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Abstract: Attention should always be given to which reanalysis dataset to use when preparing
analysis for a project. The accuracies of three reanalysis datasets, two global (ERA5 and MERRA-2)
and one high-resolution regional reanalysis (MÉRA), are assessed by comparison with observations at
seven weather observing stations around Ireland. Skill scores are calculated for the weather variables
at these stations that are most relevant to the renewable energy sector: 10 m wind for wind power;
surface shortwave radiation (SW) and 2 m temperature for photovoltaic power generation. The
choice of which reanalysis dataset to use is important when future planning depends on this data.
The newer ERA5 generally outperforms the other two reanalyses. However, this is not always true,
and the best performing reanalysis dataset often depends on the variable of interest and location.
As errors are significant for these reanalysis datasets, consideration should also be given to datasets
specifically tailored to renewable energy resource modelling.

Keywords: reanalysis dataset; skill scores; wind speed; temperature; shortwave radiation;
renewable energy

1. Introduction

This paper examines a range of skill scores for two global reanalysis datasets, ERA5 [1]
and MERRA-2 [2], and one high-resolution regional reanalysis dataset, MÉRA [3], com-
pared to weather observing stations in Ireland. Reanalyses are useful datasets for mon-
itoring and comparing past and present climate conditions, testing the accuracy of past
forecasts, driving numerical weather prediction (NWP) models, and identifying climate
variations and change. They are used to an increasing extent in various commercial sectors
including energy [4,5], agriculture [6], water resources [7,8], and insurance [9,10]. This
paper will focus on the subject of renewable energy. Past data can be used for future
planning, particularly in terms of selecting the most suitable site locations, for example, for
wind farms. However, long records of historical wind speed data at turbine hub-height are
rare, especially in exact locations where potential wind farms may be developed. Therefore,
using gridded reanalyses, especially in regions where observations are sparse, is neces-
sary to investigate long-term trends along with extreme events. In order to ensure that
reanalyses adequately represent reality, their accuracy must be validated. In this paper, we
evaluate these three datasets, which have not been analysed together before, specifically
for the variables that are relevant for wind and solar electricity generation: wind speed,
temperature, and shortwave radiation (SW).

Results from previous studies that have examined ERA5, MERRA-2, or MÉRA have
found that these reanalyses tend to overestimate surface SW compared to observations [11–13].
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The bias varies with cloudiness, resulting in overestimates of SW under cloudy conditions
and slight underestimates of SW under clear skies [12,14]. Often, errors in SW in the
reanalysis products can be attributed to the misrepresentation of cloud properties and/or
aerosols [12–15].

The accuracy of 10 m wind speed in reanalyses has been shown to vary depending
on location and dataset. MERRA-2 overestimates wind capacity across 23 countries in
Europe at a national aggregate scale [16]. MERRA-2 tends to overestimate wind speeds
at inland locations, especially in Europe. This can often be attributed to mismatches in
model elevation or topography [17,18]. Although MÉRA has a tendency to overpredict
at lower wind speeds and underpredict at higher wind speeds, the standard deviation of
wind speeds has been shown to match well with observations, which can be attributed to
increased resolution and improved model physics [3,19].

Temperature fields have been shown to generally be in good agreement with station
observations. MÉRA outperforms ERA-Interim for 2 m temperature, often as a result of
increased model spatial resolution [19]. Daily minimum temperatures in MERRA-2 tend to
be too high, whereas daily maximum temperatures tend to be too low, and this is largely
due to corresponding errors in radiation in the model [20]. ERA5 shows improvements
over its predecessor, ERA-Interim [21]. For solar energy installations, photovoltaic (PV)
output depends on a number of factors, including SW and ambient air temperature. PV
panel efficiencies generally decrease with increasing temperature and with decreasing SW.
Therefore, biases in 2 m temperature could feed into errors in calculated power output for
PV electricity generation.

Due to some large errors in reanalysis datasets, some renewable energy developers do
not directly use reanalyses and instead use alternatives such as the high-resolution New
European Wind Atlas (https://map.neweuropeanwindatlas.eu/ (accessed on 29 April
2021)) and the Global Solar Atlas (https://globalsolaratlas.info/map (accessed on 29 April
2021)). These products provide outputs tailored to the needs of energy resources modellers.
However, researchers who want to study the behaviour of wind and solar PV together still
use reanalysis products to do this. While this paper focuses on validation in terms of wind
and solar resources, the analysis of these individual variables can also be useful for many
applications.

