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Abstract: The COVID-19 pandemic triggered catastrophic impacts on human life, but at the same time
demonstrated positive impacts on air quality. In this study, the impact of COVID-19 lockdown inter-
ventions on five major air pollutants during the pre-lockdown, lockdown, and post-lockdown periods
is analysed in three urban areas in Northern England: Leeds, Sheffield, and Manchester. A Gener-
alised Additive Model (GAM) was implemented to eliminate the effects of meteorological factors
from air quality to understand the variations in air pollutant levels exclusively caused by reductions
in emissions. Comparison of lockdown with pre-lockdown period exhibited noticeable reductions in
concentrations of NO (56.68–74.16%), NO2 (18.06–47.15%), and NOx (35.81–56.52%) for measured
data. However, PM10 and PM2.5 levels demonstrated positive gain during lockdown ranging from
21.96–62.00% and 36.24–80.31%, respectively. Comparison of lockdown period with the equivalent
period in 2019 also showed reductions in air pollutant concentrations, ranging 43.31–69.75% for NO,
41.52–62.99% for NOx, 37.13–55.54% for NO2, 2.36–19.02% for PM10, and 29.93–40.26% for PM2.5.
Back trajectory analysis was performed to show the air mass origin during the pre-lockdown and
lockdown periods. Further, the analysis showed a positive association of mobility data with gaseous
pollutants and a negative correlation with particulate matter.

Keywords: air pollution; COVID-19; deweather; generalised additive model (GAM); lockdown;
SARS-CoV-2; statistical modelling

1. Introduction

Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) is a respiratory disease with symptoms of high temperature,
new continuous cough and loss or change in sense of smell or taste and may in worse case
lead to shortness of breath and pneumonia. COVID-19 was first identified in Wuhan, China,
in late 2019 and spread globally within a limited time. COVID-19 was called a “global
pandemic” by the World Health Organisation (WHO) on 11 March 2020 [1]. The outbreak
of the disease started at the end of 2019 and spread rapidly across the globe leading to
considerable stress on health systems and causing fatalities [2]. To curb the spread of the
disease and the subsequent public health impacts, governments across the globe announced
different periods of first lockdowns from January to August 2020. While the lockdowns
might have been effective in reducing the rate of infections [3], the socio-economic impacts
of the restrictions were remarkable. However, the reduction in human activities positively
influenced the environment. An increasing number of studies, using satellite and ground
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data, reported reductions in the concentrations and emissions of air pollutants across the
world [4]. Considering the health problems caused by exposure to air pollutants [5–9],
the reductions in pollutant levels offer an opportunity to rethink pollution control strategies
since an estimated 50,000 pollution-related deaths were avoided during the lockdown [10].

Kumari and Toshniwal [11] in their study of 12 cities and over 150 air quality moni-
toring stations (AQMS), highlighted the reductions in air pollutant concentrations (PM2.5,
PM10 and NO2) varying from 20 to 64%. SO2 had relatively a lower reduction, while the
concentrations of O3 increased during the lockdown period. Pacheco et al. [12] reported
a maximum of 23% reduction in NO2 concentrations in Ecuador. Rodríguez-Urrego and
Rodríguez-Urrego [13] in a global study of PM2.5 in the most polluted cities, found an
average reduction of 12% in PM2.5 concentrations, while reporting the highest reductions
in Bogota and Kuwait City. Habibi et al. [14] reported reductions as high as 60% in the
levels of air pollutants (NO2, CO, and PM2.5) in Wuhan, Lima, and Berlin. In another global
study of eight cities, Wang and Li [15] noted nonlinear relationships between COVID-19
lockdown and pollution, and variations in the magnitude of changes in pollutant levels
due to local conditions. Fu et al. [16] also acknowledged that local elements such as pol-
lution control regulations and meteorological conditions can result in variations in the
impacts of the lockdown on air quality. In the same vein, Kroll et al. [4] suggested that
due to the complexity of the atmospheric system, more studies should be performed for
better understanding the roles of atmospheric compositions, meteorological conditions,
and emissions from specific sectors, such as traffic, to be able to make informed policies
based on the reductions due to COVID-19.

Many researchers have reported changes in NO2 and particulate matter (PM10 and
PM2.5) concentrations during the lockdown period over Europe and the UK as shown
in Table 1. However, the changes in air pollutant concentrations vary among different
studies depending on the meteorological conditions, the approach used for calculating the
reduction, geographical settings, and the level of reduction in emissions due to the varying
lockdown measures implemented.

Table 1. Changes in NO2 and particulate matter levels during the COVID-19 lockdown period in
2020 over several European and UK cities.

