualitative and quantitative information about the analyzed substance. INAA is a non-
destructive method, which makes it ideal for analyzing, for example, archaeological or
biological samples [24,37].

At JINR, INAA is carried out at the IBR-2M research pulse reactor [38] using the RE-
GATA experimental device. This device is utilized to irradiate and measure the gamma
spectra of irradiated samples. To activate the sample, it must be put into the neutron
beam generated by the reactor. Since this is a comparative method, it is also necessary to
irradiate the considered standard of the detected elements. The quality control of the INAA
results was ensured by the simultaneous analysis of the examined samples and standard
reference materials (SRM) of the National Institute of Standards and Technology (NIST)
and the Institute for Reference Materials and Measurements (IRMM): NIST SRM 1515—
Apple Leaves, NIST SRM 1547—peach leaves, NIST SRM 1573a—tomato leaves, NIST
SRM 1575a—pine needles, NIST SRM 1633b—coal fly ash, NIST SRM 1633c—coal fly
ash, NIST SRM 1632c—coal (bituminous), NIST SRM 2709—San Joaquin soil, NIST SRM
2710—Montana soil, NIST SRM 2711—Montana soil, SRM 2891—copper sand, IRMM BCR
667—estuarine sediment. The interaction of nuclei and neutrons creates unstable radionu-
clides that emit characteristic gamma radiation for individual elements. This radiation can
be detected [39].

Then, the activated sample was removed from the neutron field using a pneumatic
system, and its activity was detected in the laboratory environment by HPGe detectors.
Since the samples emit ionizing gamma radiation, this process is automated. The result
was a gamma spectrum of the sample. This spectrum was then processed by a specialist
in special software (GENIE), who also received all the relevant information from the mea-
sured spectrum (percentage uncertainty of the measurement, area of individual peaks
and measurement time). The individual elements differ in the energy and intensity of
the gamma rays emitted. Knowing the spectra of the weighed standard and the sample,
one can calculate the mass concentrations of individual elements.

As a result of INAA, mass concentrations of about 40 elements were obtained (the number
is variable—Table 2). These results were further processed statistically, and a comparison with
the modeling results was performed in the Geographic Information System (GIS).

Table 2. Number of analyzed chemical elements for each year.

Year Number of Analyzed Chemical Elements

2015 38

2016 47

2017 35

2.4. Statistical Analysis
2.4.1. Exploratory Data Analysis

Statistical distributions of environmental data expressing concentrations are usually
left-skewed (inclined to lower values than average) and do not fit the assumption of normal
distribution. The Shapiro–Wilk test was used to refute this assumption. The test was
implemented in the R environment. This function allows testing selections ranging from 3
to 5000 values [40].

2.4.2. Correlation Analysis

The next step is to perform a correlation analysis. First of all, the correlation between
individual chemical elements was investigated. Spearman’s rank correlation coefficient
was chosen for that. The correlation analysis results can be displayed in a correlation
matrix. The clusters of chemical elements can be visually identified in the correlation
matrix. The best way to do this is to display the clusters using a dendrogram [41].
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The concentrations computed by the ADMOSS system were checked at the points
where bryophyte samples were collected. Using the ST_Value function, the total concen-
trations and contributions of individual resource groups were extracted from the rasters
(modeling results). The extracted values were saved in a separate table. This table was fur-
ther used in the R environment. The correlation between the INAA results and individual
groups of pollutant sources was examined. Spearman’s rank correlation coefficient was
used to assess this dependence [41,42].