The aim of this paper is to compare a recent global reanalysis dataset (ERA5) with
an older global reanalysis dataset (MERRA-2) and to a high-resolution regional dataset
(MÉRA). The layout of the paper is as follows: Section 2 gives an overview of the data and
methodology used in this study. Results are presented and discussed in Section 3 in terms of
systematic errors and reanalysis skill scores. Finally, Section 4 provides some conclusions.

2. Materials and Methods

Data from the two global reanalysis datasets, ERA5 and MERRA-2, and a high-
resolution regional reanalysis, MÉRA, are compared to seven weather observing stations
geographically dispersed around Ireland over a 26-year period of common data availability
(1982–2007). Three weather variables are chosen: 2 metre (2 m) temperature, 10 metre
(10 m) wind, and surface shortwave radiation (SW). SW and temperature are the primary
variables influencing PV. Wind speed is the primary variable influencing wind power
generation. Ideally, this wind speed would be measured at a typical turbine hub-height.
However, there are no long-term records of hub-height wind speed available at different
locations around Ireland; therefore, we focus this study on the 10 m wind speed records
from synoptic stations.

It should be noted that all three reanalyses use conventional observations in the
form of surface land observations (including the temperature and wind variables) from
synoptic weather stations as a source of input to the model’s data assimilation pro-
cess [3,19,21,22]. Therefore, the validations performed on these datasets are not truly
an independent comparison.

https://map.neweuropeanwindatlas.eu/
https://globalsolaratlas.info/map
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2.1. Ground Measurements

The Irish meteorological service, Met Éireann, runs a network of WMO standard
weather observing stations around Ireland. In this study, we use seven stations that have a
continuous record of hourly data for the three variables considered here for over 25 years,
limited by the closure of some weather stations in 2008. These stations represent the
longest available record of wind and SW covering different regions of Ireland (Figure 1).
The locations include both coastal—Belmullet, Dublin Airport, Malin Head and Valentia
Observatory, and inland stations—Birr, Clones and Kilkenny.

10°W 8°W 6°W

52°N

54°N

Malin Head

Belmullet
Clones

Dublin
Airport

Birr
Kilkenny

Valentia
Observatory

Figure 1. Irish weather observing stations used in this study.

2.2. Reanalysis Datasets

Hourly output from a high-resolution regional reanalysis MÉRA [3] is utilised in
this study. Its performance is compared to two global reanalyses, MERRA-2 [2] and
ERA5 [1]. Information about the resolution and coverage of the datasets are summarised
in Table 1. Bilinear interpolation is used to produce a colocated grid point for comparison
with station observations.

Table 1. Reanalysis Datasets.

Dataset Provider Horizontal
Resolution

Spatial
Coverage

Temporal
Coverage

MÉRA Met Éireann 2.5 km Ireland and UK 1981–2019
ERA5 ECMWF Approx. 31 km Global 1979–present

MERRA-2 NASA Approx. 50 km Global 1979–present

2.3. Skill Scores

Standard skill scores are used to evaluate the skill of the reanalyses compared to the
selected Met Éireann observation stations. The skill scores used are; mean error (ME),
root mean square error (RMSE), anomaly correlation coefficient (ACC), and Spearman’s
correlation (r). ME is defined as

ME =
1
n

n

∑
i=1

(xr − xo)i, (1)

where n is the number of observations, xr is the reanalysis value of the parameter in
question, and xo is the corresponding observed value. RMSE is defined as

RMSE =

√
1
n

n

∑
i=1

(xr − xo)2
i . (2)
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The ACC is the correlation between anomalies from the reanalysis and observa-
tions relative to climatology [23]. Therefore, this score compares errors considering
seasonal variability.

ACC =
(xr − xc)(xo − xc)√
(xr − xc)2 (xo − xc)2

, (3)

where xc is the climatology of the parameter in question. Climatology is calculated by using
a 30-day rolling mean and then averaging over the common validation period (1982–2007).
ACC values greater than 0.6 imply that the data capture the observed large-scale weather
patterns well.