City, Country Pollutant Studied Reduction (−)/Gain (+) Reference

Barcelona, Spain NO2
−50.0%

[17]Madrid, Spain −62.0%

Milan, Italy PM10 −39.5%
[18]Milan, Italy PM2.5 −37.1%

Milan, Italy NO2 −43.1%

Msida, Malta NO2 −54.0% [19]

Florence, Italy −36.0%
[20]Pisa, Italy NO2 −41.0%

Lucca, Italy −37.0%

Florence, Italy PM10 −31.0%,
[20]Pisa, Italy PM2.5 +33.0%

Florence, Italy PM2.5 −50.0%

Athens, Greece NO2 −32.0%
[21]Athens, Greece PM2.5 −18.0%

Graz, Austria NO2 −(35.0% to 41.0%) [22]

Po Valley, Italy NO2 −40.0% [23]

Reggio Emilia, Italy NO2 −30.0%
[24]Reggio Emilia, Italy PM10 +46.0%

Milan, Italy NO2 −33.0% [25]
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Table 1. Cont.

City, Country Pollutant Studied Reduction (−)/Gain (+) Reference

Barcelona, Spain NO2 −51.0%
[26]Barcelona, Spain PM10 −(28.0% to 31.0%)

London, UK

NO2

−42.0%

[27]

Glasgow, UK −30.0%
Belfast, UK −71.0%
Newport, UK −26.0%
Eastbourne, UK +46.0%
Chilbolton Observatory, UK +36.0%
Reading, UK +6.0%

UK NO2 −38.0%
[28]UK PM2.5 −17.0%

Milan, Italy

NO2

−16.0%

[29]

Rome, Italy −27.0%
Madrid, Spain −35.0%
London, UK −8.0%
Paris, France −26.0%
Berlin, Germany −11.0%

Rome, Italy

PM2.5

−1.0%

[29]
Madrid, Spain −24.0%
London, UK +11.0%
Paris, France +27.0%

UK NO2 −(32.0% to 50.0%) [30]

In the UK, the lockdown started on 24 March 2020 with restrictions on movement,
closure of non-essential businesses and implementing rules for public gathering [28].
The lockdown caused a significant pause in socio-economic activities and consequently
impacted air quality. Similar to other countries, the results of the studies in the UK have
shown variations in the impacts of lockdown on air quality, especially on particulate
matter (PM). For instance, Jephcote et al. [28] reported that the PM levels, during and
after the lockdown, did not change significantly in Scotland, which they attributed to
local meteorological differences between the AQMS in Scotland and other parts of the
UK. Similarly, Ropkins and Tate [30] asserted that the changes in the values of PM across
the UK cannot be directly attributed to the lockdown as the values moderately increased
during the lockdown period. Shi et al. [29], in a study of several cities around the world,
found that the values of PM2.5 increased during the lockdown in London. Air Quality
Expert Group [31] suggested that aerosol transport from continental Europe contributed to
the levels of PM observed at some sites in the UK, during the lockdown period. Another
recent study observed increases in the concentrations of both PM10 (5.9 to 6.3 µg/m3) and
PM2.5 (3.9 to 5.0 µg/m3) at both rural and urban stations during the lockdown, probably
suggesting that the lockdown was not a direct cause of variation in PM levels [30].

To investigate the effect of meteorological conditions on the air pollutants, researchers,
e.g., [29,30,32–34], used different statistical and machine learning techniques such as Ran-
dom Forest, Boosted Regression Tree, and Generalised Additive Models (GAM). Ropkins
and Tate [30] used data from several stations across the UK to examine the effect of lock-
down on air pollutants while they used the backgrounds of the stations (Rural, Urban,
and Traffic) to investigate the effect of traffic. Some studies have successfully used ge-
olocation mobility data provided by Google and Apple as proxies of traffic to investigate
movement and risk perception [35] and changes in air quality [36,37] during COVID-19
lockdown. Munir et al. [38] in a study in Sheffield, UK highlighted the role of traffic in
driving NO2 emissions. These studies demonstrated the importance of meteorological
conditions and mobility characteristics in controlling the levels of air pollution. Therefore,
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it is vital to account for the effects of these parameters on air quality, while extracting the
effect of COVID-19 lockdown on air quality.

Focusing on three Northern England cities that were severely affected by COVID-
19 pandemic and were not fully analysed in the previous studies, we firstly compared
the lockdown period with the pre- and post-lockdown periods using data from 2020,
and secondly compared the lockdown period in 2020 with previous year 2019 for the
equivalent period. This work aims to use GAM in deweathering (removing the effect
of weather variations from air pollutant concentrations, also referred to as adjusting for
weather conditions) air pollutant data in selected UK cities and Apple mobility trend [39]
data as a proxy of urban traffic to examine the effects of COVID-19 lockdown interventions
on the levels of air pollutants. The study uses measured concentration which is more
reliable and accurate than estimated and satellite data. Furthermore, it uses both observed
and deweathered data, in contrast to just using raw data. In addition, it analyses the effect
of mobility and meteorological conditions on air quality during the lockdown periods.
Hysplit trajectory analysis was performed to identify the origin of the air masses during
the pre-lockdown and lockdown periods.

