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Abstract: Maintaining a pleasant indoor environment with low energy consumption is important
for healthy and comfortable living in buildings. In previous studies, we proposed the integrated
comfort control (ICC) algorithm, which integrates several indoor environmental control devices,
including an air conditioner, a ventilation system, and a humidifier. The ICC algorithm is operated by
simple on/off control to maintain indoor temperature and relative humidity within a defined comfort
range. This simple control method can cause inefficient building operation because it does not reflect
the changes in indoor–outdoor environmental conditions and the status of the control devices. To
overcome this limitation, we suggest the artificial intelligence integrated comfort control (AI2CC)
algorithm using a double deep Q-network(DDQN), which uses a data-driven approach to find the
optimal control of several environmental control devices to maintain thermal comfort with low
energy consumption. The suggested AI2CC showed a good ability to learn how to operate devices
optimally to improve indoor thermal comfort while reducing energy consumption. Compared to the
previous approach (ICC), the AI2CC reduced energy consumption by 14.8%, increased the comfort
ratio by 6.4%, and decreased the time to reach the comfort zone by 54.1 min.

Keywords: double deep Q-network; integrated comfort control algorithm; thermal comfort; energy
consumption; reinforcement learning

1. Introduction

The energy consumption of buildings has increased steadily over the years. This in-
crease was caused by a growing demand for higher comfort levels with heating, ventilation,
and air-conditioning (HVAC) systems, domestic hot water, lighting, refrigeration, food
preparation, etc. Various services in buildings, such as those related to health, education,
culture, and leisure, also contribute to increased building energy consumption [1].

As most people in developed nations spend more than 90% of their time indoors,
indoor comfort has an important role in and a huge impact on protecting occupants’ health,
morale, working efficiency, productivity, and satisfaction [2]. This exemplifies the trend
of considerably increased interest in thermal comfort over the last 10 years with a global
improvement in quality of life. According to American Society of Heating, Refrigerating
and Air-Conditioning Engineers (ASHRAE), thermal comfort is affected by temperature,
humidity, air velocity, and personal factors [3]; thus, it is necessary to maintain appropriate
ranges for these factors.

Various environmental devices have been used to improve indoor thermal comfort,
including air conditioners, floor heating systems, ventilation systems, and humidifiers.
Although an air conditioner can provide indoor temperature control, it cannot guarantee
adequate thermal comfort for humans. Operating an air conditioner can lead to low relative
humidity conditions due to the dehumidification process [4]. Dry indoor conditions have
negative effects on occupants’ health. Yang et al. [5] showed that influenza viruses could
be accelerated when the relative humidity is under 50%. Yoshikuni et al. [6] noted that
dry indoor conditions can decrease the hydration level and can increase the need for skin
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moisturizers. Even though relative humidity is an important factor for thermal comfort, it
is not easy to maintain adequate levels of temperature and relative humidity at the same
time without considering the interrelationships among environmental control devices.

To maintain satisfactory thermal comfort, Kim et al. [7] suggested the integrated
comfort control (ICC) algorithm to combine the control of multiple systems, including
an air conditioner, a ventilation system, a humidifier, a dehumidifier, and other auxiliary
systems. In addition, Kim and Moon [8] developed an advanced integrated comfort control
(AICC) to operate the ICC algorithm based on the behavior of occupants (away, active, and
inactive) by coupling an occupancy status prediction model. The ICC and AICC algorithms
maintain thermal comfort by using a simple on–off control of multiple environmental
devices based on upper and lower limit thresholds. This is a rule-based control (RBC)
method that has been widely used to operate building environmental systems due to its
relatively simple and easy application. The rules in RBC are usually defined with setpoints
of upper and/or lower limit thresholds and simple control loops based on the experience
of engineers and facility managers in a building. However, this simple control method can
cause inefficient building operation due to substantial instability because of the interactions
among various environmental control devices being operated simultaneously. It is also very
hard to consider changing environmental conditions (e.g., indoor–outdoor temperature,
indoor–outdoor relative humidity, and occupant behavior and patterns) [9].

To overcome this limitation, many studies have been conducted on model-based
control methods to reflect the thermal dynamics of buildings and to execute a control
algorithm based on the simulation model. In recent years, model predictive control (MPC)
has become an outstanding alternative to RBC in the academic literature [10].

For example, Aftab et al. [11] developed an automatic HVAC control system utilizing
MPC with a real-time occupancy recognition and prediction model implemented in a
low-embedded system that could reduce energy consumption while maintaining indoor
thermal comfort. The occupancy model was developed to predict the arrival and departure
of occupants and utilized precooling and early shut-off of the HVAC system to improve
thermal comfort and save energy. As a result, this method could achieve more than 30%
in energy savings while maintaining the comfort level. Hu et al. [12] developed an MPC
model for floor heating, which considered influential variables, such as weather conditions,
occupancy, and dynamic prices at the same time. Compared with simple on–off control,
MPC can help reduce peak demand with energy flexibility and cost-cutting. MPC can be
applied in ventilation systems. Berouine et al. [13] indicated that the performance of MPC
is much better against proportional integral and state feedback controllers in improving
both energy conservation and indoor air quality (IAQ). However, the performance of MPC
depends highly on the quality of the building simulation model due to the complexity of
the thermal dynamics and various influencing factors of buildings [14].