Normalised Taylor diagrams [24] are used in this study to summarise how closely the
model data matches observations. They are graphical representations of three skill scores:
normalised standard deviation, correlation coefficients, and normalised centred root mean
square error (CRMSE). In this paper, the results are normalised relative to the observations
for ease of comparison. Therefore, model standard deviation and CRMSE are divided by
the standard deviation of the observations. Normalised CRMSE is calculated as

CRMSE =

√
1
n ∑n

i=1[(Xri − X̄r)− (Xoi − X̄o)]
2

σXo

, (4)

where the overall mean of a field is indicated by an overbar and σXo is the standard
deviation of observations. Modelled estimations that agree well with observations will lie
nearest to the point marked 1 on the x-axis.

3. Results

This section investigates systematic errors in the reanalyses and the general behaviour
of the models. Each variable is analysed separately.

3.1. Temperature

Table 2 shows the ACC, Spearman correlation, ME, and RMSE of hourly temperature
averaged over all stations for the entire period. All ACC results are above 0.85, indicating
that these reanalyses capture the seasonal variability well. ME and RMSE are best for ERA5.
MERRA-2 has the poorest results for all three of these skill scores.

Table 2. Skill scores of each reanalysis compared to observations: anomaly correlation coefficient
(ACC), Spearman’s correlation (r), mean error (ME), and root mean square error (RMSE) for hourly
2 m temperature averaged over all stations.

Reanalysis ACC r ME (◦C) RMSE (◦C)

MÉRA 0.92 0.97 −0.21 1.10
ERA5 0.92 0.98 0.01 1.01

MERRA-2 0.86 0.96 −0.24 1.37

The ability of a reanalysis model to match observed temperature varies from location
to location, as well as varying between reanalysis models. Generally, inland stations show
different behaviours compared with coastal stations (the spatial distribution of temperature
is shown in Figure S1 of the supplementary material). The global reanalysis MERRA-2 often
overestimates temperature at coastal stations but underestimates temperature at inland
stations (Figure 2). At inland stations, the elevation of grid-points in MERRA-2 are higher
than actual station elevations. The global reanalyses’ interpolated grid-points are between
14 m and 56 m higher than actual elevations at selected inland Met Éireann stations. As
temperature decreases with height, this results in the MERRA-2 inland locations having
colder temperatures than observed. However, ERA5 grid-point elevations are also higher
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than the weather observing stations, particularly for inland locations; therefore, due to the
contrasting error signals at Clones and Kilkenny (Figure 2), elevation mismatch between
reality and model alone cannot account for temperature error in ERA5 and similarly
for MÉRA. The magnitude of temperature error is relatively small compared with other
weather variables, suggesting that temperature is one of the variables better captured by
the models.

MÉRA ERA5 MERRA 2

0.6

0.4

0.2

0.0

0.2

0.4

0.6

C

Figure 2. Mean Error (ME) for 2 m temperature at each station for each reanalysis.

Figure 3 shows the seasonal mean and the diurnal pattern of temperature error at
Belmullet, a coastal station in northwest Ireland (other stations are shown in Figures S4–
S9 of the Supplementary Material). The climate at coastal locations such as Belmullet is
strongly influenced by the adjacent sea surface temperatures. As the sea has a higher
specific heat capacity than the land, the sea heats and cools more slowly than the land.
However, if the influence of the sea is too strong in the reanalysis model, the air temperature
at a coastal station will vary less during the year than it should. This seems to be the case
in ERA5 and MERRA-2 at this coastal station as they have a positive bias in autumn
(September, October, November: SON) and winter (December, January, February: DJF), but
a negative bias in spring (March, April, May: MAM) and summer (June, July, August: JJA).
This is particularly evident for all coastal stations in MERRA-2, when the cancellation of
positive and negative seasonal errors lead to the small overall errors observed in Figure 3.
The ME of MÉRA’s temperatures exhibits smaller changes from season to season, showing
that it is better at capturing these seasonal changes in temperature both at coastal and
inland stations. ME also changes less throughout the day for MÉRA compared with the
other reanalyses, probably due to MÉRA’s better representation of elevation and land-use.
Errors also show a diurnal variability, in which nighttime temperatures overestimate and
daytime temperatures underestimate. A similar diurnal pattern is observed at all coastal
stations, suggesting that land–sea interactions play a large role in the underdispersion of
the variability in diurnal temperature, whereas inland stations generally display a reversed
diurnal pattern, particularly in spring and summer.