2. Methodology

In this section, we describe what methodology, techniques and resources were used
to analyse the effects of COVID-19 lockdown on air quality. In this study, we compared
the levels of several air pollutants (NO, NO2, NOx, PM10, and PM2.5) in the three periods:
pre-lockdown, lockdown, and post-lockdown periods. The study area, air quality data,
meteorological data, mobility data, general statistical analysis, and GAM are described in
this section.

2.1. Study Area and Air Quality Monitoring Stations (AQMS)

In this study, we have selected cities with different sizes and population densities
located in the north of England, UK: Leeds, Manchester, and Sheffield. Manchester is the
third, Leeds is the fourth, and Sheffield is the seventh-largest city in the UK, with population
of 2.84, 2.33, and 1.41 million, respectively (https://www.statista.com/statistics/2946
45/population-of-selected-cities-in-united-kingdom-uk/ (accessed on 02 March 2021).
All these cities have temperate climates and air pollution is considered one of the growing
environmental problems. Figure 1 shows the locations of the selected AQMS within the
study area, together with a UK map showing the locations of cities under investigation.

The UK has a large network of 170 AQMS covering both urban and rural areas.
The network is referred to as the Automatic Urban and Rural Network (AURN) and is
operated by the United Kingdom (UK) Department for Environment, Food and Rural
Affairs (DEFRA). The AQMS provides measurements of several air pollutants, including
NO, NO2, NOx, O3, PM10, and PM2.5. Based on environment types, DEFRA divides the
AQMS into three main groups as urban, suburban, and rural sites. These groups are further
subdivided into traffic, industrial and background sites to reflect the major source of air
pollution in the area. Therefore, there are six categories of AQMS in the AURN: Urban
Traffic (UT), Urban Industrial (UI), Urban Background (UB), Suburban Industrial (SI),
Suburban Background (SB), and Rural Background (RB). In this study, we have collected
data from three UT and one UB AQMS. Table 2 shows the names, geographical coordinates,
and environmental types of the AQMS used in this study.

Table 2. Names, environment types, and geographical coordinates of the air quality monitoring
sites (AQMS).

AQMS Latitude (y) Longitude (x) Code AQMS Type

Sheffield Devonshire Green 53.378622 −1.47810 SHDG UB
Sheffield Barnsley Road 53.404950 −1.45582 SHBR UT
Manchester Piccadilly 53.481520 −2.23788 MAN3 UT
Leeds Headingly 53.819972 −1.57636 LED6 UT

https://www.statista.com/statistics/294645/population-of-selected-cities-in-united-kingdom-uk/
https://www.statista.com/statistics/294645/population-of-selected-cities-in-united-kingdom-uk/
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Figure 1. Locations of the air quality monitoring stations (AQMS) within the study area in the UK
(Source: OpenStreetMap, developed in ArcGIS 10.5.1).
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2.2. Air Quality and Meteorological Data

Hourly measured concentrations of several air pollutants are freely available for
download at the DEFRA website (https://uk-air.defra.gov.uk/networks/network-info?
view=aurn (accessed on 15 January 2021), along with some other important details, e.g.,
data ratification, quality control, and measurement techniques of these air pollutants. In this
study we considered several air pollutants: NO, NO2, NOx, PM2.5, and PM10. Details on
the measurement techniques used for these air pollutants are provided on: https://uk-air.
defra.gov.uk/networks/monitoring-methods?view=eu-standards (accessed on 15 January
2021). NO, NO2, and NOx are measured by the reference techniques—chemiluminescent
analysers, whereas PM10 and PM2.5 are measured using Filter Dynamics Measurement
System (FDMS), e.g., Thermo 1405-F FDMS. Manchester Piccadilly AQMS had NO, NO2,
NOx, PM2.5, and PM10 measurements for the year 2020 but PM10 data was missing for
the year 2019. PM10 data was also missing at Sheffield Barnsley Road AQMS for both
2019 and 2020. Hourly air quality data from the four AQMS were used for 2019 and
2020. Less than 2% of the air quality data were missing in this study. The missing data
were ignored as they will not affect the overall results due to the huge amount of data
utilised in this study. In addition to air quality parameters, all AURN sites have modelled
meteorological data of wind speed (WS), wind direction (WD) and air temperature (Temp),
which are estimated by the high-resolution Met Office Model. Meteorological data were
used for deweathering the air quality data and producing pollution roses to see the impact
of meteorological conditions on air quality during the pre-lockdown, lockdown, and post-
lockdown periods. The meteorological data are summarised in Figure 2 in the form of a
polar plot, showing how WS, WD, and Temp varied during the pre-lockdown, lockdown,
and post-lockdown periods.