Some model-free approaches have been suggested based on reinforcement learning to
overcome the limitations of model-based methods [15]. A general reinforcement learning
approach consists of the following factors: state variable s corresponds to the current
situation of the environment, action a corresponds to what an agent can do in each state,
reward function r(s,a) corresponds to the expected reward if a certain action is chosen,
value function V(s) corresponds to the sum of the reward that an agent should expect
to receive in the long-term by choosing an action, while in a specific state, and policy
represents the way the reinforcement learning agent behaves. Thus, the reinforcement
learning approach can offer mapping that represents a situation in which an agent provides
states and the actions that can be taken. Judging from the above, the reinforcement learning
approach becomes a problem of determining the optimal policy that can provide maximum
rewards in the long term.

Q-learning [16] is one of the most popular reinforcement learning techniques. It can be
utilized to achieve the expected reward of possible actions without transition probability.
Q-learning explains how an agent finds an optimal action to maximize the cumulative
reward. Chen et al. [17] showed that Q-learning could provide optimal control decisions
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for HVAC and window systems to minimize energy consumption while increasing thermal
comfort. Baghaee and Ulusoy [18] reported that applying Q-learning for HVAC control was
an appropriate method to maintain good IAQ and energy efficiency, i.e., low indoor CO2
concentrations and energy consumption. Fazenda et al. [19] applied a Q-learning model to
turn HVAC on and off for heating, illustrating how the heating system can be controlled
automatically based on the tenants’ preferences and occupancy patterns. Yang et al. [20]
applied Q-learning to increase the efficiency of photovoltaic thermal modules and geother-
mal heat pumps by tuning the control parameters. The result showed that the Q-learning
model outperformed RBC by over 10%.

However, many state and control actions need to be considered for optimal control
of individual indoor environmental devices in a building. Additionally, external environ-
mental conditions and numerous internal heat load factors increase the complexity of the
building control system, requiring high computing power for updating [21,22].

Thus, the deep Q-network (DQN) was developed to combine reinforcement learn-
ing with a class of artificial neural networks known as deep neural networks [23]. By
using artificial neural networks, the parametrizing Q-value reduces the required memory
storage and computation time. Yu et al. [24] proposed a control algorithm to decrease
HVAC energy cost in a commercial building based on a multi-agent deep reinforcement
learning (MADRL) algorithm considering occupancy, thermal comfort, and IAQ. Yoon and
Moon [21] developed a performance-based thermal comfort control (PTCC) that combines
a thermal comfort performance (PMV) prediction model using Gaussian process regression
and a DQN to optimize the control systems, i.e., a variable refrigerant flow system (VRF)
and a humidifier, instead of using a conventional set temperature method. As a result,
PTCC obtained the optimal action-value that minimized energy consumption while satis-
fying thermal comfort in a cooling season. Nagy et al. [25] applied DQN to an air-source
heat pump for space heating. The proposed DQN algorithm showed a 5.5–10% better cost
reduction and a 5–6% reduction of energy consumption over a conventional RBC.

In some cases, DQN approaches have overestimated the action value, leading to poorer
policies [26,27]. To overcome the optimism in Q-value estimations, van Hasselt et al. [28]
suggested the DDQN algorithm, which uses the current Q-network to select the next greedy
action, but evaluates the selected action using the target network. The standard DQN
utilizes the same values to both select and evaluate actions. This process makes DQN select
overestimated values, resulting in over-optimistic estimates. On the contrary, in DDQN,
the target network is separated from the current Q-network, and the current Q-network is
utilized to select an action; meanwhile, instead of directly selecting the action based on the
maximum Q-value, a target network is used to evaluate the target value.

Valladares et al. [29] applied DDQN to air-conditioning units and ventilation fans
to improve thermal comfort and air quality while reducing energy consumption. As a
result, the proposed DDQN model could maintain a Predictive Mean Vote(PMV) value
ranging from about −0.1 to +0.07 and an average CO2 level under 800 ppm within the
comfort range. In addition, the DDQN model reduced energy by 4–5% compared to a
traditional control system. Zhang et al. [30] proposed an occupant-central control method
to improve the thermal comfort of individual occupants and energy efficiency using bio-
sensing and the DDQN model. A bio-sensing device was used to measure the occupant’s
skin temperature and to integrate their biological response into the building control loop.
As a result, the proposed algorithm improved the group thermal satisfaction by 59%.
Liu et al. [31] employed DDQN in a home energy management system to minimize energy
costs by optimizing the scheduling of home energy appliances. The result showed that
the DDQN algorithm reduced the energy cost more effectively than the particle swarm
optimization method. Nagarathinam et al. [32] suggested a multi-agent deep reinforcement
learning algorithm to optimize HVAC without sacrificing thermal comfort based on DDQN.
In this study, the speed of the training process was improved since a multi-agent was
trained on a subset of the HVAC system.
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In addition to reinforcement learning, various studies have been conducted to improve
thermal comfort and build energy performance. Chegari et al. [33] developed a multi-
objective optimization method to optimize building design variables based on an artificial
neural network coupled with a metaheuristic algorithm. The results showed that annual
thermal energy demand was reduced by 74.52% and that thermal comfort was improved
by 4.32% compared to the base design. Zhao and Du [34] proposed a multi-objective
optimization method using NSGA-II to find the optimal design for window and shading
configurations. The building orientation, configuration of windows and shades, window
materials, installation angle, and depth of the shading system were considered parameters.
Additionally, many studies investigated the control of indoor environmental devices based
on occupancy. Yang and Becerik-Gerber [35] demonstrated how occupancy influences the
energy efficiency of HVAC systems according to three perspectives: occupancy transitions,
variations, and heterogeneity. The result showed that occupancy affected the energy
efficiency of the HVAC operation by 3 to 24%. Anand et al. [36] proposed three occupancy-
based operational methods for a variable air volume (VAV) system. First, the supply air
was optimized to satisfy the minimum ventilation requirement and maintain the indoor
temperature under 24 ◦C for both occupied and unoccupied zones. Second, if unoccupied
for more than 60 min but less than a day, the supply air of the unoccupied zone was
minimized to maintain the indoor temperature under 28 ◦C. Third, no ventilation air
was supplied to the unoccupied zone. As a result, the three strategies showed energy-
saving potential in the ranges of 23–34%, 19–38%, 21–31%, and 24–34% for the classroom,
computer room, open office, and closed office, respectively. Anand et al. [37] utilized actual
occupancy data consisting of area-based and row-based occupancy counting to investigate
the appropriate ventilation rate of a VAV system. The result showed that the actual
ventilation rate was higher than the required rate. This demonstrated the energy-saving
potential of VAV systems.