2.4.3. Hierarchical Clustering on Principal Components (HCPC)

INAA results in mass concentrations of elements. They are shares of the whole
and carry relative information. Therefore, this is compositional data, or a composition.
The sum of the data contained in the composition is bounded from above by the constant K.
The individual components of the composition can have values of 0 and higher. Standard
statistical methods assume that the data are elements of the Euclidean space, i.e., they
can take arbitrary values without limitation. The compositional data do not meet this
condition, the constraints described above guarantee that all permissible values constitute
a subset of the Euclidean space called a simplex (2D triangle, 3D tetrahedron). In this case,
standard statistical procedures can lead to incorrect results. For the statistical analysis of
the compositional data, it is therefore necessary to perform a mathematical transformation
that converts the compositional data vector into a vector of new values that no longer have
the aforementioned spatial constraints. Aitchison transforms are used for this purpose;
in this work, the centered log ratio transformation (CLR) was chosen [43].

For multidimensional data files, it is appropriate to perform dimensional reduction
for cluster analysis and the subsequent interpretation of the results. For this, principal
component analysis (PCA) is used. By analyzing the main components, the existing
variables are replaced by fewer other mutually independent variables, with as minimal
information loss as possible. Further computations involve those components that have
an eigenvalue greater than or equal to 1. The remaining components were considered
statistical noise, reducing cluster stability. Hierarchical clustering on principal components
(HCPC) is performed on these selected components [43].

3. Results
3.1. INAA
3.1.1. Exploratory Data Analysis Results

The results of bryophyte analysis by INAA provide information on the mass con-
centration of individual chemical elements in the examined samples. These results were
imported into a PostgreSQL database, and the data were subsequently processed in the R
statistical environment [44]. From the calculated characteristics (Table 3), it was evident that
the obtained concentrations of individual chemical elements showed a rather asymmetric
distribution skewed to the left.

Since many statistical tests work with the assumption of normal distribution, the nor-
mality hypothesis must be upheld or rejected. Based on the low p-value, the data normality
hypothesis was rejected for all analyzed elements (Table 4).
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Table 3. Basic statistical characteristics of the INAA results.

