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Abstract: Extremely hot or warm weather over the course of the year may have significant impacts
on many aspects of human life, the economy, and the natural environment. Until now a thorough
assessment of changes of extreme heat or warm events in Europe was hindered by the number of
metrics employed, time periods examined, and most studies being conducted in the summer season
only. Here, we employ the Extremity Index (EI) to investigate long-term trends in extremely hot or
warm days in Europe over the course of the year, with a special focus on their frequency, spatial
extent, and intensity. An extreme temperature event (ETE) is defined as a day with an unusually high
temperature for a given location and season, even if such a temperature would not be considered
extremely high in an absolute sense. The research is conducted in five spatial domains that together
cover a large portion of Europe. The period of the most recent 70 years is considered. In all examined
regions, mainly significant increasing trends since 1950 are evident for seasonal EI; therefore, also
for ETE frequency, intensity, and spatial range. Yet, every region is characterized by its own event
pattern, and trends across the continent strongly vary geographically and seasonally. Our study
highlights that examined trends of temperature extremes are accelerating and in the last 40 years
the rate of change has been even more than three times greater than in the entire study period. The
greatest changes were noted for the summer season in Central Europe and Eastern Europe for the
most recent 40-year period.

Keywords: hot day; warm day; extreme temperature; extremity index; heat extreme; temperature
anomaly; climate warming

1. Introduction

The global increase in near-surface air temperatures noted since the late 19th century
translates into increases in the frequency, intensity, and duration of extreme hot and
warm events [1–3]. Of these the best analyzed are summertime hot days and heatwaves
that have been explored in a number of studies done at a variety of spatial scales from
global to regional, domestic, and local [4]. This strong interest is the outcome of harsh
heatwaves occurring across the world in the last 20 to 30 years and accompanied by a
high rise in morbidity and mortality [5]. Indeed, heat events currently represent some
of the most dangerous weather phenomena in the world and threaten not only human
health [6,7], but also agriculture [8,9], public infrastructure [10,11], supply of electricity [12],
and workplace productivity [13]. The increase in the number of hot days and heatwaves
leads to ecological impacts in the form of exacerbated droughts and wildfires [14] as well
as increased wildlife mortality [15] that reduce the general level of security in the world
and induce economic losses.
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Major heat events can be dangerous; however, warm weather in general has the
potential to produce significant impacts on many aspects of human life, the economy, and
the natural environment regardless of the season in which it occurs. Some of these impacts
are time-lagged and some represent the effects of multiple environmental linkages, and
may become dangerous when combined with the presence of a water deficit in a given
geographic area.

In winter the most apparent effect of warm spells in temperate climates is the reduction
in the snowpack leading to the exposure of the soil to more frequent freezing events,
changes in water runoff patterns, and reduced water storage that may then lead to a
spring drought [16–18]. The shortening of the snow season leads to shorter ski seasons
in many parts of the world [19]. Warm weather in spring may disrupt the water balance
in summer. According to Bastos et al. [20] unusually warm spring weather in Europe in
2018 triggered an increase in vegetation growth which contributed to faster soil moisture
depletion and in consequence a stronger summer drought. Westerling [21] also observed a
relationship between spring warming and earlier snowmelt and increased wildfire activity
in the western USA.

Late winter and early spring warm spells accelerate plant growth and consequently
affect the timing of the onset of phenological seasons [22–26]. On the other hand, premature
vegetation growth increases the vulnerability of plants to late spring frost spells [23,27,28].
Interestingly, research by Siegmund et al. [25] shows that phenological processes in spring
are also affected by warm extremes in the preceding autumn. On the other hand, au-
tumn phenology, including leaf senescence and fall that impact a number of ecosystem
processes, is affected by heat and warm extremes occurring throughout the entire vegeta-
tion season [29]. The influence of year-round temperature extremes is also observed on
the development, survival rate, population dynamics, and migration timing of animals,
although these relationships are not yet well-understood due to their complexity [30–34].
This group includes insects, pests, and pathogens for whom warm autumns and winters
help facilitate their survival and enable the colonization of new geographic areas, which
may in turn negatively affect crop production and food security [35–37]. However, it is
important to note that all of the above effects largely depend on the plant or animal species,
phenological phase, and timing of extreme events [22,31,32].

Human health is also affected. One of the effects of a warmer spring and summer is
the earlier arrival of severe heatwaves such as those in 2017 and 2019 in Europe [38,39].
Founda et al. [40] notes that the hot extremes season in the Eastern Mediterranean region
is becoming longer by 3 to 10 days per decade since the mid-1970 s and is usually charac-
terized by an earlier onset. There are suggestions that early-season heat events are in fact
more hazardous to human health than those occurring later in the season due to lack of
acclimatization [6,41]. Warm spells in the autumn and winter also contribute to extended
activity of ticks and mosquitoes that represent potential vectors of a number of diseases
including Lyme borreliosis disease [32,42].

In line with global mean temperature patterns, Europe is warming, although the
direction and strength of this trend strongly vary geographically and over the course
of the year [43]. European research on air temperature extremes follows a pattern of
focusing largely on summertime events. Lorenz et al. [44] studied occurrence patterns for
extremely hot days at about 1000 sites across Europe, and found that the number of such
days at least tripled over the period 1950–2018. They found this trend to be particularly
strong in the last 20 years. Hot days became even hotter, especially in Central Europe.
Negative temperature trends were noted at only 6% of the study sites, and these were
located mostly in Northern Europe [44]. Morabito et al. [45] identified similar spatial and
temporal patterns examining summertime heatwave hazards in 28 European capitals for
the period 1980–2015. Their results were consistent with local and regional results obtained
by other authors. Increases in the frequency, intensity, and duration of summertime heat
extremes are well-documented—especially for Central Europe [46–50] and Southeastern
Europe [51–57]. Positive trends were also detected in the United Kingdom [58,59], in the
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Mediterranean region and in Southern Europe [60,61]. On the other hand, small increases,
and even decreases, in summer heat indices were noted for Northern Europe [62,63].