A Taylor diagram is a useful tool to compare the skill of all three reanalyses (Figure 4).
Correlation coefficients are high (≥0.94) for all models, showing that all three reanalyses
perform well in capturing the variability of temperature. The variability of temperature is
best captured by MÉRA, as seen by all stations clustering near the normalised standard de-
viation of 1.0, while ERA5 and MERRA-2 are often underdispersive, particularly for coastal
locations. MERRA-2 generally has the poorest CRMSE skill while ERA5 generally has the
best. Figure 4 shows how temperature’s accuracy varies between location and model. There
is a grouping of coastal stations versus inland stations in which each model’s performance
is better at inland locations where inland stations generally have a better CRMSE along
with a normalised standard deviation that better matches that of observations.
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Figure 3. Diurnal mean error (ME) for 2 m temperature at the coastal station Belmullet in winter (DJF),
spring (MAM), summer (JJA), and autumn (SON) for ERA5 (blue), MÉRA (green), and MERRA-2
(red). The horizontal dashed lines represent the overall average seasonal ME.
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Figure 4. Left: Taylor diagram of 2 m temperature at all stations (coastal (+) and inland (o)) for ERA5
(blue), MÉRA (green), and MERRA-2 (red). The radial dimension represents the model normalised
standard deviations, correlation coefficients are represented in angular coordinates and the arcs show
the normalised centred RMSE (CRMSE). Right: close-up view of the red box in left plot.

3.2. Wind Speed

The average ACC values for 10 m wind speed are ≥0.76 for all reanalyses (Table 3),
indicating that the seasonal variability of wind speed is captured reasonably well. ERA5
exhibits the lowest overall ME and RMSE. ERA5 may perform better at 10 m wind speeds
because it has a vertical level located at approximately 10 m above the surface. MÉRA and
MERRA-2 need to use model level data from approximately 12 m and 90 m, respectively,
when calculating their 10 m winds.
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Table 3. Skill scores of each reanalysis compared to observations: anomaly correlation coefficient
(ACC), Spearman’s correlation (r), mean error (ME), and root mean square error (RMSE) for hourly
10 m wind speed averaged over all stations.

Reanalysis ACC r ME (m/s) RMSE (m/s)

MÉRA 0.82 0.88 0.13 1.76
ERA5 0.85 0.89 0.06 1.52

MERRA-2 0.76 0.87 1.29 2.21

Wind speed in MERRA-2 is higher than observations at all stations, except at the
northern coastal station of Malin Head, possibly due to the low spatial resolution in
MERRA-2, which fails to capture the land–sea differences at coastal stations. The other
near-coastal stations (Belmullet, Dublin Airport, and Valentia Observatory) are windier in
the global reanalyses than in observations, attributed largely with the proximity of the low-
resolution grid-points to the sea and possible misrepresentation of surface friction, where
the on-land point is treated as a smoother sea surface location resulting in less friction to
reduce the high offshore wind. Again, the elevation difference between the model and
observations leads to a generally windier estimation by the reanalyses, especially at inland
stations. At coastal stations, MÉRA underestimates wind speeds, while it overestimates
wind speeds at inland stations in all seasons, probably due to the misrepresentation of local
effects of surface friction where near-coastal stations are classified as on-land grid-points
by the model but in reality, the station has more offshore characteristics.

There is little variability in seasonal bias, except at Valentia Observatory, where MÉRA
overestimates wind speeds in Autumn and Winter and underestimates in Spring and
Summer, possibly due to the misrepresentation of the grid-box as part of the nearby sea.
Along with the general bias in the reanalyses, at each station, there is a diurnal pattern in
the wind speed error. An overestimation in wind speed during the night often changes
to an underestimation in wind speed during daytime hours. This may be due to the
reanalyses not capturing the vertical mixing in the lower part of the atmosphere. At sunrise,
observed wind speeds increase faster than all reanalyses (Figure 5 and Figures S10–S15
in the Supplementary Material) due to turbulent mixing between different vertical levels,
where higher wind speeds are entrained from faster wind speed layers higher up in the
planetary boundary layer, causing the wind speed at the surface to become faster. MÉRA
captures this effect best, possibly due to the higher resolution in the model.

A Taylor diagram (Figure 6) shows that ERA5 is consistently underdispersive at all sta-
tions, MERRA-2 is overdispersive at all stations except Malin Head, while MÉRA changes
depending on the station, where inland stations have a tendency to be overdispersive and
coastal stations are underdispersive. Wind speed is less variable over the sea where there
is little change in the sea surface, while inland locations are more variable due to changes
in surface heating and, consequently, the wind speed. CRMSE is better for ERA5 and in
MÉRA for most stations compared with MERRA-2. The average r values are ≥0.84 for
all three reanalyses, indicating that day-to-day variability of wind speed is generally well
captured by the reanalysis datasets. Importantly, Figure 6 indicates that there is no clear
best model for overall accuracy.