In this study, we aimed to improve the existing ICC in artificial intelligence integrated
comfort control (AI2CC) by employing the DDQN to reflect real-time changes in indoor–
outdoor environmental conditions (i.e., dry-bulb temperature, relative humidity, and
enthalpy) and control factors (on/off status, cooling setpoint (◦C), and airflow rate (m3/s))
of multiple systems (air conditioner, ventilation system, and humidifier) that affect thermal
comfort and energy consumption.

2. Integrated Comfort Control Algorithm
2.1. Thermal Comfort Range

Thermal comfort is affected by various individual factors, such as age, gender, race,
fitness, etc. [38,39]. Thus, we limited the thermal comfort range to apply to Koreans 19 to
24 years old. In this study, the thermal comfort range was calculated based on the comfort
index, standard effective temperature (SET*). SET* is an advanced, rational model adopted
by ASHRAE 55 [40] to represent thermal comfort. The comfort range in summer was
determined using experiments on human subjects and measured data. The result showed
that Koreans 19 to 24 years old felt comfortable when the SET* was in the range of 25.4 to
27.5 ◦C and relative humidity was 40 to 55% with light activity [41]. SET* can be converted
to dry-bulb temperature based on the experimental relationship between the two [42]. As
shown in Figure 1, the thermal comfort range can be defined as 24.4 to 26.5 ◦C in dry-bulb
temperature, along with relative humidity ranging from 40 to 55% [4].
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Figure 1. Comfort range in a cooling season on a psychrometric chart.

2.2. Concept of Integrated Comfort Control

The proposed ICC algorithm integrates multiple environmental control systems, in-
cluding an air conditioner, a ventilation system, a humidifier, a dehumidifier, and auxiliary
systems, to maintain indoor thermal comfort. Figure 2 illustrates the control modes based
on the indoor air state, which can be separated into (1) cooling, (2) cooling and humidifying,
and (3) humidifying:

(1) The cooling zone is where the indoor air temperature is higher than 26.5 ◦C, and
relative humidity is higher than 40%. In this zone, only the air conditioner operates
without the humidifier because the state of the indoor air is hot and mild;

(2) The cooling and humidifying zone is where the indoor air temperature is higher
than 26.5 ◦C, and relative humidity is lower than 40%. In this zone, indoor air is hot
and dry; hence, both the air conditioner and humidifier can be operated to reach the
comfort zone;

(3) The humidifying zone is where the indoor air temperature is between 24 and 26.5 ◦C,
and relative humidity is lower than 40%. Only the humidifier is operated to reach the
comfort zone because the indoor air is neutral and dry.

Figure 2. Control modes based on indoor air initial state.
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As shown in Figure 3, the first step of the ICC algorithm is to compare indoor and
outdoor enthalpy to determine whether the ventilation system is required to operate. It is
important because the enthalpy of air contains the sensible and latent heat that determines
the cooling load. If indoor enthalpy is higher than outdoor enthalpy, the ventilation system
is operated to intake outdoor air. This operation can be helpful to decrease the indoor
enthalpy and to reduce the cooling load. In the second step, the operation time of the
ventilation system is determined. In the previous study, the operating time was fixed
at 10 min because there was no research to determine the optimal operating time of the
ventilation system. After the ventilation system operates, the air conditioner and humidifier
run based on the indoor air state, as shown in Figure 2 [4].

Figure 3. Flowchart of ICC in the cooling season.