Figure 2. Polar plots of wind speed, wind direction and temperature at Manchester Piccadilly AQMS
during pre-lockdown, lockdown, and post-lockdown period, 2020.

https://uk-air.defra.gov.uk/networks/network-info?view=aurn
https://uk-air.defra.gov.uk/networks/network-info?view=aurn
https://uk-air.defra.gov.uk/networks/monitoring-methods?view=eu-standards
https://uk-air.defra.gov.uk/networks/monitoring-methods?view=eu-standards
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To extract the impact of COVID-19 lockdown on the air quality, the air quality datasets
were divided into three periods: (i) pre-lockdown (1 February 2020–23 March 2020), (ii) lock-
down (24 March 2020–10 May 2020), and (iii) post-lockdown (11 May 2020–30 June 2020).

2.3. Mobility Data

According to Jephcote et al. [29], road traffic counts were down by 70% during the
lockdown period as compared to the pre-lockdown period in the UK. Mobility data nor-
malised by 13 January 2020 across the UK for the three cities were obtained from the Apple
mobility website, which was grouped into three categories: walking, driving, and public
transit [39]. Changes in mobility data as a percentage for the whole UK shown in Figure 3,
from 14 January 2020, until 30 June 2020. Figure 3 shows the mobility changes in the form
of walking, driving, and public transit. All mobility data showed dramatic decreases from
the start of March even before the beginning of COVID-19 lockdown which started on
24 March 2020. Later, mobility data showed a slightly increasing trend since April 2020.
Walking has no direct impact on air pollutant emissions; therefore, it was not included in
the correlation analysis.

Figure 3. Changes in mobility data (%) in the UK during the lockdown period. The vertical red and
blue lines show the start and end of the lockdown period, respectively.

2.4. Building a Generalised Additive Model (GAM)

To investigate the effect of meteorological conditions on air pollutants, researchers,
e.g., [29,30,32–34], used different statistical and machine learning techniques such as Ran-
dom Forest, Boosted Regression Trees, and Generalised Additive Models (GAM). Here we
adopted the GAM approach used by [30,34], which is an interpretable machine learning
approach. Atmospheric air pollutant data often exhibit non-linear behaviour with me-
teorological parameters and emission sources that hinder the researchers from making
straightforward inferences about the fitted model parameters. Several methods have been
proposed and thoroughly evaluated from time to time and efforts are made to come up
with more effective models for a better understanding of the processes that affect air quality.
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Consequently, today there are numerous modelling techniques available to researchers such
as generalised linear models (GLM) or a more flexible version called GAM. GLM attempts
to model a transformed response variable to achieve linearity in regression. However,
it is still strictly parametric, and the error distribution follows a valid probability model.
GAM is slightly different as it allows the inclusion of non-parametric terms into the model.
GAMs are now widely used in the analyses of air pollution, climate change, and its impact
on public health and regional ecosystems [40–44]. The fundamental purpose of GAM is to
get a smoothed response variable by removing the effect of weather changes and seasonal
trends from a given air pollutant concentration, which is called deweathering.

For a given response variable Y regressed over m explanatory variables X1, X2, . . . Xm
an ordinary multiple linear regression model is given in Equation (1),

Y = β0 + β1X1 + β2X2 + ... + βmXm + ε (1)

where β0, β1, β2, . . . , βm are the model parameters that can be best estimated using the
ordinary least square method provided a few assumptions are satisfied such as the response
variable is continuous, have symmetric or normal-like distribution, and hence normal errors
(ε∼N

(
0, σ2)), homogeneity of error variances, and no-multicollinearity among explanatory

variables. When these conditions, especially when the response variable depends on an
explanatory variable in a non-linear manner or when it is non-continuous (say counts)
with a highly skewed distribution (e.g., Poisson), a transformation is usually employed
to force the response variable to behave like a linear function of explanatory variables.
Using the link function g, GLM links the weighted sum with the mean (average) value of
the assumed distribution, as shown in Equation (2):

E(Y|X) = g(β0 + β1X1 + β2X2 + ... + βmXm) (2)

For which the inverse transformation produces Equation (3):

g−1(E(Y|X)) = β0 + β1X1 + β2X2 + ... + βmXm (3)

GAM is a further generalisation of a GLM by adding further non-linear smoothening
functions of the explanatory variables. GLM is strictly parametric, i.e., the model shape is
predetermined and every explanatory variable in the model has a known association with
the response variable. GAM is more flexible in the sense that, based on some link function,
it can incorporate non-linear functions of explanatory variables say f (X) to compensate
for the detailed parametric relationships on the explanatory terms to better explain the
variation in the response variable. It is equivalent to relaxing the linearity assumption
flexibly so that one can learn about the relationship of response and explanatory variables
without specifying the actual parametric function of the relationship. A typical GAM with
a link function g is given in Equation (4):

g−1(E(Y|X)) = β0 + f1(X1) + f2(X2) + ... + fm(Xm) (4)

For more details on GAM see [45,46].