Warm extremes in the winter are less often examined in the literature than hot extremes
in the summer, while warm extremes in both spring and autumn have not been analyzed to
any meaningful extent. Sui et al. [64] found statistically significant increases for extremely
warm days in wintertime in Northern Europe for the period 1979–2016. Kivinen et al. [63]
obtained similar results for the Northern Fennoscandia for the period 1914–2013, and
determined the occurrence of a much higher number of extremely warm days in April
and October over the last 20 years of the study period. Chapman et al. [65] examined
the Central England Temperature Record and found a two- to threefold increase in the
frequency and duration of winter warm spells since the late 1800 s. Significant increasing
trends in the number of warm winter days were also noted for Central Europe [66] as well
as for high mountain sites in the Swiss Alps [67]. Research results for Southeastern Europe
vary. In Romania as well as Bosnia and Herzegovina significant increases were detected
for all seasons of the year, except for autumn [56,57], but a decreasing number of winter
warm days was identified for Greece [60].

As noted above, research studies on trends of extreme heat and warm events in
Europe focus mostly on individual regions or countries, and analyze time periods of
different length. Yet the key issue is that they use different methodologies and tend to
examine extreme temperature events for merely a single season of the year—in most cases
the summer. The lack of opportunity to compare data from different studies and the low
number of studies focused on transitional seasons of the year produce an incomplete picture
of variances in extreme temperature trends in Europe. The present study is designed to
help fill this void. The purpose of the study was to examine long-term trends in the number
of extremely hot or warm days in Europe over the course of the entire year in the period
from spring 1950 to winter 2019/2020, with a special focus on their spatial extent and
intensity as well as the use of a single research method in order to enable the comparability
of results.

2. Materials and Methods
2.1. Data and Study Area

The study relied on daily maximum air temperature data (TX) for Europe collected
in the period from March 1950 to February 2020. The data were obtained from an E-
OBS gridded dataset (v.21.0 e), where the data are presented in the form of a regular,
latitude-longitude grid with a spatial resolution of 0.1◦ × 0.1◦. The E-OBS is Europe-wide,
land-only observational dataset based on the European Climate Assessment and Dataset
(ECA&D) daily station data [68]. The analysis in the paper employed grid points with
no missing data. Analyses were conducted for five spatial domains representing various
geographic regions of Europe. These consisted of Western Scandinavia (SC), the British
Isles, Northern France and Benelux (BR), Central Europe (CE), Eastern Europe (EE), as well
as Iberia and the Western Mediterranean (IB) (Figure 1). The study areas were chosen based
on the spatial dimensions of domains used in an international project called: “COST733
Action: Harmonization and Applications of Weather Type Classifications for European
Regions” [69,70]. In light of the research goal defined in the study the original boundaries
of these domains were modified to create independent, non-overlapping fields. The size of
each study area is defined as the total surface area of all the grid boxes found within the
given domain. Only land areas were considered (in line with Figure 1). Each domain was
analyzed separately.

The study was performed for climatological seasons: winter (DJF), spring (MAM),
summer (JJA), autumn (SON). The analysis in the paper covered 70 years—winters from the
period 1950/1951 to 2019/2020 as well as the remaining seasons of the year from the period
1950 to 2019. The recurring date of February 29th was not included in the calculations in
this study.
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2.2. Definition of Extreme Heat Events and Warm Events

The research literature provides a large number of different methods that may be
employed to examine extreme heat events and warm events. Most papers define such
events in the form of days, where the daily maximum air temperature exceeds a threshold
value identified using high percentiles (e.g., 90th, 95th, 99th) [4]. While the framework used
to identify these thresholds is uniform, there are still many variants to be considered [71].
The most often examined characteristics of temperature extremes include their frequency,
intensity, and duration. The latter is considered in the case of prolonged events, i.e., heat-
waves and warms spells [4]. Few existing studies examine the spatial range of temperature
extremes, which does strongly affect the severity and outcome of such events [72,73].

In this study, extreme heat and warm events, hereinafter referred to as extreme
temperature events (ETEs) are defined as days when the daily TX exceeds the local 95th
percentile of the 1961–1990 period across at least 10% of the surface area of the given
domain. The 10% threshold was introduced in order to exclude local events from the
analysis. A percentile was identified for each studied grid point and each studied calendar
day using a 15-day-centered window [71]. The percentile-based thresholds identified in
this manner are valid for a given part of the year, which makes it possible to perform ETE
analyses for all seasons of the year [4]. Hence, in this study an extreme temperature event
is defined as a day with an unusually high temperature for a given location and season,
even if such a temperature would not be considered extremely high in an absolute sense.
The study uses the standard reference period of 1961–1990, which is recommended by the
World Meteorological Organization for long-term climate change assessments [74]. Two
basic ETE characteristics are examined in detail—spatial range and intensity.

The spatial range of an ETE (denoted by “a”, as the area, in the formulas below) is
characterized by the area affected by extreme temperature in a given domain. The spatial
connectedness of grid boxes with extreme temperatures is not considered. This is not
a major problem, as the studied spatial domains are not larger than the average size of
meteorological phenomena at the synoptic scale. This is why it is highly unlikely that two
separate ETEs featuring different synoptic patterns would occur on one day in one domain.
The analysis in the paper only excludes single, isolated grid boxes affected by extreme
temperatures. All spatial analyses were conducted using “raster” package (v3.3-13) [75] in
the “R” environment [76].

The intensity of an ETE is the cumulative temperature excess above the 95th percentile
across an area affected by extreme temperature (denoted by “e”, as the excess, in the



Atmosphere 2021, 12, 612 5 of 21

formulas below). As mentioned earlier, the size of the area of individual grid boxes varies
with latitude (see Section 2.1 of this paper), which had to be taken into account in the
calculations of the intensity of ETEs. From a technical perspective, the TX excess above
the given percentile-based threshold for all affected grid boxes was multiplied by their
respective surface areas, and then added together. The cumulative temperature excess
above the threshold is widely considered to be a reliable measure of heat event intensity
making it possible to calculate the size of the additional heat load that appears in the
environment due to the occurrence of a temperature extreme [3,77,78]. This additional heat
energy is one of the primary factors responsible for the effects of ETEs on human health,
natural ecosystems, and the economy.