Min. Conc. Max. Conc. Range Median Mean Variance Skew

(mg/g) (mg/g) (mg/g) (mg/g) (mg/g) (mg/g)2 /

Na 47.5 1790 1742.5 185 243.33 48,551.78 3.57

Mg 569.42 5654.87 5085.45 1760 1933.33 870,363.5 0.96

Al 305 22,600 22,295 1470 2364.16 6,842,151 3.28

Cl 26 2240 2214 237 340 97,047.3 2.44

K 3740 20,200 16,460 9480 9686.68 10,864,937 0.60

Sc 0.05 3.8 3.75 0.31 0.48 0.24 2.89

Ti 0.17 2200 2199.83 131 210.52 63,470.53 4.23

V 0.55 34 33.45 2.6 3.97 14.27 3.11

Cr 0.02 54 53.98 5.2 7.04 39.51 3.03

Mn 29.5 12,100 12,070.5 194 291.11 456,893.5 14.91

Fe 294 32,000 31,706 1420 2153.51 6,393,958 5.82

Ni 0.32 15.3 14.98 2.86 3.29 4.38 2.53

Co 0.12 4.7 4.58 0.59 0.79 0.39 2.26

Zn 26 1010 984 93 133.2 15,110.45 2.53

As 0.29 18 17.71 0.96 1.28 1.84 7.25

Se 0.02 2.39 2.37 0.38 0.47 0.12 2.32

Br 0.75 9.4 8.65 3.2 3.49 2.06 1.12

Rb 3.2 64 60.8 13 15.33 94.95 1.87

Sr 5.65 89 83.35 24 26.23 176.54 1.27

Mo 0.02 2.8 2.78 0.31 0.38 0.08 3.15

Cd 0.02 13.2 13.18 0.82 1.51 3.39 2.50

Sb 0.05 15.3 15.25 0.36 0.64 1.32 8.42

Ba 7.9 500 492.1 53.9 61.38 1676.69 4.56

Cs 0.02 2.4 2.38 0.29 0.39 0.1 2.35

La 0.19 15 14.81 1.02 1.56 2.99 3.67

Ce 0.01 22 21.99 2.09 3.08 9.82 2.66

Nd 0.09 13.3 13.21 1.48 1.94 2.69 2.31

Sm 0.03 2.27 2.24 0.16 0.25 0.07 3.38

Tb 0 0.37 0.37 0.02 0.04 0 3.69

Hf 0.02 4 3.98 0.22 0.4 0.29 3.78

Ta 0 0.34 0.34 0.03 0.05 0 2.71

W 0.01 1.38 1.37 0.17 0.22 0.03 2.50

Au 0 0.07 0.07 0 0 0 12.53

Th 0.05 3.2 3.15 0.29 0.45 0.23 2.48

U 0 1.07 1.07 0.11 0.17 0.02 2.14
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Table 4. Results of the Shapiro–Wilk test for normality.

Chemical Element W p-Value Chemical Element W p-Value

Na 0.642358 5.07 × 10−24 Sr 0.916441 1.61 × 10−11

Mg 0.927164 1.36 × 10−10 Mo 0.763946 6.1 × 10−20

Al 0.680549 7.15 × 10−23 Cd 0.700734 3.2 × 10−22

Cl 0.76143 4.85 × 10−20 Sb 0.344264 1.05 × 10−30

K 0.96551 2.51 × 10−6 Ba 0.715013 9.67 × 10−22

Sc 0.708619 5.86 × 10−22 Cs 0.80423 3.09 × 10−18

Ti 0.616256 9.4 × 10−25 La 0.647549 7.17 × 10−24

V 0.729884 3.21 × 10−21 Ce 0.723043 1.84 × 10−21

Cr 0.71803 1.23 × 10−21 Nd 0.81013 5.76 × 10−18

Mn 0.17168 1.64 × 10−33 Sm 0.67519 4.86 × 10−23

Fe 0.557595 2.88 × 10−26 Tb 0.647205 7.01 × 10−24

Ni 0.787189 5.49 × 10−19 Hf 0.604475 4.52 × 10−25

Co 0.790127 7.34 × 10−19 Ta 0.711366 7.26 × 10−22

Zn 0.731635 3.7 × 10−21 W 0.781392 3.12 × 10−19

As 0.469904 2.92 × 10−28 Au 0.13073 4.15 × 10−34

Se 0.743959 1.04 × 10−20 Th 0.721783 1.66 × 10−21

Br 0.931383 3.32 × 10−10 U 0.782747 3.56 × 10−19

Rb 0.842066 2.21 × 10−16

3.1.2. Correlation Analysis Results

Consequently, correlation analysis was performed. First, the correlation between
individual chemical elements was investigated in the INAA results. Since the hypothesis
of data normality was rejected for all chemical elements, it was required to use a non-
parametric method to determine the correlation coefficient. Spearman’s rank correlation
coefficient corresponded to this criterion. The result was a correlation matrix (Figure 4).
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Figure 4. Correlation matrix of the chemical element concentrations in mosses analyzed using INAA.

Then, correlation-matrix-based hierarchical clustering (CMBHC) was performed.
Three major clusters were identified by CMBHC (Figure 5). The first cluster contained Mn,
Rb, Se, Cd, Au, Br, Zn and Sb. This is probably due to natural factors. The second cluster
comprises Co, Ti, U, Al, V, Ce, Ta, Th, Sc, Tb, Hf, La and Sm. The concentrations of elements
from this cluster could be probably influenced by the soil particles [45]. The last cluster
consists of two groups. The first subgroup of elements consists of K, Mg, Cl. The second
group contains Nd, Na, Sr, Cr, Fe, Mo, As, W, Cs, Ni and Ba. This cluster, except for
Cs, probably involves the impact of human activity. According to Sucharová et al. [34]
or Frontasyeva [24], the presence of these elements in bryophytes may be associated with
metallurgical processes, coal combustion and mining. The occurrence of Cs is not generally
caused by anthropogenic sources in the study area. A probable source of Cs pollution is
the Earth’s crust [34].
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Figure 5. Correlation-matrix-based hierarchical clustering result.