2.3. Limitation of Integrated Comfort Control

The ICC algorithm operates indoor environmental devices based on RBC, including
upper and lower limit thresholds (thermal comfort range) and a fixed operating time
(10 min for ventilation). This prescriptive control strategy is simple but is not optimal
control for two reasons [43]. First, predictive information is not considered to operate
indoor environmental devices. For example, if indoor enthalpy is expected to be higher
than outdoor enthalpy after 10 min, it is possible to utilize precooling by operating a
ventilation system and/or opening windows. However, it is difficult for RBC to employ
these predictive controls. The ICC algorithm operates indoor environmental devices
without predictive information, such as indoor and outdoor conditions, thermal comfort,
and energy consumption. Second, the control sequence is predetermined; thus, it is difficult
to customize the control sequence to a specific building and outdoor conditions. The ICC
operates the ventilation system for only a specified time (e.g., 10 min) by comparing the
initial indoor and outdoor enthalpy. After this, the ventilation system is not operated
regardless of the change in indoor and outdoor conditions. To overcome this limitation and
to improve the ICC, a DDQN could be employed to develop the AI2CC. The AI2CC reflects
factors that affect thermal comfort and energy consumption, such as the environmental
conditions (i.e., dry-bulb temperature, relative humidity, and enthalpy) and control factors
(on/off status, cooling setpoint (◦C), and airflow rate (m3/s)) of multiple devices (air
conditioner, ventilation system, and humidifier).
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3. Artificial Intelligence Integrated Comfort Control (AI2CC) Using DDQN
3.1. Double Deep Q-Network (DDQN)

Q-learning is a model-free reinforcement learning technique that provides agents with
the ability to learn to act optimally in a Markovian domain by experiencing the conse-
quences of actions and rewards [44]. To solve sequential decision problems, reinforcement
learning takes on a Markov decision process (MDP), which contains state, action, reward,
and discount factors [45]. The state (st) describes the current situation of the environment.
In a building environment, states can be defined as indoor–outdoor environmental condi-
tions, such as temperature, humidity, CO2 concentration, illuminance, solar radiance and
irradiance, and wind speed, or the status of indoor environmental control devices, such
as setpoint, state, and physical time. The action (at) is what an agent can do in each state
to try to maximize the future reward. Depending on the action performed by the agent,
the next state (st+1) and reward (rt+1) are acquired from the environment. In a building
environment, the state (st) can be defined as the status of indoor environmental devices,
such as on–off, set point, flow rate, state (e.g., angle and dimming level), and input–output
power. The reward is part of the feedback from the environment due to performing a
certain action [25,46]. In a building, indoor comfort and the energy consumption of indoor
environmental devices are often employed as reward factors, which involves making the
indoor condition comfortable with low-energy consumption. The reward function can be
described by Equation (1). The agent proceeds with learning to maximize the expected
cumulative reward, Gt. The cumulative reward at each time point can be written as Equa-
tion (2). In Equation (2), γ ∈ [0, 1] is the discount factor, which is used to penalize the
future reward. Figure 4 shows a framework of reinforcement learning:

r(s, a) = E[Rt+1|St = s, At = a] (1)

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞

∑
k=0

γkRt+k+1 (2)

Figure 4. Reinforcement learning model.

Reinforcement learning utilizes a value function for the agent’s learning to estimate
the optimal value. The value function can be divided into two types: state value and action
value. The state–value function represents the expected reward the agent will receive from
being in a certain state. The action-value function (Q-function) denotes the overall expected
rewards for using each action in a certain state. The equations of the state–value and
action-value functions can be expressed as (3) and (4) using a form of the Bellman equation:

V(s) = E[Rt+1 + γV(St+1)|St = s ] (3)

Q(s, a) = E[Rt+1 + γQ(St+1, At+1)|St = s , At = a] (4)

In Q-learning, the Q-function (4) is used to find the optimal action by updating the
Q-function with the maximum reward among the actions in a certain state. The samples
for updating Q-learning are state, action, reward, and next state. The updated equation
of Q-learning can be written as in (5). In Equation (5), α ∈ [0, 1] is the learning rate to
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determine the step size at each iteration; this value affects to what extent newly acquired
information overrides old information.

Q(St, At)← Q(St, At) + α(Rt+1 + γmax
a′

Q(St+1, a ′)− Q(St, At)) (5)

Q-learning has limitations in many state–action pairs, such as time-varying continuous
states, because it requires high computing power to update [22]. To overcome this limitation,
Mnih et al. [23] developed a DQN that combines reinforcement learning with a class
of artificial neural networks known as deep neural networks. By using artificial neural
networks, the parametrizing Q-value does not require a high-performance computer.

However, reinforcement learning has been shown to be unstable and even diverge
when neural networks are used to present Q-values due to correlations between training
samples. Small updates to the Q-value cause significant changes to the policy and data
distribution. Additionally, the correlation between Q-value and target values causes
instability. Thus, two notable components were used in DQN to address these instabilities:
target network and experience memory.

• Target Q-network

The DQN utilizes the target Q-network separately from the Q-network. In other
words, the DQN employs two networks. The difference between the Q-network and the
target Q-network is that they have different parameters: Q-network has θt, and target
Q-network has θt

−. The Q-network is used to determine the optimal action by adopting
the maximum value among parameterized Q-values. The target Q-network with parameter
θt
− copies the parameter of the Q-network at every C step and is fixed at all other steps.

• Experience memory

The DQN uses experience memory to stack the observed data for a set period. Ob-
served data consist of the agent’s experience (st, at, rt, and st+1) at each time step t. During
learning, the experience data are extracted randomly from the memory to update the
Q-network. The Q-network is updated to minimize the mean square error with maximum
value from the target Q-network by using Equation (6).

LI(θI) = E[(r + γmax
a′
Q
(

s ′, a′; θ−i
)
−Q(s, a; θi))

2
] (6)

However, Q-learning and DQN were found to overestimate the action value, leading
to poorer policies [26,27]. This is because the max operator in standard Q-learning and
DQN utilizes the same values to select and evaluate actions. To address the optimism in
Q-value estimations, van Hasselt et al. [28] proposed the DDQN algorithm. In DDQN,
the current Q-network is used to select the next greedy action, and the target network
evaluates the selected action. The loss function of DDQN can be described by Equation (7).