3.3. Shortwave Radiation

In Ireland, typical winter values of hourly SW are less than 50 W/m2 and summer val-
ues reach approximately 500 W/m2 on average, but can reach values of up to 1000 W/m2

within individual hours. As the focus of this paper is on renewable energy, only the summer
period (JJA) is examined here, as this is most relevant to the production of photovoltaic
(PV) in Ireland. Although MÉRA has the smallest ME, ERA5 has the best overall RMSE
score and is the only reanalysis to achieve an ACC value marginally greater than 0.6 (the
implied measure of skill) (Table 4). MERRA-2 has the largest ME, with all stations having a



Atmosphere 2021, 12, 624 8 of 13

large positive bias (Figure 7). The small ME for MÉRA is due to the strong coastal versus
inland effect, which leads to errors cancelling (Figure 7).
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Figure 5. Mean 10 m wind speed at each hour at the coastal station Belmullet for winter (DJF), spring
(MAM), summer (JJA), and autumn (SON) for ERA5 (blue), MÉRA (green), and MERRA-2 (red)
compared with observations (black).
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Figure 6. Left: Taylor diagram of 10 m wind speed at all stations (coastal (+) and inland (o)) for ERA5
(blue), MÉRA (green), and MERRA-2 (red). The radial dimension represents the model normalised
standard deviations, correlation coefficients are represented in angular coordinates, and the arcs
show the normalised centred RMSE (CRMSE). Right: close-up view of the red box in left plot.

Table 4. Skill scores of each reanalysis compared to observations: anomaly correlation coefficient
(ACC), Spearman’s correlation (r), mean error (ME), and root mean square error (RMSE) for hourly
SW averaged over all stations for summer (June, July, and August).

Reanalysis ACC r ME (W/m2) RMSE (W/m2)

MÉRA 0.55 0.79 −0.32 152.57
ERA5 0.64 0.87 8.33 115.98

MERRA-2 0.46 0.85 60.03 147.88
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Figure 7. Mean error for summer (JJA) SW at each station for each reanalysis.

Stations located on the Atlantic facing coast (Malin Head, Belmullet, and Valentia
Observatory) display a negative ME in MÉRA, whereas all other locations have a positive
ME in MÉRA (Figure 7). This underestimation along the west coast of Ireland may be due
to the presence of more thick clouds, which tend to have too much cloud water causing an
underestimation of SW, as seen in other studies [13]. MERRA-2 and ERA5 have a positive
bias in SW at all stations, mainly due to a poor prediction of cloud patterns, as seen in other
studies such as [11,12].

There is a obvious diurnal cycle in SW. However, this diurnal pattern is not accu-
rately captured by the reanalyses. All reanalyses underestimate SW values in the morning
(Figure 8 and Figures S16–S20 in Supplementary Material), possibly due to a poor estima-
tion of aerosols in the models. By contrast, in the afternoons, all reanalyses overestimate
SW, possibly attributable to shortcomings in the model physics, which may fail to capture
the common development of cumulus clouds in the afternoon. The contrast between inland
and coastal stations is particularly pronounced for MÉRA in the morning (Figure 8), when
the coastal stations have a stronger underestimation.
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Figure 8. Diurnal mean SW error (ME) in summer (JJA) at (a) the inland station Clones and (b) the
coastal station Belmullet for ERA5 (blue), MÉRA (green), and MERRA-2 (red). The horizontal dashed
line represents the overall average seasonal ME.

The Taylor diagram in Figure 9 suggests that ERA5 best captures the observed SW,
although it is slightly underdispersive at five of the seven stations. The correlation coeffi-
cients are 0.79 to 0.87 for each reanalysis, suggesting that part of the variability in hourly
SW is captured by the reanalyses. Overall, ERA5 appears to perform better for SW during
JJA, as seen in Figure 9 and Table 4. This may reflect the inclusion of satellite data in
the data assimilation process, which is not included in MÉRA but is part of MERRA-2.
ERA5’s performance may also be attributed to the higher spatial resolution compared with
MERRA-2.
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Figure 9. Left: Taylor diagram of SW in summer (JJA) for ERA5 (blue), MÉRA (green), and MERRA-
2 (red). The radial dimension represents the model normalised standard deviations, correlation
coefficients are represented in angular coordinates, and the arcs show the normalised centred RMSE
(CRMSE). Right: close-up view of the red box in left plot.