Map outputs were created on the basis of the INAA results. Cr, Fe, Mo, As, W, Ni
and Ba were chosen for a detailed study of spatial distribution (Figures 6–9). The distri-
bution of these elements in the Tritia region is similar. All the selected elements show
increased values in the Katowice area. All the selected chemical elements, except for As,
show increased concentrations in the vicinity of Częstochowa. Increased concentrations of
Mo, W and Fe are observed in the Ostrava-Karviná agglomeration. In the area between
the towns of Bohumín and Rybnik, there is a locality where all the selected chemical
elements, with the exception of As, are elevated.

Figure 6. As and W concentrations determined by INAA in mosses and ADMOSS results comparison.
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Figure 7. Fe and Cr concentrations determined by INAA in mosses and ADMOSS results comparison.

Figure 8. Ni and Ba concentrations determined by INAA in mosses and ADMOSS results comparison.



Atmosphere 2021, 12, 656 15 of 24

Figure 9. Mo and Cs concentrations determined by INAA in mosses and ADMOSS results comparison.

Furthermore, the interdependence between the INAA results and the results of mathe-
matical modeling using the ADMOSS system was investigated. The first step was the ex-
traction of concentrations calculated by mathematical modeling at the points where moss
samples were collected. From the results of the mathematical model, total concentrations,
concentrations caused by the influence of industrial sources, concentrations caused by
the influence of domestic heating and concentrations caused by the influence of transport
were extracted. Spearman’s rank correlation coefficient was used to assess the interde-
pendence since the INAA results do not show normal distribution. Elements correlating
with the model had a correlation coefficient greater than 0.3 [42]. In the overall model, Al,
Sc, Tb, V, Cl, Cs, Cr, Cd, U, Fe, W, Zn, Sb and Mo correlated best (Table 5). The elements
Cl, Se, V, Cs, Cr, U, Cd, Fe, W, Sb, Zn and Mo correlated best with the model results for
industrial sources. U, Fe, W, Cd, Mo, Zn, Sb and Na correlated with domestic heating.
Most of the elements correlated with the model results for transport sources. These are K,
Ce, Co, Cr, Zn, Sr, V, Mg, Ta, La, Sm, Al, Hf, Sb, Th, Sc, Tb, Cl, Fe, W, U and Mo.

Table 5 below demonstrates that Mo, Sb, Zn, W, Fe and U showed the highest degree of
dependence with the overall model and the model for each group of pollutant sources. Mo
and Sb revealed a moderate positive correlation, in particular with the total concentrations
and industry. In the case of domestic heating and transport, the values of the correlation
coefficient for Mo and Sb were at the upper limit of a low positive correlation. Zn showed
a low positive correlation with the total concentrations and domestic heating, but moderate
positive correlation rates with industry. W, Cr, Fe and Cd demonstrated a low positive
correlation with the overall model and the model for each pollutant source group. U and Cs
correlated best with industry. Sm, Tb, Hf, Mg, Al, Cl, La, and Sc revealed a low positive
correlation with transport. The remaining elements displayed a weak or very weak degree
of dependence. Only Mn showed very little negative correlation.
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Table 5. Correlation between the INAA and ADMOSS results.