In order to characterize individual ETEs in terms of their spatial range and intensity,
a slightly modified version of the Sulikowska and Wypych [39] Extremity Index (EI) was
used in this study:

EI = TA · TI (1)

The total area (TA) of an ETE was computed as the ratio of the spatial range of an ETE
(a; km2) and the surface area of the entire domain in question (A; km2):

TA =
a
A

(2)

The total intensity (TI) of an ETE is calculated as the ratio of the intensity of an ETE
(e; ◦C · km2) and the surface area affected by the given ETE (a; km2):

TI =
e
a

(3)

In their basic forms, TA, TI, and EI serve to characterize individual ETEs—they are
daily indices. TA and TI may be analyzed independently. TA or the areal proportion of the
domain affected by extreme temperatures may have a maximum value of 1.0, whereby the
entire domain is affected. TI, which is the average percentile-based threshold exceedance
value for an ETE in an area affected by extreme temperatures does not have an upper limit.
Its value usually equals several degrees Celsius. In this study the definition of TI was
modified with respect to the original definition [39] for the purpose of analysis of long
time series and the evaluation of long-term ETE trends. EI produces a neat way to combine
spatial range and intensity information. EI makes it possible to evaluate and compare ETEs
within a single domain, and between domains, as well as for different seasons of the year
thanks to the use of a calendar-day percentile. EI is expressed in ◦C and is interpreted as
the average temperature excess over the percentile-based threshold during an extreme
temperature event in relation to the surface area of the given spatial domain.

2.3. Research Outline

Analyses were performed independently for each domain and season of the year. The
first step consisted of an assessment of trends in the average maximum air temperature
and temperature on the warmest day of the season (TXx). TXx is the only absolute measure
of extreme air temperature used in this study. Buckley et al. [33] asserts that both absolute
and relative measures are biologically relevant, although the basis for their use depends on
the temperature tolerance of a species and its degree of adaptation to its local temperature
environment. In this study we wanted to check whether absolute metrics (TXx) and relative
metrics (EI and its components) produce geographically consistent results. The analysis
covers average TXx trends for each studied domain as well as trends for each given grid
point, and the results are shown on appropriate maps.

The second stage of analysis sought to determine the general characteristics of ETEs oc-
curring in each studied domain in every season of the year by examining the distributional
characteristics of the daily values of EI, TA, and TI. The study focused on a comparison of
average values of EI, TA, and TI for different domains and different seasons of the year as
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well as on an assessment of the range of daily values of these three indices. The results of
this analysis are presented in the form of boxplots.

Seasonal EI totals that combine frequency, spatial range, and intensity information for
ETEs that occur in a given season were used in order to assess individual seasons in terms
of extreme temperature conditions. The third stage of the study consisted of an analysis of
seasonal and regional variability in EI totals and in their trends. In addition, the following
trends were investigated: (1) frequency of ETEs, defined as the sum of all ETEs in a season;
(2) mean spatial range of ETEs, defined as the average TA across all ETEs in a season; and
(3) mean intensity of ETEs, defined as the average TI across all ETEs in a season. Analyses
of trends were performed using the nonparametric Mann–Kendall test and Sen’s slope
estimator [79]. The statistical significance of trends was assessed at the level α = 0.05. The
calculations were performed employing the “trend” and “spatialEco” packages (versions
1.1.4 and 1.3–2, respectively) [80,81] in the “R” environment.

In the last step of the study the frequency of occurrence of the most severe ETEs—
hereinafter referred to as very severe ETEs—was assessed over the long term for each
domain and every season of the year. The second stage of analysis consisting of an
examination of variances in daily EI, TA, and TI values for ETEs enabled the determination
of thresholds for each of the three indices. This then made it possible to find very severe
events in each studied domain and for each season of the year. Thus, very severe ETEs
included days on which extremely high temperatures affected at least 50% of the given
domain surface (TA ≥ 0.5), while the average excess above the percentile-based threshold
for the affected area equaled at least 2.0 ◦C (TI ≥ 2.0 ◦C). Given the low overall frequency
of ETEs that could fulfill all the aforementioned conditions, it was not possible to conduct a
reliable analysis of their trends. Thus, sums of very severe ETEs over decades were used for
the purpose of assessing their variability for each studied domain and season of the year.
Very severe ETEs were grouped according to decade of occurrence: 1950–1959, 1960–1969,
etc. (1950/51–1959–60, 1960/61–1969/70, etc. for winters).

3. Results

The average areal, maximum air temperature (TX) increased in every spatial domain
and every season of the year—and this increase was statistically significant (Table 1).
Considering all of the studied domains together, the strongest average trend was observed
in the spring when it ranged for the set of studied domains from 0.3 to 0.5 ◦C per 10 years.
It was weakest in the autumn when it equals 0.2 ◦C per 10 years for all the domains
except for Iberia (IB). Among the studied domains, Eastern Europe (EE) and Iberia are
characterized by the greatest warming—on the annual scale. On the other hand, in the
domain encompassing British Isles, Northern France, and Benelux countries (BR), variances
in trends between the seasons of the year are the smallest (Table 1).