2.5. Statistical Analysis and Deweathering of Air Quality Data

In this study, we used a GAM, an interpretable supervised machine learning technique,
to remove the impact of meteorological variations from the air quality data, which is
referred to as deweathering or normalising/adjusting the air quality data for meteorological
effect, using ‘mgcv’ package [47] in R programming language [48]. Six predictors were
used to deweather each air pollutant including three meteorological parameters (WS, WD,
and Temp) and three temporal variables (hour of the day, day of the month, and week
of the year) to account for temporal variability. Separate deweathering models were
developed for 2019 and 2020. Deweathered concentrations have been designated with
“dw” annotations. The full dataset was divided into two sub-datasets: training (80%) and
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testing (20%) datasets. GAM models were fitted (trained) on the 80% training dataset and
validated (tested) based on the 20% testing datasets, both randomly selected. The validated
models were applied to each year separately to deweather each pollutant for each AQMS.
Both measured (raw data) and deweather data are used in this study. Deweathered data
present changes in air pollutant concentrations based on variations of the emissions more
realistically. Partial deweathering was carried out in this study due to the availability of
limited meteorological data (WS, WD, and Temp). Data for other meteorological conditions,
such as relative humidity, atmospheric pressure, solar radiations, rainfall and cloud cover
were not available. Temporal variation plots and pollution roses plots were developed
using openair-package [49] which is a dedicated R programming language package for air
quality analysis. Openair back trajectory function was used to calculate back trajectory for
identifying the origin of air masses [49].

In this study, we focused on the first lockdown period in the UK, which was from
24 March to 10 May 2020. We used three approaches for assessing the effect of COVID-19
lockdown intervention on air quality. The three main approaches used in this study are
as follows:

1. Comparing pre-lockdown, lockdown, and post lockdown periods using data from 2020.
2. Comparing COVID-19 lockdown period in 2020 with the equivalent period in 2019.

This approach has the benefit of comparing the same season in different years and
therefore produces more realistic results.

3. Comparing mobility trend with the trend of air pollutant concentrations.

3. Results and Discussion
3.1. Changes in Air Pollutant Concentrations during Pre-Lockdown, Lockdown, and Post
Lockdown Periods

Table 3 summarises the variations in both measured and deweathered air pollutant
concentrations as a percentage (%) for lockdown and post-lockdown periods. The data
with ‘dw’ indicates deweathered concentrations for each air pollutant. Hourly air quality
data was used in all data analysis. Firstly, mean hourly concentrations of each air pollutant
at each period were calculated. Then corresponding mean air pollutant concentration from
one period (e.g., pre-lockdown) was deducted from the mean hourly concentrations of
this air pollutant from the following period (e.g., lockdown). Finally, the differences in
those mean air pollutant concentrations were calculated as percentages (%). The negative
sign shows a reduction in air pollutant concentrations while the positive sign indicates
an increase in concentration between two successive phases, using the pre-lockdown
concentrations as a baseline.

Table 3. Variations in air pollutant concentrations (%) during lockdown (LD) and post-lockdown (PLD) periods at all AQMS.

Devonshire Green Sheffiel Barnsley Rd Manchester Piccadilly Leeds Headingly

Pollutant LD PLD LD PLD LD PLD LD PLD

NOx −35.81 11.52 −44.71 4.03 −56.52 5.94 −53.75 7.33
NOx(dw) −44.49 12.81 −50.30 4.14 −57.42 7.83 −49.02 0.29
NO2 −18.06 17.35 −27.93 5.49 −46.55 5.02 −47.15 2.89
NO2(dw) −22.70 16.71 −31.63 4.19 −46.39 7.44 −45.59 3.50
NO −68.26 15.99 −56.68 2.30 −74.16 9.33 −60.35 20.97
NO(dw) −77.59 5.93 −62.74 4.03 −76.12 9.86 −52.35 3.15
PM10 62.00 −6.02 N/A N/A 21.96 −29.09 30.86 −14.87
PM10(dw) 48.02 −12.58 N/A N/A 14.45 −29.08 26.04 −15.77
PM2.5 80.31 −27.24 41.43 −17.67 36.24 −35.79 43.87 −35.93
PM2.5(dw) 49.34 −29.46 45.94 −17.56 23.05 −35.45 29.59 −36.25

Note: Lockdown = Lockdown mean concentration—Pre-lockdown mean concentration as percentage (%). Post-lockdown = Post-lockdown
mean concentration—Lockdown mean concentration as percentage (%).
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The Sheffield Devonshire Green site is selected because it is the only UB type of station
that can serve as a baseline for the area under investigation. The trends of both measured
and deweathered data for each air pollutant concentration are illustrated. The weekly cycles
of both measured and deweathered NO, NO2, and NOx for pre-lock down, lock-down,
and post-lockdown periods at the station are presented in Figure 4.