Spearman’s Rank Correlation Coefficient

PM10 Total PM10 Industry PM10 Dom. Heating PM10 Road Traffic

Na 0.13 0.08 0.08 0.30

Mg 0.24 0.22 0.16 0.36

Al 0.30 0.28 0.23 0.37

Cl 0.32 0.30 0.26 0.40

K 0.25 0.22 0.20 0.33

Sc 0.30 0.28 0.24 0.38

Ti 0.23 0.19 0.19 0.29

V 0.31 0.31 0.25 0.35

Cr 0.34 0.37 0.27 0.34

Mn −0.08 −0.05 −0.05 −0.10

Fe 0.41 0.44 0.32 0.41

Ni 0.17 0.17 0.16 0.14

Co 0.28 0.26 0.24 0.33

Zn 0.49 0.51 0.46 0.34

As 0.27 0.28 0.25 0.23

Se 0.26 0.31 0.27 0.13

Br 0.18 0.19 0.18 0.11

Rb 0.23 0.24 0.28 0.05

Sr 0.22 0.19 0.15 0.35

Mo 0.51 0.53 0.41 0.49

Cd 0.38 0.41 0.38 0.21

Sb 0.51 0.50 0.48 0.37

Ba 0.20 0.20 0.17 0.24

Cs 0.33 0.36 0.29 0.27

La 0.28 0.25 0.23 0.37

Ce 0.25 0.23 0.22 0.33

Nd 0.26 0.25 0.23 0.28

Sm 0.28 0.26 0.23 0.37

Tb 0.30 0.28 0.24 0.39

Hf 0.28 0.25 0.24 0.37

Ta 0.26 0.24 0.21 0.36

W 0.42 0.46 0.36 0.42

Au 0.23 0.23 0.19 0.21

Th 0.28 0.26 0.23 0.38

U 0.39 0.37 0.32 0.44



Atmosphere 2021, 12, 656 17 of 24

3.1.3. Hierarchical Clustering on Principal Components (HCPC) Results

The next step was to separate individual bryophyte samples into clusters based
on the mass concentrations measured by INAA. The INAA results were transformed by
the CLR transformation. Principal component analysis (PCA) was then performed. From
the PCA results, the first eight components with an eigenvalue greater than or equal to 1
were selected. The first component describes a 33.39% variance, and the second component
represents an 11.33% variance. These eight components together describe a 72.11% variance.
The other components are considered statistical noise (Table 6).

Table 6. PCA results—variance accounting for individual components.

Dimension Eigenvalue Variance (%) Cumulative Variance (%)

Dim. 1 11.68 33.39 33.39

Dim. 2 3.97 11.33 44.71

Dim. 3 2.39 6.82 51.53

Dim. 4 1.80 5.13 56.67

Dim. 5 1.68 4.79 61.45

Dim. 6 1.42 4.04 65.50

Dim. 7 1.20 3.44 68.94

Dim. 8 1.11 3.17 72.11

Dim. 9 to Dim. 34 9.75 27.89 100

The eight components were used to perform HCPC. The clusters created were visualized
using a map output. The dendrogram slice was set to 3 since there is the highest loss of
insertion at this level. Thus, three clusters were created (Figure 10). The resulting clusters were
compared with the modeling results (Figure 11) and visualized using a map (Figure 12).

Sampling sites of Cluster 1 are mainly located in rural and sparsely inhabited ar-
eas. The PM10 concentrations from all three groups of pollution sources are lower than
in the other two clusters. The biggest difference lies in traffic pollution, followed by
pollution from industrial sources. There is only a minor difference in domestic heating
pollution. Domestic heating, together with unmodeled sources (dust re-emission, natural
sources, etc.), is dominant in these sites.

Clusters 2 and 3 are urban sites with a high population density. Cluster 2 represents
locations with a higher influence of industrial sources. There are easily recognizable sites
of Cluster 2 around the ArcelorMittal coke plant in Zdzieszowice (Opole Voivodeship),
in the eastern part of the Katowice agglomeration where heavy industry is concentrated or
in the vicinity of Žilina and Ostrava, where most of domestic heating is provided by central
heating. Cluster 3 represents sites with a higher influence of domestic heating. Sampling
sites are typically located in areas with a larger share of individual housing in the suburbs
and in the vicinity of population centers.
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Figure 10. Cluster plot—resulting clusters identified by HCPC.
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Figure 11. Boxplot of the modelled PM10 concentrations using the ADMOSS for individual source
groups and individual clusters Boxplot of the modeled PM10 concentrations using the ADMoSS for
individual source groups and individual clusters—the boxplots are colored in accordance to their
cluster in the cluster plot.
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Figure 12. Map of the resulting clusters—the points are coloured in accordance to their cluster
in the cluster plot.