Some of these patterns were discernible in temperature trends for the warmest day
of the season (TXx); however, a large (small) increase in the seasonal TX average did not
always correspond to large (small) increases in TXx, and variances between seasons of
the year were greater (Table 1). In this set of data one could observe a large increase in
TXx in the spring in Western Scandinavia (SC) and in the summer in the “British” domain,
(0.5 ◦C per 10 years); in both cases, the trend was statistically significant across about 83%
of the domain surface area (Table 1, Figure 2a–h). Given the large increase in the seasonal
average TX, the relatively small average increase in TXx in spring in Eastern Europe was
rather surprising. The same may be said of the small percentage of statistically significant
trends (13% of domain surface area, Figure 2c,d). Unsurprisingly, relatively weak trends
were noted in the autumn (Table 1). As it turned out, small average increases in TXx in the
autumn or even the absence of a trend, as in the case of Central Europe (CE), are associated
with TXx decreases in many regions of Europe (Table 1, Figure 2g). This was especially
true in autumn in Central and Eastern Europe—but also in summer, and to a lesser degree
in winter, in Western Scandinavia (Figure 2a,e,g). While the vast majority of TXx declines
were not statistically significant, they affected a substantial part of the studied domains in
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both autumn and summer. It is noteworthy that statistically significant increases in TXx
covered only about 6% of the area of Central Europe and Eastern Europe in autumn and
about 34% of the area of Western Scandinavia in summer and winter (Figure 2b,f,h).

Table 1. Trend data for the average areal maximum air temperature (TX) and average maximum air
temperature on the warmest day of the season (TXx) in each studied spatial domain during the study
period (◦C per 10 years). The average areal TX trend is statistically significant at α = 0.05 for all the
studied domains and seasons. The statistical significance of TXx trends is denoted on appropriate
maps (Figure 2). For an explanation of acronyms see Figure 1.

Variable Season
Spatial Domain

SC BR CE EE IB

Average areal TX trend

winter 0.4 0.3 0.3 0.4 0.3
spring 0.3 0.3 0.4 0.5 0.4

summer 0.2 0.3 0.4 0.3 0.4
autumn 0.2 0.2 0.2 0.2 0.3

Average TXx trend

winter 0.2 0.2 0.4 0.4 0.3
spring 0.5 0.3 0.3 0.2 0.4

summer 0.2 0.5 0.4 0.3 0.4
autumn 0.3 0.2 0.0 0.1 0.3

Due to the research method used, the seasonal average number of ETEs was similar
for each of the studied domains in each season of the year and equals about 17. In spite of
this certain geographic and seasonal patterns could be observed (Figure 3). These patterns
may be explained by (1) variations of air temperature during the baseline period and
beyond it, which affected the number of percentile-based threshold exceedances in the
study period (this problem is widely discussed in [71]), and by (2) the need to fulfill certain
spatial criteria in order to classify a given day as an ETE (10% of domain surface area
needs to be affected by extremely high TX). Thus, on average, fewer ETEs occurred in
Western Scandinavia and the domain that included the British Isles, Northern France, and
Benelux countries, and seasonal variances were smaller relative to Central Europe and
Eastern Europe as well as Iberia (Figure 3). Noteworthy was the large average number of
ETEs in the last three aforementioned domains in the summer: 23, 24, 21, respectively. In
comparison with other domains, the number of ETEs in Iberia was also larger in spring
(19). In the winter the number of ETEs became similar between all of the studied domains
at 16. The average number of ETEs in all the investigated domains was lowest in autumn.
The one exception was Eastern Europe, where few ETEs were also noted in the spring
(Figure 3).

Not only the average number of ETEs, but also their severity, defined as the product
of intensity and spatial extent of the given event, and expressed by the magnitude of the
Extremity Index (EI), varied spatially and seasonally. The average value of EI for all the
analyzed domains and seasons ranged from 0.4 to 0.6 ◦C, although the EI distribution was
always asymmetric to the right—therefore, the majority of ETEs had an EI value below the
average (Figure 4, upper row). The most severe ETEs had an EI value ranging from about
2.0 ◦C to a little more than 6.0 ◦C. These were the most extreme of events characterized
by high intensity and/or large spatial range, which are marked on diagrams as outliers
(Figure 4, upper row). The average total intensity (TI) ranged from 0.9 to 1.6 ◦C, with the
highest values for individual ETEs ranging from about 3.0 ◦C to almost 7.0 ◦C (Figure 4,
middle row). On average, ETEs affected about 30% of the area of the studied domains
(TA ≈ 0.3), although the most expansive events covered virtually all of the domain area
(Figure 4, lower row). As in the case of EI values, the probability distribution for TI and
TA was always asymmetric to the right, thus most ETEs were characterized by TI and TA
values lower than the average.
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In the wintertime ETEs were most severe in Central and Eastern Europe due to a
relatively high average intensity and large average spatial range. On the other hand, winter
ETEs in Western Scandinavia, the “British” domain, and Iberia were characterized by a
lower average severity. In the case of the “British” domain this was due to a much lower
average TI (Figure 4b). The situation was different in Western Scandinavia and Iberia,
where ETEs tended to cover smaller areas of the studied domain (Figure 4b,c). Average
spring EI values and variances therein were comparable for all the studied domains. In
Eastern Europe spring ETEs were, on average, somewhat more intense (Figure 4e), but
in the “British” domain and in Iberia usually covered larger parts of the given domain,
relative to other regions (Figure 4f). ETEs in the summer were, on average, the most severe
in the “British” domain and Central Europe, which was mainly due to high average TI
(Figure 4g–i). In the three remaining domains, summer ETEs in Eastern Europe tended to
be more intense, but covered a smaller geographic area. The opposite was true in Iberia,
while Western Scandinavia was somewhere in between (Figure 4h,i). In autumn, as in the
case of spring, the average value of EI and variances therein tended to be similar in all
the studied domains. Only in Eastern Europe did autumn ETEs more often than in other
domains possess relatively high TI and TA values (Figure 4j–l). To some extent the autumn
TI pattern resembled its winter pattern (Figure 4k). In the case of average TA values, these
tended to be similar for all the studied domains, although in the “British” domain and
Eastern Europe autumn ETEs more frequently occupied a larger surface area in comparison
with that in other regions (Figure 4l).

To summarize this issue at the individual domain level, ETEs in Western Scandinavia
and Iberia were, on average, the most severe in the spring, followed by the summer. In
the domain encompassing the British Isles, Northern France, and Benelux countries, ETEs
were most severe in the summer followed by the spring. In these three domains, winter
and autumn ETEs were characterized by similar average severity, although ETEs with a
higher EI value tended to occur somewhat more often in winter. In Central Europe average
EI values were highest in the two most extreme seasons of the year—winter and summer.
On the other hand, autumn ETEs were, on average, the least severe. The situation was
still different in Eastern Europe, where ETEs were characterized by the greatest average
severity in the winter and spring. This was the only one of the studied domains where
average EI and variances therein were the lowest in summer (Figure 4).