Figure 4. Weekly cycles of NO, NO2, and NOx for pre-lock down, lock-down, and post-lockdown
periods at Devonshire Green AQMS in Sheffield.

The levels of NO, NO2, and NOX exhibited substantial reductions during the lock-
down period. The mean reductions (%) averaged for all four sites in NO, NO2, and NOx
concentrations of deweathered data were 67.20%, 36.58%, and 50.31%, whereas for mea-
sured (raw) concentrations were 64.86%, 34.92%, and 47.69%, respectively, during lock-
down compared to the pre-lockdown period. Reductions in NO2 concentrations in our
study were consistent with the finding of a recent study carried out by Dacre et al [27].
In this study AURN stations in the north and middle England showed lower NO2 con-
centrations during the period of 17 March–30 April 2020 due to reduced emissions. NO,
NO2, and NOx concentrations decreased on average 32% to 50% at roadsides during lock-
down [30]. During the post-lock-down period, the mobility restrictions have been lifted
in the UK therefore slight increases in NO, NO2, and NOx concentrations were observed.
The mean increases in NO, NO2, and NOx concentrations of deweathered data were 5.93%,
16.71%, and 12.81%, correspondingly, during the post-lock down period due to increased
emissions from vehicles.

The weekly cycles of NO, NO2, and NOx concentrations exhibited a similar trend dur-
ing the investigated periods. In general, concentrations of these air pollutants showed an
increasing trend from Monday up to Wednesday and then started to decrease from Wednes-
day until the end of the week. This trend was more noticeable during pre-lockdown and
lock-down periods for all air pollutants. The lowest concentrations of NO, NO2, and NOx
were observed on weekends (Saturday and Sunday) during pre-lockdown, lockdown,
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and post-lockdown periods, which is expected as the levels of traffic flows are significantly
lower on weekend compared to the weekdays in the UK.

The weekly cycles of both measured and deweathered PM2.5 and PM10 for pre-lock
down, lock-down, and post-lockdown periods at Devonshire Green AQMS are given
in Figure 5. The weekly variations of both PM10 and PM2.5 showed an almost similar
pattern in all three periods (Figure 5). A positive correlation between PM2.5 and PM10 is
expected [50]. During the lockdown period, dramatic increases in PM10 and PM2.5 levels
were observed in comparison to the pre-lockdown period followed by a slight reduction
during the post-lock down period at Devonshire Green AQMS. The mean increases (%)
in PM10 and PM2.5 concentrations of deweathered data were 48.02% and 49.34%, respec-
tively, during lockdown compared to the pre-lockdown period which is lower than the
mean increases (%) in measured PM10 and PM2.5 concentrations (62.00% and 80.31%),
respectively). PM concentrations have increased during the lock-down period at all AQMS
under investigation. In general, concentrations of PM levels increased from Monday up
to Wednesday and then started to decrease from Wednesday until the end of the week.
This trend was more noticeable during pre-lockdown and lock-down periods for all air
pollutants. The lowest concentrations of PM were observed on weekends.

Figure 5. Weekly cycles of PM2.5 and PM10 for pre-lock down, lock-down, and post-lockdown
periods at Devonshire Green AQMS in Sheffield.

In addition to changes in pollutant emissions, a significant change in weather pat-
terns was observed during the pre-lockdown, lockdown, and post-lockdown periods.
As an example, we presented meteorological conditions and PM2.5 concentrations from
the Manchester site, in the form of pollution rose (Figure 6), which showed how WD, WS,
and Temp changed during the three study periods. Figure 6a shows the temperature varia-
tions while Figure 6b illustrates the variations in PM2.5 concentrations (µg/m3) with WS
and WD at Manchester Piccadilly site. All three meteorological parameters demonstrated
considerable variations in their characteristics, which affected the levels of air pollution