LI(θI) = E[(r + γQ( s′, argmax
a′
Q
(

s′, a′; θ−i
)
−Q(s, a; θi))

2
] (7)

3.2. Double Deep Q-Network Training for AI2CC

The existing ICC algorithm has a limitation in satisfying thermal comfort and low-
energy consumption effectively due to multiple environmental systems being operated by
simple on/off control. The indoor environment is affected by various influencing factors,
such as outdoor conditions, the status of indoor environmental systems, occupants’ activi-
ties, and many others [47]. However, simple on/off control cannot reflect the complexity of
influencing factors [9]. To overcome this limitation, we tried to improve the ICC in AI2CC
by employing DDQN.

• State variables

The states are what the agent receives from the environment. These values are used
as input for each control step. In this study, 11 states were selected to describe the indoor
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environment, outdoor environment, and the states of indoor environmental devices. Table 1
presents the information of each state. All environmental state values were simulated in
EnergyPlus, and the states of indoor environmental devices are represented by values
determined by DDQN as optimal actions in the previous time step. To normalize the state
data, min–max normalization is used to convert state values into decimals between 0 and 1.

Table 1. States for DDQN.

State Unit

Environmental state

Outdoor dry-bulb temperature ◦C
Outdoor relative humidity %

Outdoor enthalpy kg/kg′

Indoor dry-bulb temperature ◦C
Indoor relative humidity %

Indoor enthalpy kg/kg′

State of indoor environmental
devices

On/off of the air conditioner -
Cooling setpoint of the air conditioner ◦C

Airflow rate of the air conditioner m3/s
On/off of the ventilation system -

On/off of the humidifier -

• Control actions

The action is how the DDQN agent controls the environment. In DDQN, the agent
is optimized to find the most appropriate action among all possible action combinations.
As shown in Table 2, we can select the control action for an air conditioner, a ventilation
system, and a humidifier. There are 10 possible actions for the air conditioner, two for
the ventilation system, and two for the humidifier. In other words, there were 40 possible
actions based on multiplying the number of actions of each device. As with the state
variables, min–max normalization is utilized to normalize the control actions to normalize
the action data.

Table 2. Actions for DDQN.

Action Unit Value

Air-conditioner
On/off - 1/0

Cooling setpoint ◦C 24, 25, 26
Air flow rate m3/s 0.11, 0.13, 0.15

Ventilation system On/off - 1/0

Humidifier On/off - 1/0

• Reward function

The reward shows evaluating the effect for a certain action in a state. As shown in
Equation (8), two reward factors, rtc and rec, are used to consider thermal comfort and
energy consumption at the same time:

rt = rtc + rec (8)

Equations (9) and (10) represent the rewards for thermal comfort and energy consump-
tion. The reward for thermal comfort (rtc) is provided differently depending on whether
indoor temperature and relative humidity are in the comfort zone. If the indoor condition
is in the comfort zone, a positive reward of 10 is provided because thermal comfort was
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achieved. On the contrary, if the indoor environment is not in the comfort zone, a reward
of −10 is provided to impose a penalty:

rtc =

{
10, if 24.4 °C ≤ Tin ≤ 26.5 °C and 40% ≤ RHin ≤ 55%
−10, if not 24.4 °C ≤ Tin ≤ 26.5 °C and 40% ≤ RHin ≤ 55%

(9)

The reward for energy consumption (rec) includes the electrical energy used by the air
conditioner, ventilation system, and humidifier. This reward is provided as a penalty in rt
to minimize energy consumption:

rec = −(EAC + EVS + EHUM) (10)

4. Implementation of AI2CC
4.1. Simulation Model

In this study, a simulation model was created for the building-integrated control
testbed (BICT) at Dankook University in Yongin, Korea. The BICT is an experimental cham-
ber that consists of an air conditioner, a ventilation system, a humidifier, a dehumidifier,
automatic blinds, and various sensors to monitor the indoor environment. The exterior of
the BICT and environmental control devices are shown in Figure 5. The sizes and building
materials of the BICT were modeled in EnergyPlus, along with the system specifications
for the air conditioner, ventilation system, and humidifier.

Figure 5. Floor plan of the BICT and indoor environmental control devices.

Table 3 shows the construction and configuration of the BICT, along with detailed
information on the environmental control systems. As explained in [7], we calibrated the
EnergyPlus model for the BICT with measured indoor dry-bulb temperature and relative
humidity. The simulation results were confirmed to be sufficiently accurate for the system
performance and heating/cooling loads in the BICT.
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Table 3. Construction and configuration of BICT.