Seasonal EI totals were employed to evaluate long term variances and trends in
extremely hot and warm conditions. These made it possible to assess each season in terms
of ETE frequency, intensity, and spatial range. Figure 5 shows the temporal variability
of EI totals along with a smoothing filter. Average EI totals ranged from 6 ◦C to 13 ◦C
depending on the domain and season of the year. There were some seasons during the
study period which did not feature an ETE (EI = 0 ◦C). On the other hand, the most severe
seasons had EI totals ranging from tens of degrees to more than 100 ◦C (Figure 5). In
the wintertime, the pattern of EI totals was characterized by relatively strong agreement
between domains—in many cases low and high EI totals were noted for the same years in
several domains (Figure 5a). In transitional seasons of the year the differences between
domains were larger (Figure 5b,d), while in the summer each domain followed its own,
unique pattern (Figure 5c). Nevertheless the entire study period may be roughly divided
into two subperiods. The first subperiod lasted from the beginning of the study period
until the mid-1980s and was characterized by relatively low EI totals and little variance
from year to year. The second subperiod began in the mid-1980s and ended with the end
of the study period. This subperiod was characterized by the occurrence of seasons with
severalfold higher EI totals and increased variances therein from year to year as well as
an overall growth pattern in many cases. This division could be observed most readily
in winter and spring (Figure 5a,b). In summer its boundary shifted back several years or
shifted forward, depending on the domain (Figure 5c). In the autumn a discernible increase
in EI totals was noted only for the last 20 to 30 years (Figure 5d).
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Key characteristics of seasons with the highest EI totals—or number of extreme tem-
perature events (ETEs), average total intensity (average TI), and average total area affected
(average TA)—showed the high relevance of each of these variables (Table 2). Noteworthy
are two domains—Central Europe and Eastern Europe—where very high EI totals were
noted both in winter (61.2 ◦C in 1989/1990 and 54.4 ◦C in 2006/2007, respectively) and
summer (63.0 ◦C in 2015 and 107.6 ◦C in 2010, respectively). However, summer data for
Iberia were also noteworthy (71.9 ◦C in 2003). Such high EI totals for Central and Eastern
Europe in the most extreme winter seasons were first and foremost the result of the high
intensity of events, rather than their high frequency or spatial range (Table 2). On the
other hand, high EI totals in summer were the result of all the studied variables. The
summer of 2010 in Eastern Europe was the most severe season of all the seasons examined
in the study. ETEs occurred over the course of more than 70% of summer days and, on
average, covered more than half the domain, while their average TX excess equaled 2.7 ◦C.
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The summer of 2003 in Iberia was ranked second. As in the case of Eastern Europe in
2010, ETEs occurred over the course of 70% of days, although their geographic coverage
remained below 50% of the domain and their average TI value was 1.9 ◦C (Table 2). Of all
the spring seasons studied, the most severe were noted for Iberia and Western Scandinavia
when EI totals attained values similar to those noted for the summer (54.4 ◦C in 2017 and
44.3 ◦C in 2007, respectively). The high severity of the 2010 autumn season stood out for
Eastern Europe, which may be described as a continuation of extreme conditions in the
summer of 2010. It is important to note that the last 20 years were characterized by the
occurrence of the highest seasonal EI totals, as almost 90% of all the most severe seasons
in the studied domains occurred after the year 2000. Exceptions consist of the 1989/1990
winter in Western Scandinavia and Central Europe and the summer of 1976 in the domain
encompassing the British Isles, Northern France, and the Benelux countries (Table 2).

Table 2. Characteristics of seasons of the year with the highest totals of the Extremity Index (EI) in the study period—number
of extreme temperature events (ETEs), average total intensity (average TI), and average total area affected (average TA). For
an explanation of acronyms see Figure 1.

Season Spatial Domain Year EI Total (◦C) Number of ETEs Average TI
(◦C) Average TA

winter

SC 1989/1990 25.5 35 1.4 0.38
BR 2018/2019 32.0 32 1.4 0.51
CE 1989/1990 61.2 47 2.1 0.53
EE 2006/2007 54.4 49 2.0 0.47
IB 2019/2020 30.4 48 1.4 0.37

spring

SC 2007 44.3 31 2.1 0.53
BR 2011 39.4 43 1.8 0.43
CE 2018 30.5 44 1.6 0.38
EE 2014 38.6 37 2.0 0.43
IB 2017 54.4 53 2.0 0.45

summer

SC 2018 40.2 42 1.9 0.42
BR 1976 50.6 45 1.8 0.39
CE 2015 63.0 51 2.1 0.51
EE 2010 107.6 65 2.7 0.53
IB 2003 71.9 64 1.9 0.47

autumn

SC 2006 29.9 45 1.5 0.38
BR 2011 26.0 40 1.3 0.37
CE 2018 28.6 40 1.8 0.38
EE 2010 38.0 29 2.1 0.46
IB 2017 31.1 36 1.6 0.47

The readily observable increase in EI totals after 1980 (Figure 5) prompted us to
examine trends for two time periods—a long period encompassing the entire investigated
period 1950–2019 (1950/51–2019/20 for winters) and a short period encompassing the most
recent period of rapid change: 1980–2019 (1980/81–2019/20 for winters). Seasonal trends
in EI totals, ETEs frequency and average TA and TI, were examined.

An analysis of trends in EI totals and that of associated variables required attention to
different rates of change in individual domains over the course of a year.