Atmosphere 2021, 12, 504 12 of 26

during the three different periods. During the pre-lockdown wind direction was predomi-
nantly south-westerly, bringing clean air from the sea, whereas during the lockdown the
wind was easterly and north-easterly bringing polluted air masses from central and eastern
Europe. The polluted air masses contained PM from different sources including natural
sources. Furthermore, air masses enriched with PM precursors might have increased the
formation of secondary PM. Because of these conditions the UK experienced an episode
of PM (also shown by [29,31]). The highest easterly wind frequencies during lockdown
resulted in peak PM levels at all AQMS. Moreover, frequencies of easterly wind direction
were higher during post-lockdown compared to the pre-lockdown period as shown in
Figure 6b, which resulted in higher PM concentrations in post lockdown compared to
pre-lockdown. Temperature plays an important role in the photochemical reaction and dis-
persion of locally emitted air pollutants. During high-temperature boundary layer height
increases which encourages horizontal and vertical dispersion of pollutants. These meteo-
rological conditions showed that the air pollution episode during the lockdown despite
the fact the local emissions had decreased, was caused by the horizontal advection of
pollutants from Europe. To further elaborate that during the lockdown period, air masses
coming to the UK originated in Europe, we performed back trajectory analysis (Figure 7).
Back trajectories in April and February showed totally different origins. The back trajec-
tories in April originated mostly in the eastern Europe bringing polluted air masses to
the UK, causing PM episodes during the lockdown periods as the precursors of PM were
converted to secondary PM. In February the westerly wind direction brought clean air
masses and as a results PM levels were low in the pre-lockdown period. Here we used the
back trajectories for London as back trajectories for 2020 were not available for other cities
in the UK, at the time of writing this article. However, the same results will be expected for
other areas in mid and north England.

Figure 6. Cont.
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Figure 6. Pollution roses demonstrating how weather conditions changed during the three periods:
changes in temperature linked with wind speed and directions (a); changes in PM2.5 linked with
changes in wind speed and directions at the Manchester Piccadilly site (b).
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3.2. Changes in Air Quality during Lockdown Period—2020 vs. 2019

Air pollutant concentrations during the lockdown in 2020 were compared with the
equivalent period in 2019. Table 4 shows changes in both measured and deweathered
pollutant concentrations for the year 2019 vs. 2020. The concentration for each air pollutant
in the year 2020 was lower than its measured values in 2019, except for PM10 data at
Leeds Headingly AQMS that slightly increased from 22.00 to 22.52 µg/m3. The highest
differences in measured concentration were found for NO, NOx, and NO2, respectively.
The range of NO reductions was 43.31–69.75%, followed by NOx with 41.52–62.99% and
then for NO2 with a reasonably high range between 37.13 and 55.54%. Comparatively,
changes in PM concentrations were substantially less: PM10 levels reduced by 19.02% at
Sheffield Devonshire Green and increased by 2.36% at Leeds Headingly site. The reduction
in PM2.5 concentrations ranged from 29.93% to 40.26%. Changes in the pre-lockdown
concentrations between 2019 and 2020 were negligible.

The percentage (%) change between measured and deweathered data was slightly
different. The range of changes for NO, NOx, and NO2 were 0.92–4.70%, 0.98–3.89%,
and 0.27–0.99%, respectively. On the other hand, the changes for PM10 and PM2.5 con-
centrations were 0.58–2.46% and 2.01–3.28%, respectively. The deweathering was only
based on the WD, WS and temperature; hence, the impact of other influential meteo-
rological factors was not included due to data unavailability, otherwise, the difference
between deweathered and measured data would probably have been greater. Figure 8
compares the air quality data during the lockdown period 2020 with the equivalent period
in 2019 at Manchester Piccadilly AQMS, which clearly demonstrates reductions in the
levels of pollutants.
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Figure 8. Cont.
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Figure 8. Comparison of deweathered mean hourly air quality data between lockdown period
2020 with the equivalent period in 2019 at Manchester Piccadilly AQMS. (a) NO; (b) NO2; (c) NOX;
(d) PM2.5.
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Table 4. Change (%) in air pollutant concentrations during the lockdown in 2020 as compared with the same period in 2019
at all AQMS, where dw = deweathered, diff = difference.

Sheffield Devonshire Barnsley Rd Manchester Piccadilly Leeds Headingly

Air Pollutant (ug/m3)
2019

(ug/m3)
2020

(%)
Diff.

(ug/m3)
2019

(ug/m3)
2020

(%)
Diff.

(ug/m3)
2019

(ug/m3)
2020

(%)
Diff.

(ug/m3)
2019

(ug/m3)
2020

(%)
Diff.