4. Discussion of the Results

For the method of biomonitoring air pollution by bryophytes, the area of the European
Grouping of Territorial Cooperation (EGTC) of Tritia, integrating the Czech–Slovak–Polish
border, was selected. Samples of collected bryophytes were analyzed at the Joint Institute
for Nuclear Research (JINR) using Instrumental Neutron Activation Analysis (INAA).
The INAA results were then statistically analyzed. The present study extends the previous
research [1] with correlation analysis. First, the dependence between the concentrations of
individual elements was investigated, and CMBHC was performed. One of the clusters
formed contained the Cr, Fe, Mo, As, W, Ni and Ba elements. According to Frontasyeva [24]
and Sucharová et al. [34], these elements are associated with coal burning, metallurgical
industry or mining. Then, the dependence between the results of biomonitoring and the re-
sults of mathematical modeling using the ADMOSS system was investigated. The results
suggest that the Cr, Fe, Mo, As, W, Ni and Ba elements represent the group of elements
whose values correlated the most with the concentrations calculated by the mathematical
model. This was probably due to their increased concentrations caused by air pollution.
An interesting location was the area around the city of Częstochowa in the northeastern
territory of the EGTC Tritia. In this area, the INAA results for Cr, Fe, Mo, As, W showed
increased concentrations, while the results of the ADMOSS system did not. Hierarchical
clustering on principal components (HCPC) was also performed. It is apparent from
the HCPC results that these increased concentrations are mainly related to industrial
sources and domestic heating. These elements are likely to be characteristic air pollut-
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ing elements in the study region. The difference is probably associated with the fact that
the Cracow-Czestochowa Highlands whose ridges reach a height of about 300 m a.s.l. are
located in this area. In the case of smog situations, where there is an inversion retention layer
in the area, bryophytes on the mountain range can catch a larger number of pollutants. A com-
parison of seemingly unrelated phenomena, such as atmospheric deposition in bryophytes
and PM10 air pollution, which deposits slowly or not at all, provides relatively good results—
probably because PM10 emissions are accompanied by the emission of coarser fractions they
deposit. These include fugitive emissions in industry or domestic heating.

Based on the results obtained, it can be concluded that industry and domestic heating
seem to have a significant influence in the whole investigated area since the conclusions
from the correlation analysis of the transport model indicate a low dependence with
a large number of chemical elements. Thus, it can be argued that transport emissions are
a marginal issue, and they are likely emissions from re-suspension. The results show that
biomonitoring performed according to the principles of ICP Vegetation can also be applied
at a regional scale. The multi-element INAA results are a valuable source of information
for assessing the impact of individual resource groups.

The benefits of the present approach can be seen in the fact that alternative data,
which reflect the real air pollution situation in the study area and which are not involved
in the process of air pollution modeling, were obtained. The knowledge about the distri-
bution of specific polluting elements is crucial for identifying the originator of pollution
and problematic technologies. Mathematical modeling itself provides more detailed infor-
mation than biomonitoring. Biomonitoring is a suitable supplement to modeling, it adds
information that modeling cannot provide. Another additional information it gives re-
lates to the pollution mix. A limitation of the approach lies in the necessity for access to
high-quality input data for modeling and a suitable biomonitor. In the field of bryophyte
biomonitoring, cross-species calibration is still a major challenge that has not yet been
solved satisfactorily.

5. Conclusions

Biomonitoring reflects a long-term situation in the study area. The selected elements
associated with metallurgical technologies, solid fuel extraction and combustion correspond
well with the results of mathematical modeling, with the exception of the area around
Częstochowa. The observed differences between the mathematical model and the results of
biomonitoring are probably caused by phenomena that the ADMOSS system cannot cover.
This is mainly the effect of inversion situations where the areas affected by air pollution are
much wider and significantly dependent on terrain orography.
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