The greatest changes occurring over the course of the year were noted in Central
Europe and Eastern Europe for the most recent 40-year period (Table 3). In Central Eu-
rope changes occurred most intensively in summer—EI totals increase at a rate of 2.4 ◦C
(1950–2019) or even 6.7 ◦C (1980–2019) per 10 years. The latter was the highest value noted
for all seasons and domains. Such a strong trend was mainly due to a rapid increase in the
frequency of occurrence of ETEs, which reached 4.0 and 9.4 days per 10 years in the two
analyzed periods, respectively (Table 3). The increase in average TA and average TI was
less pronounced, but still statistically significant. Looking at the short term, EI totals grew
rather rapidly also in the spring (3.4 ◦C per 10 years) and autumn (3.0 ◦C per 10 years).
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The mean area affected by extreme temperatures increased by 3% of the domain area per
10 years over the last four decades, while the average intensity of extreme temperatures
increased 0.13 ◦C per 10 years in all seasons except winter. In the wintertime changes in
all the studied variables were quite large and also statistically significant over the long
term. In the late 1980s one could observe a rather sudden shift in the pattern of EI totals
in the direction of higher values, as opposed to a gradual increase (Figure 5a). In the last
40 years only the frequency of ETEs in the wintertime significantly increased in Central
Europe (3.1 days per 10 years; Table 3).

Table 3. Trends for Extremity Index (EI) seasonal totals, extreme temperature event (ETE) frequency,
average total area (TA) affected by extreme temperatures during an ETE, and average total intensity
(TI) of an ETE for two time periods: (1) a long period consisting of the period 1950–2019 (1950/1951–
2019/2020 for winters), (2) a short period consisting of the period 1980–2019 (1980/1981–2019/2020
for winters). A color scale is assigned to every variable for the purpose of coherence between the two
analyzed time periods. Statistically significant trends (α = 0.05) are shown in bold. For an explanation
of acronyms see Figure 1.

Variable Season

Time Period and Spatial Domain

1950–2019 1980–2019

SC BR CE EE IB SC BR CE EE IB

EI seasonal totals
(◦C per 10 yrs)

winter 0.8 0.9 1.5 1.3 1.2 1.4 1.9 2.1 2.0 1.8
spring 2.0 1.5 1.2 1.8 2.4 4.2 3.1 3.4 4.8 5.2

summer 0.7 1.6 2.4 1.7 2.7 1.9 3.3 6.7 6.1 5.0
autumn 0.8 1.0 1.2 1.2 0.9 2.3 1.5 3.0 3.5 1.8

ETE frequency
(days per 10 yrs)

winter 2.0 2.4 2.2 2.2 2.4 2.6 4.0 3.1 4.1 4.2
spring 2.6 2.2 2.4 2.2 3.4 4.8 3.9 5.3 5.3 7.1

summer 1.0 2.2 4.0 3.3 4.6 1.3 2.6 9.4 10.0 7.2
autumn 1.6 1.9 1.9 1.7 2.1 4.0 2.4 3.8 4.0 3.5

mean TA

winter 0.00 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.00 0.01
spring 0.02 0.01 0.01 0.02 0.02 0.03 0.02 0.03 0.05 0.02

summer 0.01 0.02 0.01 0.01 0.02 0.03 0.02 0.03 0.04 0.02
autumn 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.03 0.04 0.01

mean TI
(◦C per 10 yrs)

winter 0.01 0.04 0.05 0.06 0.03 0.02 0.06 0.08 0.12 0.02
spring 0.07 0.05 0.03 0.06 0.08 0.15 0.10 0.13 0.20 0.16

summer 0.03 0.12 0.08 0.04 0.07 0.12 0.26 0.13 0.10 0.14
autumn 0.02 0.05 0.05 0.09 0.05 0.06 0.08 0.13 0.18 0.09

In Eastern Europe trends were relatively invariable when given the pattern for the
entire study period. EI totals increased by 1.2 to 1.3 ◦C per 10 years in autumn and winter
and 1.7 to 1.8 ◦C per 10 years in spring and summer (Table 3). Seasonal variances in
trends since 1980 increased significantly (Figure 5, Table 3). Changes occurred very rapidly,
especially in summer when EI totals reached 6.1 ◦C per 10 years and the number of ETEs
grew by 10.0 days per 10 years (Table 3). The increase in average TA was also statistically
significant. Trends in EI totals were also very strong for the spring and autumn: 4.8 ◦C
and 3.5 ◦C per 10 years, respectively. This was primarily related to the largest increase in
average surface area occupied by ETEs among the studied domains (up to 5% of a domain’s
surface area per 10 years) as well as their average TI for these two seasons of the year
(Table 3).

A different pattern of change applied to domains located in the west of Europe, i.e.,
the domain encompassing the British Isles, Northern France, and Benelux, and Iberia. In
these regions changes occurred most intensively in spring and summer. This pattern of
change applied to trends identified for the entire study period and the most recent 40-year
period, with the rate of change in EI totals and ETE frequency always being higher in Iberia
(Table 3). The “British” domain was characterized by the most constant rate of change over
the course of the year. Changes were the largest in the summer and primarily related to the
highest among all the studied domains increase in average TI, reaching 0.26 ◦C per 10 years
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in the period 1980–2019. The absence of a statistically significant increase in ETE frequency
for this period underscored the growing intensity of events. Interestingly enough if one
were to consider ETE frequency the largest increase was noted there in wintertime (Table 3).
Yet these were still low severity events when compared with the other studied domains
(Figure 5a).

The fastest changes in EI totals in the spring occur in Iberia and the Western Mediter-
ranean which was primarily due to the fastest increase in ETE frequency, 3.4 days (1950–2019)
and 7.1 days per 10 years (1980–2019), and due to rapidly growing average intensity of
events (Table 3). In this domain ETE growth occurred even faster in the summer: 4.6 and
7.2 days per 10 years in the analyzed periods, respectively. Their average TI and average
TA also increased significantly (Table 3). The rate of increase in EI totals in autumn and in
winter in Iberia was two to three times smaller than in spring and summer. This pattern
held for both trends identified for the entire study period and those identified for the most
recent 40 years (Table 3).