BICT

Size 4.0 m × 5.0 m × 2.4 m

Materials
Laminate floor on concrete and urethane layers

Urethane panel with gypsum lapping

Double-glazed window with 5 mm glass panes and 5 mm air cavity

Environmental
Control Systems

Ventilation system
Supply airflow rate 0.03 m3/s
Exhaust airflow rate 0.03 m3/s

Rated power 400 W

Air-conditioner

Rated total cooling capacity 2.3 kW
Rate cooling COP 2.7

Min outdoor T in cooling mode −5 ◦C
Max outdoor T in cooling mode 48 ◦C

Humidifier
Rated capacity 5.11 × 10−7 m3/s
Rated power 35 W

4.2. Co-Simulation Platform for AI2CC

In this study, the Python module eppy was utilized to connect the control actions
for the DDQN algorithm and the EnergyPlus building simulation program [48]. Figure 6
shows a schematic diagram of the co-simulation approach employed in this study. The
DDQN was implemented on the Keras library, which is open-source software that provides
a Python interface for the TensorFlow library. When the current state values simulated in
the EnergyPlus are transferred to Python, the DDQN factors derive the optimal control
action that satisfies thermal comfort with low-energy consumption based on the input state.
The optimum control action is input to the control variables in association with EnergyPlus,
and a simulation is performed to generate the state value of the next state. This process is
repeated automatically, enabling optimal control based on environmental data.

Figure 6. Co-simulation for AI2CC.

4.3. Training of the AI2CC

The timestep for the EnergyPlus simulation was set to 60 per hour or one minute
steps. This means 1440 simulations were performed on EnergyPlus per one day. In this
study, EnergyPlus running for one day was regarded as one episode, and 2000 episodes
were iterated to explore the optimal DDQN policy. As shown in Table 4, the summer
climate in Korea is hot and humid [49]. We selected 8 June in Seoul, Korea, to train the
DDQN algorithm on the weather profile. This is because the climate on 8 June showed low
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enthalpy at dawn and in the evening and high enthalpy in the afternoon; thus, it could
effectively show the optimal operation of the AI2CC according to changes in the outdoor
environment. Additionally, it was suitable to show the need for a humidifier due to the
dehumidification process when operating the air conditioner.

Table 4. Various climate elements for Korea in the summer season (1981–2010).

Mean
Temperature (◦C)

Daily Maximum
Temperature (◦C)

Daily Minimum
Temperature (◦C)

Precipitation
(mm)

Wind Speed
(m/s)

Relative
Humidity (%)

Cloud
Coverage (%)

23.6 28.4 19.7 723.2 1.8 70.0 65

In our implementation of the AI2CC, we used the Adam optimizer [50] for gradient-
based optimization with a learning rate of 0.25 × 10−3. The minibatch size to train the
agents was 32, and the discount factor was γ = 0.99. The target network was updated
every 1.44 × 104 at the end of 10 episodes. The activation function for the neural network
was rectified linear unit (ReLU) and linear activation on the output layer. There were two
hidden layers with 30 neurons determined by the model selection equation [51]. The replay
memory size was set to 105 to store the experience of the EnergyPlus simulation. At each
timestep of the simulation, the agents’ experience (st, at, rt, and st+1) was stored in replay
memory, as shown in Table 5. These experience samples were extracted randomly from the
replay memory to update the Q-network.

Table 5. Components of replay memory.

State (st) Action (at) Reward (rt) Next State (st+1)

Environmental state at t
State of indoor environmental

devices at t
(see Table 1)

Action combination of air
conditioner, ventilation
system, and humidifier

(see Table 2)

Reward for thermal comfort
+

Reward for energy
consumption

Environmental state at t+1
State of indoor environmental

devices at t+1
(see Table 1)

Figure 7 shows the average Q-value of the AI2CC in each episode during the training
process. The Q-value represents the sum of the rewards obtained during one episode. As
the episodes progress, the Q-value increases, and the AI2CC learns how to operate the
indoor environmental devices optimally. Additionally, the fluctuations in Q-values become
stabilized, indicating that the trained AI2CC has learned enough.

Figure 7. Convergence of AI2CC.
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5. Evaluation of AI2CC
5.1. Case Studies

The proposed AI2CC was evaluated for typical days during the cooling season based
on the developed co-simulation platform. The AI2CC algorithm results obtained using
the DDQN algorithm were compared to the existing ICC algorithm in terms of energy
consumption (kWh), comfort ratio (%), and time to reach the comfort zone (minutes). Total
energy consumption is the sum of energy consumption of the air conditioner, ventilation
system, and humidifier. The comfort ratio is defined as the ratio of the duration within
the comfort zone to the reference time [4]. In this study, the reference time was set to 24 h,
which is the setting period of the EnergyPlus simulation. The comfort ratio is described
by equation [11]. The time to reach the comfort zone is based on the time from the initial
indoor conditions:

Comfort ratio(%) =
Duration in comfort zone in minutes

(24× 60) minute
(11)

As shown in Table 6, case studies were conducted in Seoul, Korea, on 8 June, a day
with hot and dry conditions when cooling and humidifying were required. Figure 8 shows
the temperature and relative humidity when no devices were operating on 8 June. We
selected that day as the simulation case for two reasons: (1) As shown in Figure 8, the
outdoor temperature was lower than 26.5 ◦C, the upper limit of the thermal comfort range
from 0 to 764 min and 1090 to 1440 min. In this period, we assumed that the AI2CC would
fully utilize the ventilation system to decrease the cooling load by bringing in outdoor
air. (2) When no devices operate, indoor relative humidity was around 40%, the lower
limit of the thermal comfort range. It can be assumed that indoor relative humidity is kept
under 40% when the air conditioner operates. We believed that this outdoor condition
shows the efficiency of humidifier operation between the previous ICC and the AI2CC
algorithm. To set the internal heat gain, we supposed that one person worked with light
activity (a laptop) in the BICT (Table 6).

Figure 8. Temperature and relative humidity during the uncontrolled period (8 June).
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Table 6. Simulation conditions.