4. Conclusions

The accuracy of three reanalyses are assessed here in terms of hourly weather pa-
rameters relevant to the renewable energy sector in Ireland: 2 m temperature, 10 m wind
speed, and incident shortwave radiation (SW). Two global datasets, MERRA-2 and ERA5,
and one high-resolution regional dataset, MÉRA, are considered for a common validation
period (1982–2007). Skill scores including ME, RMSE, ACC, and Spearmans correlation
are calculated. The results presented here highlight the importance of carefully selecting
the optimum reanalysis for specific applications, and comparing the reanalysis to site
observations where possible. In terms of renewable energy, reanalysis data can be useful in
the planning of viable locations for renewable energy generation, especially where observa-
tions are sparse. It is important to study as long a time period as possible as, for example,
one or even a few years of data may not be representative of climatology. The results
presented here highlight the limitations of reanalyses due to significant errors in all of the
reanalyses studied in this paper. Therefore, alternative sources of data may be more suitable
for use in standalone studies of wind and solar resources, such as the New European Wind
Atlas [25] and the Global Solar Atlas [26]. These custom-made datasets with a reduced bias
are tailored to renewable energy developers and specifically to the modelling of energy
resources. However, as other research studies on renewable energy may require the use of
reanalysis datasets, this paper aims to raise awareness of the importance of selecting the
most suitable reanalysis dataset from those available.

All three reanalyses do well in replicating the observed 2 m temperature at the seven
selected locations in Ireland, although ERA5 generally outperforms the others. SW is
generally overestimated by the reanalyses and has a poorer skill than either wind speed or
temperature. These results show that the highest resolution dataset may not necessarily
be the most accurate. Results also highlight the variability in skill for different locations
and variables in Ireland. Temperature and SW have a strong grouping of coastal versus
inland stations; however, inland stations generally perform better for temperature, whereas
coastal stations perform better for SW. There is generally a systematic error for all variables
at all stations on a diurnal time scale. There is a connection between the diurnal error
patterns at each station, such as the underestimation of SW in the morning, leading to lower
temperature estimates during the day. There is also a systematic bias observed at most
stations, often attributed to the mismatch in surface elevation and the land–sea component
of grid-points or local land-use and surface friction. This suggests that a postprocessed
dataset should be considered in the decision-making process, as this can reduce systematic
errors for reanalysis datasets. Although ERA5 is never the worst, and is often the best, no
reanalysis consistently outperforms the others for all weather parameters and locations.
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Therefore, the best dataset to use for renewable energy in Ireland will vary on a case-by-case
basis, depending on factors such as location, timescale, and the meteorological variable
of interest.

The good performance of ERA5 may be due to the newer method of data assimilation
(4D-var) in the model compared with the other reanalyses, which still employ the older
3D-var version [12]. ERA5 also has a greater number of vertical levels, with the first vertical
level closest to the observations at 10 m. MÉRA does not assimilate satellite data, which
could be important for SW or cloud properties. The skill of regional reanalyses depends
on the quality of the driving reanalysis; previous studies found that MÉRA performs
better than its driving reanalysis ERA-interim [19], and studies have also found that ERA5
performs better than ERA-interim [5,12,27]. Therefore, the proposed development of a
new MÉRA model with ERA5 as the driving global reanalysis should lead to an improved
regional scale reanalysis for Ireland.
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390/atmos12050624/s1 : Figures S1–S3: The spatial pattern for each reanalysis and weather stations
for temperature, wind speed, and SW. Figures S4–S9: diurnal mean error for temperature at each
individual station. Figures S10–S15: diurnal mean wind speed at each station. Figures S16–S20:
diurnal mean error for SW during summer at each station.
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ACC Anomaly Correlation Coefficient
CRMSE Centred Root Mean Square Error
DJF December, January, February
ERA5 ECMWF Reanalysis 5th Generation
JJA June, July, August
MAM March, April, May
ME Mean Error
MÉRA Met Éireann Reanalysis
MERRA-2 Modern-Era Retrospective analysis for Research and Applications, Version 2
NWP Numerical Weather Prediction
PV Photovoltaic
r Spearman’s correlation
RMSE Root Mean Square Error
SON September, October, November
SW Shortwave Radiation

References
1. Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate.