In the domain located farthest to the north–Western Scandinavia—spring was the
season characterized by the highest rate of change per 10 years: EI totals increased 2.0 ◦C in
the period 1950–2019 and 4.2 ◦C in the period 1980–2019, while ETEs increased by 2.6 and
4.8 days, respectively. Average TA and TI for ETEs also increased significantly (Table 3). As
in the case of Central Europe and Eastern Europe, quite strong changes in warm extremes
have also occurred in autumn in Western Scandinavia over the last 40 years. This was
especially true of their frequency: 4.0 days per 10 years. Noteworthy in this region was
the virtually complete lack of statistically significant trends in variables for the summer
season—a time characterized by the occurrence of rapid and mostly significant changes in
extremes in all the other studied domains.

In summary, EI totals increased in all the studied domains in each season of the year,
but with variable intensity and significance of changes depending on the analyzed time
period. Increases in both EI totals and ETE frequency were significant for the entire study
period, with the exception of trends for the summer in Western Scandinavia (Table 3). EI
totals increased from 0.7 to 2.7 ◦C per 10 years. The average increase in ETEs is 1.0 to 4.6 per
10 years. The trends for these two variables varied more between domains in the spring and
summer versus the autumn and winter (Table 3). On the contrary, changes in average TA
were fairly constant. In most cases the average total area affected by extreme temperatures
increased by 1% to 2% of domain area per 10 years. The situation was different in the case
of trends for average TI, which fluctuate from 0.01 ◦C to 0.12 ◦C per 10 years (Table 3).
Trends for all the variables for the last 40 years were stronger than those for the entire
study period in every domain and season of the year, with only a few exceptions. These
exceptions included weaker trends in mean TA in Eastern Europe in the winter and in
Iberia in the winter and spring, as well as weaker trends in mean TI in Iberia in the winter.
The strength of mean TA trends remained the same in both considered time periods in
Western Scandinavia in the winter, in the ‘British’ domain in all seasons but spring, and in
Iberia in the summer and autumn (Table 3). In the recent 40 years both the rate of increase
in EI totals and the number of ETEs were even more than three times higher in comparison
with the long term, reaching 1.4 ◦C to 6.7 ◦C per 10 years and 1.3 to 10.0 days per 10 years,
respectively. The strength of trends for average TA and TI varied much more between
seasons of the year and between domains and increases to a maximum of 5% of domain
area and 0.26 ◦C per 10 years, respectively.

The increase in ETE frequency and their increasing average TA and TI led to an increase
in the frequency of occurrence of very severe events defined as ETEs with a TA ≥ 0.5 and
TI ≥ 2.0 ◦C. Figure 6 shows the number of ETEs that meet both requirements in each
10-year period in each studied domain. Considering all seasons of the year, averages of
48 and 49 such ETEs per 10-year period were noted in Western Scandinavia and in the
domain encompassing the British Isles, Northern France, and the Benelux countries, while
an average of 60 was noted in Iberia, with the largest number noted in Central Europe
and Eastern Europe—an average of 70. Very severe ETEs most often occurred in spring
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and summer, although in Central and Eastern Europe they often also appeared in winter,
and in Eastern Europe quite often in autumn (Figure 6). A gradual increase in the number
of very severe ETEs at the annual scale was noted for the last four to five decades in all
the studied spatial domains. The number of very severe ETEs was largest in each domain
in the last decade, and this applies to all seasons of the year except for winter in Central
and Eastern Europe, where the largest number of such ETEs occurred a decade earlier
(Figure 6). Periods with the smallest number of very severe ETEs vary from domain to
domain. In the “British” domain this was the period 1960–1969, while in Central Europe
and Eastern Europe this was 1970–1979. In Iberia few very severe ETEs were noted for the
period from 1960 to 1979, while in Western Scandinavia the smallest number of such events
was noted in a more recent decade: from 1980 to 1989 (Figure 6).
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In Western Scandinavia the increase in the number of very severe ETEs was especially
high in spring and summer over the last three decades. In this period one could also
observe an increase in the frequency of such events in autumn (Figure 6). In the “British”
region very severe ETEs tended to increase in the spring—their number increased every
decade since the 1970s. In summer a relatively large number of such ETEs were noted in this
region in the years 1970–1979, and in every decade starting with the period 1990–1999. In
Central Europe and Eastern Europe one could observe an abrupt increase in the frequency
of wintertime very severe ETEs in the last 40 and 20 years, respectively. A large number
of very severe ETEs occurred in summer in these two regions during the first decade
of the study period, and then their frequency declined to increase once again in the last
three decades and attain a value of almost 100 in Central Europe in the period 2010–2019
(Figure 6). The frequency of very severe ETEs in autumn in these two regions was much
higher in the last decade with respect to the entire studied period—and this trend was
much more pronounced in Eastern Europe (Figure 6). In Iberia a systematic and stable
increase in the number of very severe ETEs was noted in the spring and summer. In the
autumn such events did not occur at all in the first two decades of the study period and in
the period 1990–1999, while in the period 1970–1979 only one case was noted. However,
their number in the last decade was quite large, comparable to that in Central Europe
(Figure 6). To summarize this issue, the number of very severe ETEs increases most rapidly
in the spring and summer, and in Central Europe and Eastern Europe also in the winter. In
autumn the number of very severe ETEs was relatively high, especially in the last decade
of the study period in Central and Eastern Europe, and in Iberia.
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4. Discussion and Conclusions

Through the use of a consistent framework for the measurement of extreme heat
events and warm events (extreme temperature events, ETEs), this study presents the first
comprehensive analysis of long-term changes in ETEs in Europe for the period 1950–2019
(1950/1951–2019/2020 for winters). The research was conducted in five spatial domains
representing different regions of Europe that together cover a very large portion of the
continent. Each studied domain was treated individually and results were examined with
respect to the seasons of the year. ETEs were analyzed from a spatial perspective and were
defined as days when the maximum air temperature exceeds the local percentile-based
threshold across at least 10% of the area of the given domain. The severity of each ETE
was assessed using the Extremity Index (EI) that combines information on the intensity
and spatial range of an event—and at the same time makes it possible to examine the
two characteristics separately. Given that EI is based on relative measures, it enables the
comparison of results obtained in different geographic areas and seasons of the year. In
addition, trends in air temperature on the warmest day of each season (TXx) were examined
for every studied domain in order to check whether the direction and magnitude of changes
in air temperature extremes based on relative measures are consistent with those obtained
via absolute measures.