Weather File Seoul, Korea (epw)
Period 8 June (hot and dry)

Internal Heat Gain
People Light work Equipment

117 W/person 8.6 W/m2 65 W
Schedule 00:00–24:00: 100%

Number of Occupants One person

5.2. Performance of AI2CC

As shown in Figures 9–11, energy consumption with the AI2CC decreased, while
the comfort ratio increased as the DDQN learning process went on. In the early stage
(1–30 episodes) of DDQN learning, the agent started off acting randomly to generate
simulation data to learn the optimal action. Because of the agent’s randomization, in this
stage, there were cases where the comfort ratio was too low (episode 7: energy consumption
2.48 kWh, comfort ratio 0.1%) and energy consumption was too high (episode 30: energy
consumption 6.01 kWh, comfort ratio: 99.1%).

Figure 9. Energy consumption of AI2CC per episode.

Figure 10. Comfort ratio of AI2CC per episode.
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Figure 11. Indoor status profile of AI2CC per episode.

After 30 episodes, the comfort ratio was mostly 99.0% or more, indicating that DDQN
learning for thermal comfort was almost completed. On the contrary, energy consumption
decreased slowly and consistently as DDQN learning progressed, as shown in episode
30 (6.01 kWh), episode 1000 (4.01 kWh), and episode 1984 (3.33 kWh) in Figures 9 and 11.
This shows that the AI2CC learned how to operate indoor devices optimally to maintain
thermal comfort with low energy consumption as learning progressed.

In this study, we evaluated ICC and AI2CC by comparing the algorithms based on
energy consumption, comfort ratio, and time to reach the comfort zone (Table 7), and indoor
air profile and device states using ICC (Figures 12 and 13) and AI2CC (Figures 14 and 15).
Table 7 expresses the performance of the AI2CC as the average value of the last 50 episodes
in DDQN learning. Figures 14 and 15 show the indoor air profile according to the operation
of each device of the AI2CC in episode 1984 in the DDQN learning process.
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Table 7. Comparison of ICC and AI2CC.

Evaluation Factor ICC AI2CC 1

Energy consumption (kWh)

Ventilation system 0.02 1.15 (±0.06)
Air-conditioner 3.97 2.08 (±0.13)

Humidifier 0.05 0.21 (±0.01)
Total 4.04 3.44 (±0.11)

Comfort ratio (%) 93.0 99.4 (±0.10)

Time to reach comfort zone
(minutes) 63 8.9 (±0.3)

1 Performance of AI2CC expressed as average value (±std) of last 50 episodes (episodes 1951–2000).

Figure 12. Indoor temperature and device states using ICC.

Figure 13. Indoor relative humidity and humidifier state using ICC.
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Figure 14. Indoor temperature and device states using AI2CC (episode 1984).

Figure 15. Indoor relative humidity and humidifier state using AI2CC (episode 1984).

• Energy Consumption

As shown in Table 7, the total energy consumption of the AI2CC was 3.44 kWh, which
is 14.8% lower than the energy required by the ICC algorithm (4.04 kWh). Although there
was additional energy consumption owing to the operation of the ventilation system and
the humidifier in AI2CC compared to ICC, this increase was offset by the decrease in energy
consumption by the air conditioner.

To be specific, in terms of the ventilation system, ICC operated the ventilation system
for only 10 min, consuming 0.02 kWh before the air conditioner began running (see
Figure 12). This operation aimed at reducing the cooling load by exchanging high-enthalpy
indoor air and low-enthalpy outdoor air, as mentioned in Section 3.2. With AI2CC, the
ventilation system used 1.15 kWh for one day (1440 min), showing different on–off statuses
depending on the indoor and outdoor enthalpy variations. As shown in Figure 14, we
divided one day into three phases according to the indoor and outdoor enthalpy to explain
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the operation of AI2CC. For phases 1 and 3 with higher indoor than outdoor enthalpy,
AI2CC mainly operated the ventilation system for 407 min out of 724 min (phase 1) and
159 min out of 330 min (phase 3). When outdoor enthalpy was lower than indoor enthalpy,
AI2CC utilized the ventilation system to bring cool air from the outside to reduce the
cooling load. On the contrary, there was no ventilation system operation in phase 2,
when outdoor enthalpy was higher than indoor (see Figure 14). This shows that AI2CC
learned the availability of operating the ventilation system according to indoor and outdoor
enthalpy to reduce total energy consumption.

Concerning the operation of the humidifier, ICC turned it on and off repeatedly at a
relative humidity of around 40%. Thus, indoor relative humidity was maintained at around
40%, consuming 0.05 kWh of electricity (see Figure 13). On the contrary, the indoor relative
humidity of AI2CC was well maintained between 40 and 60%, indicating a relatively wider
distribution than ICC (see Figure 15). This caused AI2CC to use more energy consumption
for the humidifier than ICC.

Concerning the air conditioner, the AI2CC algorithm consumed 2.08 kWh of electric
energy, which is 47.6% lower than the energy required by the ICC algorithm (3.97 kWh;
see Table 7). There was no significant difference in operating time between ICC (632 min)
and AICC (601 min). However, there was a significant difference in energy consumption
of the air conditioner due to the different cooling loads. Figure 16 shows the average
cooling load of AI2CC (187.9 W), a decrease of 53.0% compared to ICC (399.6 W). AI2CC
reduced the cooling load by using the ventilation system to bring in low-enthalpy outside
air when possible.