Copernicus Climate Change Service Climate Data Store (CDS). 2017. Available online: https://cds.climate.copernicus.eu/
cdsapp#!/home (accessed on 2 May 2019).

2. Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.;
et al. The Modern-Era Retrospective Analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454.
[CrossRef] [PubMed]

3. Gleeson, E.; Whelan, E.; Hanley, J. Met Éireann high resolution reanalysis for Ireland. Adv. Sci. Res. 2017, 14, 49–61. [CrossRef]
4. Monforti, F.; Gonzalez-Aparicio, I. Comparing the impact of uncertainties on technical and meteorological parameters in wind

power time series modelling in the European Union. Appl. Energy 2017, 206, 439–450. [CrossRef]
5. Ramon, J.; Lledó, L.; Torralba, V.; Soret, A.; Doblas-Reyes, F.J. What global reanalysis best represents near-surface winds? Q. J. R.

Meteorol. Soc. 2019, 145, 3236–3251. [CrossRef]
6. Almendra-Martín, L.; Martínez-Fernández, J.; González-Zamora, Á.; Benito-Verdugo, P.; Herrero-Jiménez, C.M. Agricultural

drought trends on the Iberian Peninsula: An analysis using modeled and reanalysis soil moisture products. Atmosphere 2021,
12, 236. [CrossRef]

7. Xu, L.; Chen, N.; Moradkhani, H.; Zhang, X.; Hu, C. Improving global monthly and daily precipitation estimation by fusing
gauge observations, remote sensing, and reanalysis data sets. Water Resour. Res. 2020, 56, e2019WR026444. [CrossRef]

8. Do, H.X.; Westra, S.; Leonard, M.; Gudmundsson, L. Global-scale prediction of flood timing using atmospheric reanalysis. Water
Resour. Res. 2020, 56, e2019WR024945. [CrossRef]

9. Mohanty, M.P.; Simonovic, S.P. Fidelity of reanalysis datasets in floodplain mapping: Investigating performance at inundation
level over large regions. J. Hydrol. 2020, 125757. [CrossRef]

10. Hu, G.; Franzke, C.L. Evaluation of daily precipitation extremes in reanalysis and gridded observation-based data sets over
Germany. Geophys. Res. Lett. 2020, 47, e2020GL089624. [CrossRef]

11. Yang, D.; Bright, J.M. Worldwide validation of 8 satellite-derived and reanalysis solar radiation products: A preliminary
evaluation and overall metrics for hourly data over 27 years. Sol. Energy 2020, 210, 3–19. [CrossRef]

12. Urraca, R.; Huld, T.; Gracia-Amillo, A.; Martinez-de Pison, F.J.; Kaspar, F.; Sanz-Garcia, A. Evaluation of global horizontal
irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data. Sol. Energy 2018,
164, 339–354. [CrossRef]

13. Nielsen, K.; Gleeson, E. Using shortwave radiation to evaluate the HARMONIE-AROME weather model. Atmosphere 2018, 9, 163.
[CrossRef]

14. Babar, B.; Graversen, R.; Boström, T. Solar radiation estimation at high latitudes: Assessment of the CMSAF databases, ASR and
ERA5. Sol. Energy 2019, 182, 397–411. [CrossRef]

15. Bender, F.M.; Frey, L.; McCoy, D.T.; Grosvenor, D.P.; Mohrmann, J.K. Assessment of aerosol–cloud–radiation correlations in
satellite observations, climate models and reanalysis. Clim. Dyn. 2019, 52, 4371–4392. [CrossRef]

16. Staffell, I.; Pfenninger, S. Using bias-corrected reanalysis to simulate current and future wind power output. Energy 2016,
114, 1224–1239. [CrossRef]

17. Carvalho, D. An Assessment of NASA’s GMAO MERRA-2 Reanalysis Surface Winds. J. Clim. 2019, 32, 8261–8281. [CrossRef]
18. Miao, H.; Dong, D.; Huang, G.; Hu, K.; Tian, Q.; Gong, Y. Evaluation of Northern Hemisphere surface wind speed and wind

power density in multiple reanalysis datasets. Energy 2020, 200, 117382. [CrossRef]
19. Whelan, E.; Gleeson, E.; Hanley, J. An Evaluation of MÉRA, a High-Resolution Mesoscale Regional Reanalysis. J. Appl. Meteorol.