Climate warming in Europe during the studied 70-year period was accompanied by
an increase in the frequency and severity of ETEs expressed in terms of their increasing
intensity and spatial range. Yet, as our study demonstrates, every region of Europe is
characterized by its own event pattern, and trends across the continent strongly vary geo-
graphically and seasonally. In addition, trend patterns for average air temperature do not
always correspond with trend patterns for indices of extreme events. Furthermore, results
based on absolute measures and relative measures of temperature extremes may in fact
identify different time periods and geographic areas subject to such very intensive changes.

Areas and seasons of the year identified in our study and characterized by intense
warming (in light of average seasonal TX values) correspond to results obtained by
Pokorná et al. [43] who analyzed in detail variances in air temperature trends over the
course of the year in Europe in the period 1961-2000. The highest rate of change was noted
for winter in Western Scandinavia, spring and summer in Central Europe and Iberia, as
well as winter and spring in Eastern Europe. The autumn season was characterized by
the weakest warming dynamics, which is in part associated with so-called warming holes
or periods and areas of non-warming or even cooling [43]. Pokorná et al. [43] proved the
existence of autumn warming holes—especially for Central Europe and Eastern Europe.
Our analysis of changes in TXx data clearly shows the presence of warming holes. TXx
was found to decline in autumn in some parts of Central Europe and Eastern Europe. Most
of these declines were statistically not significant.

Mainly significant increasing trends since 1950 are evident for seasonal EI; therefore,
also for ETE frequency, intensity, and spatial range. Our study highlights that increases
in indices that describe temperature extremes are accelerating and in the last 40 years the
rate of change has been even more than three times greater than in the entire study period.
The acceleration of the rate of change in heatwave index values in different parts of the
globe was noted in a recent study by Perkins-Kirkpatrick and Lewis [3]. Lorenz et al. [44]
documented these changes in trends for days with extreme heat in Europe, while in a
study by Papalexiou et al. [82] these changes were shown with respect to the increase in the
highest temperature of the year. The acceleration in increasing trends in extremely hot or
warm days was proved also in regional studies, e.g., in the summer in Poland [83] and in
the summer and winter in the western part of the Mediterranean [60]. Our results suggest
that this shift in trends in indices of extremes over the last few decades is also manifested
in the increasingly frequent occurrence of very severe ETEs with a large spatial range and
high intensity. In light of increasing global warming [84,85] and future climate projections
predicting further warming, these tendencies are likely to be continued [86].
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Our study reveals some common patterns of trends in heat and warm extremes indices
across different regions of Europe, but more importantly highlights regional and seasonal
differences in the rate of change.

In Western Scandinavia changes occur the most rapidly in spring, although over the
last 40 years an acceleration of increases is also observed in autumn. Kivinen et al. [63]
also observed a rapid increase in the frequency of exceptionally warm spring and autumn
seasons and extremely warm days in April and October in Northern Fennoscandia in the
last 20 years of their 100-year study period. In Scandinavia increases in heat extremes
indices are relatively small in summer [62,63], while in the case of TXx even declines were
noted, although summertime very severe ETEs in this region have been on the rise in recent
decades. Most of the aforesaid declines were not statistically significant.

On the other hand, in Central Europe and Eastern Europe, it is summer changes that
are the greatest, as observed over the last four decades in terms of the frequency of ETEs
that increased by 9 to 10 days per 10 years, the highest value noted for all seasons and
domains. A large acceleration in increases in extremes indices may be observed in these
regions also in spring and, as in the case of Scandinavia, in autumn. This amplification of
trends may indicate a gradual decline of autumn warming holes in these regions of Europe.
Existing studies in Central Europe and Eastern Europe focus primarily on hot extremes
in summer and remain in agreement that these extremes have been rapidly increasing in
terms of frequency, intensity, and spatial range since the mid-20th century [47–49,53–55].
Considerable changes also occur in these two regions in winter [66]. Our results indicate
that changes in winter manifest themselves particularly strongly in terms of a large increase
in TXx as well as a substantially higher frequency of occurrence of very severe ETEs in
recent decades.

In the domain encompassing the British Isles, Northern France, and Benelux countries
as well as in Iberia increases in indices of hot and warm extremes are largest in spring and
summer. The rate of increase is almost always higher in Iberia. The one exception to this
rule is the largest among all seasons and domains rise in the intensity of summer ETEs
and TXx in the “British” domain. Existing studies in this area show an increase in summer
heatwaves and winter warm spells in the United Kingdom [58,59,65]. In contrast to the
regions described earlier, the acceleration of trends in autumn across the two aforesaid
domains over the last 40 years has not been that strong. Earlier studies in the Iberian
Peninsula found increases in heat and warm indices for the summer season [61,62] and
winter season [87], although the rate of change in winter was smaller [60].

A multifaceted analysis of long-term variances and trends in air temperature extremes,
with a special focus on their intensity and spatial extent, was possible through the use of
the Extremity Index (EI). The EI proved to be a useful tool for the analysis and evaluation
of the severity of ETEs. The results obtained with its use are consistent with findings
published in the literature. The advantages of EI include: (1) comparability of results
between different geographic regions and seasons of the year, (2) facilitation of both an
assessment of the severity of individual daily events as well as the aggregation of results
and assessment of the severity of extremes on a monthly and seasonal basis, (3) facilitation
of a spatial examination of ETEs, (4) consideration of the excess heat load that appears
in the environment due to the occurrence of ETEs and which creates a burden on living
organisms, ecosystems and human society in general, (5) simple algorithm and option to
choose a severity threshold. The above characteristics suggest that this index may be useful
in a broader context in future research.
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indices of hot extremes in Poland. Theor. Appl. Climatol. 2017, 129, 459–471. [CrossRef]
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