Figure 16. Cooling load of an air conditioner (upper: ICC, lower: AI2CC).

• Thermal comfort

Table 7 shows that the room with AI2CC reached the comfort zone 54.1 min faster
than the one with ICC. Additionally, the comfort ratio of AICC was 99.4%, which was
6.4% higher compared to ICC. As shown in Figure 12, ICC operated the ventilation system
and air conditioner separately based on the specified sequence. This rule-based control of
ICC caused inefficient control by operating the ventilation system for only 10 min even
though the room could reach the comfort zone faster by using the ventilation system and
air conditioner at the same time. According to Figure 14, AI2CC showed a different method
from ICC by operating the air conditioner and ventilation system simultaneously to take in
low-enthalpy outdoor air. This operation decreased the time to reach the comfort zone and
helped increase the comfort ratio.
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6. Discussion

The results show that AI2CC performed better than ICC in terms of energy consump-
tion and thermal comfort. Compared with the previous ICC, AI2CC reflected the indoor–
outdoor conditions and indoor environmental device control factors by employing DDQN.

Other studies have demonstrated that reinforcement learning could be applied to
HVAC systems [24], heat pumps [25], windows [52], water heaters [53], and lighting
systems [54]. These studies showed good energy savings and improved indoor comfort.
However, they dealt with only individual systems, representing a limited situation in built
environments [55]. In this paper, the suggested AI2CC showed improved optimal control
for maintaining good thermal comfort by operating various indoor environmental control
devices simultaneously, whenever possible.

However, this study had the following limitations:

• Our previous study proposed AICC algorithm, which combines ICC with an occu-
pancy detection model to change the thermal comfort range according to occupancy
status [8]. However, in this paper, for AI2CC, the occupancy activity was fixed as light
work at a desk. Thus, we could not reflect the dynamic thermal comfort range, which
changes continuously according to occupancy status.

• In this study, we adopted thermal comfort to evaluate indoor comfort conditions.
However, comfort conditions are affected by thermal comfort and indoor air quality
and visual comfort [56]. A more sophisticated and integrated indoor comfort index
could be studied and machine learning techniques in built environments.

In future research, we will further our study as follows:

• Vary the thermal comfort range according to occupancy status [39]. To satisfy the
thermal comfort needs for various activities, we will combine the occupancy status
detection algorithm with the AI2CC to apply an appropriate comfort range based on
occupancy status (e.g., working, sleeping, resting, or exercising).

• In a building, reinforcement learning could improve indoor comfort, such as thermal
comfort, air quality, light requirement, and noise [57]. In addition to thermal comfort,
IAQ (e.g., CO2 and particulate matter) and visual comfort (e.g., illuminance and glare)
will be added to the evaluation factors of indoor comfort conditions. Other devices
may be included in the control to satisfy these factors, such as air purifiers, kitchen
hood, and blinds.

In conclusion, applying AI2CC could lead to a more effective and improved control
approach in buildings.

7. Conclusions

In this study, we suggest AI2CC by employing DDQN to reflect real-time changes
in indoor–outdoor conditions and indoor environmental device control factors that affect
thermal comfort and energy consumption. AI2CC integrates various environmental control
devices, such as an air conditioner, a ventilation system, and a humidifier. At the early
stage of DDQN learning, AI2CC showed high energy consumption and a low comfort
ratio because agents acted randomly to learn optimal actions. However, as DDQN learning
progressed, AI2CC learned how to operate indoor devices optimally to improve indoor
thermal comfort while reducing total energy consumption. The suggested AI2CC was
compared with the previous ICC algorithm in terms of energy performance, thermal
comfort, and time to reach the comfort zone.

AI2CC reduced total energy consumption by 14.8% compared to ICC. More specifically,
AI2CC consumed more energy by operating the ventilation system compared to the ICC
algorithm. However, the operation of the ventilation system could bring in more low-
enthalpy outdoor air, which led to reduced energy consumption by the air conditioner. In
the air conditioner operation, the AI2CC algorithm consumed 47.6% less energy than the
ICC algorithm. AI2CC consumed slightly more energy for the humidifier, but this increase
was offset by the decreased energy consumption of the air conditioner. Concerning thermal
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comfort, the comfort ratio of AI2CC was 6.4% higher than that of ICC. This is because
AI2CC operated the air conditioner and ventilation system together to take in low-enthalpy
outdoor air. This operation decreased the time to reach the comfort zone by 54.1 min
compared to ICC. Compared to the ICC algorithm, the superiority of the AI2CC algorithm
was validated. Using AI2CC, indoor environmental control devices were operated based
on the changing indoor–outdoor environmental conditions. ICC operated the ventilation
system for only 10 min when the outdoor enthalpy was lower than the indoor enthalpy at
the early stage of the algorithm. ICC operated indoor environmental devices by simple
on/off without considering the indoor–outdoor environmental conditions. On the other
hand, AI2CC operated the indoor environmental devices differently depending on indoor–
outdoor environmental conditions. To be specific, AI2CC utilized the ventilation system
actively when it was judged to be advantageous for energy consumption and thermal
comfort. Due to the operation of the ventilation system, the energy consumption of
the air conditioner decreased, which led to a reduction in overall energy consumption.
Additionally, the comfort ratio and time to reach the comfort zone were improved.
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