Climatol. 2018, 57, 2179–2196. [CrossRef]
20. Draper, C.S.; Reichle, R.H.; Koster, R.D. Assessment of MERRA-2 land surface energy flux estimates. J. Clim. 2018, 31, 671–691.

[CrossRef]

https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
http://doi.org/10.1175/JCLI-D-16-0758.1
http://www.ncbi.nlm.nih.gov/pubmed/32020988
http://dx.doi.org/10.5194/asr-14-49-2017
http://dx.doi.org/10.1016/j.apenergy.2017.08.217
http://dx.doi.org/10.1002/qj.3616
http://dx.doi.org/10.3390/atmos12020236
http://dx.doi.org/10.1029/2019WR026444
http://dx.doi.org/10.1029/2019WR024945
http://dx.doi.org/10.1016/j.jhydrol.2020.125757
http://dx.doi.org/10.1029/2020GL089624
http://dx.doi.org/10.1016/j.solener.2020.04.016
http://dx.doi.org/10.1016/j.solener.2018.02.059
http://dx.doi.org/10.3390/atmos9050163
http://dx.doi.org/10.1016/j.solener.2019.02.058
http://dx.doi.org/10.1007/s00382-018-4384-z
http://dx.doi.org/10.1016/j.energy.2016.08.068
http://dx.doi.org/10.1175/JCLI-D-19-0199.1
http://dx.doi.org/10.1016/j.energy.2020.117382
http://dx.doi.org/10.1175/JAMC-D-17-0354.1
http://dx.doi.org/10.1175/JCLI-D-17-0121.1


Atmosphere 2021, 12, 624 13 of 13

21. Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.;
et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [CrossRef]

22. McCarty, W.; Coy, L.; Gelaro, R.; Huang, A.; Merkova, D.; Smith, E.; Sienkiewicz, M.; Wargan, K. MERRA-2 Input Observations:
Summary and Assessment. Technical Report Series on Global Modeling and Data Assimilation, Volume 46. 2016. Available
online: https://gmao.gsfc.nasa.gov/pubs/docs/McCarty885.pdf (accessed on 29 April 2021).

23. WMO. Manual on the Global Data-Processing and Forecasting System. Volume 1—Global Aspects. 2015. Available online:
https://www.wmo.int/pages/prog/www/DPFS/documents/485_Vol_I_en.pdf (accessed on 25 April 2017).

24. Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192.
[CrossRef]

25. Dörenkämper, M.; Olsen, B.T.; Witha, B.; Hahmann, A.N.; Davis, N.N.; Barcons, J.; Ezber, Y.; García-Bustamante, E.; González-
Rouco, J.F.; Navarro, J.; et al. The making of the new european wind atlas–part 2: Production and evaluation. Geosci. Model Dev.
2020, 13, 5079–5102. [CrossRef]

26. Energy Sector Management Assistance Program Washington, D.C.: World Bank Group. Global Solar Atlas 2.0: Technical Report.
2019. Available online: http://documents.worldbank.org/curated/en/529431592893043403/Global-Solar-Atlas-2-0-Technical-
Report (accessed on 29 April 2021).

27. He, Y.; Wang, K.; Feng, F. Improvement of ERA5 over ERA-Interim in Simulating Surface Incident Solar Radiation throughout
China. J. Clim. 2021, 34, 3853–3867. [CrossRef]

http://dx.doi.org/10.1002/qj.3803
https://gmao.gsfc.nasa.gov/pubs/docs/McCarty885.pdf
https://www.wmo.int/pages/prog/www/DPFS/documents/485_Vol_I_en.pdf
http://dx.doi.org/10.1029/2000JD900719
http://dx.doi.org/10.5194/gmd-13-5079-2020
http://documents.worldbank.org/curated/en/529431592893043403/Global-Solar-Atlas-2-0-Technical-Report
http://documents.worldbank.org/curated/en/529431592893043403/Global-Solar-Atlas-2-0-Technical-Report
http://dx.doi.org/10.1175/JCLI-D-20-0300.1

	Introduction
	Materials and Methods
	Ground Measurements
	Reanalysis Datasets
	Skill Scores

	Results
	Temperature
	Wind Speed
	Shortwave Radiation

	Conclusions
	References