NO 32.38 18.36 43.31 23.71 12.78 46.07 9.91 3.33 66.40 21.82 6.60 69.75
NO(dw) 31.70 17.68 44.23 23.80 12.09 49.22 10.75 3.20 70.22 21.65 7.56 65.05
NO2 25.85 15.29 40.83 37.59 23.64 37.13 38.30 18.80 50.90 30.37 13.50 55.54
NO2(dw) 25.51 15.02 41.10 37.14 23.00 38.06 38.16 19.01 50.19 30.10 13.68 54.55
NOx 4.26 2.00 53.12 73.94 43.24 41.52 53.50 23.91 55.30 63.82 23.62 62.99
NOx(dw) 4.06 1.75 57.01 73.69 41.54 43.63 54.64 23.88 56.28 63.25 25.25 60.07
PM10 24.54 19.87 19.02 N/A N/A N/A N/A N/A N/A 22.00 22.52 2.36
PM10(dw) 24.22 19.47 19.60 N/A N/A N/A N/A N/A N/A 22.10 22.08 0.10
PM2.5 19.62 11.72 40.26 20.95 12.67 39.53 17.25 11.15 35.38 17.53 12.29 29.93
PM2.5(dw) 19.43 10.97 43.54 20.43 11.73 42.58 16.62 10.57 36.42 17.18 11.69 31.94

3.3. Relationship between Air Pollutant Concentrations and Mobility

It was expected that a substantial reduction in mobility such as driving and transit (us-
ing public transportation) during the lockdown period would reduce vehicular emissions,
leading to improvements in air quality. Here we correlated the average of driving and
transit trends with different air pollutant concentrations. Generally, NO, NO2, and NOx
demonstrated considerable reduction during the lockdown period, however, the reduction
was not linear and reduction in the level of mobility was much greater than the reduction
in pollutant concentrations. The PM showed an inverse relationship with the levels of
mobility. Time series plots of mobility data together with NO, NO2, and NOX at AQMS in
Sheffield, Manchester and Leeds covering pre-lockdown, lockdown and post-lockdown
periods are shown in Figure 9. Time series plots of PM10 and PM2.5 concentrations with
mobility data are shown in Figure 10, showing a weak correlation between PM and mobility
at all four sites.

Correlation analysis was performed between mobility data and each air pollutant
concentrations to investigate the strength of linear association between them. In this study,
absolute values of the correlation coefficient between 0.00 and 0.09 have been considered
as negligible correlation, the range between 0.10 and 0.39 as weak correlation and values
between 0.40 and 0.69 as moderate correlation. Correlation coefficients between 0.70 and
0.89 were considered as strong correlations while any value over 0.90 was interpreted
as a very strong correlation [51]. The values of correlation coefficients are presented in
Table 5. In this study, the correlation was either weak or moderate, strong correlation was
not observed between the mobility data and any air pollutant.

The highest positive correlation of NO, NO2, and NOx concentrations with mobility
were observed at Manchester Piccadilly AQMS, with r-values of 0.48, 0.66, and 0.58,
followed by Leeds Headingly with r-values of 0.51, 0.53, and 0.53, respectively. Correlation
coefficients for NO, NO2, and NOx concentrations with mobility at Sheffield Devonshire
Green and Sheffield Barnsley Rd AQMS were slightly lower than for both Leeds Headingly
and Manchester Piccadilly. The population of Manchester, Leeds, and Sheffield are 2.84,
2.33, and 1.41 million, respectively. The correlation analysis showed that larger cities had
a stronger correlation between mobility data and pollution levels. A negative correlation
was witnessed between mobility data and PM2.5 and PM10 concentrations. The range of
correlation coefficient values was between −0.10 and −0.34 for PM10 and −0.10 and −0.26
for PM2.5. According to the observations of this study, PM is not directly associated with
mobility data, probably because variations in PM concentrations are more controlled by
meteorological conditions and regional PM transportation than by local traffic emission
sources. These findings are in agreement with Munir et al. [52], who, using dispersion
modeling in Sheffield, found that PM emissions were dominated by points sources, whereas
NOx emissions were dominated by road traffic.
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Figure 9. Cont.
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Figure 9. Time series plots between normalised daily mean (%) mobility data and air pollutant
concentrations at all AQMS January to June 2020. January 13 is taken as the baseline for normalisation.
Vertical red and blue lines show the start and end of the lockdown period, respectively. (a) Sheffield
Barnsley; (b) Sheffield Devonshire Green; (c) Leeds Headingley and (d) Manchester.
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Figure 10. Cont.
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Figure 10. Time series plots between daily mean (%) mobility data and PM2.5 and PM10 at all AQMS.
January 13 is taken as the baseline for normalisation. Vertical red and blue lines show the start and
end of the lockdown period, respectively. (a) Sheffield Barnsley; (b) Sheffield Devonshire Green;
(c) Leeds Headingley and (d) Manchester.
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Table 5. Correlation analysis between mobility data and air pollutant concentrations at different
monitoring stations during the lockdown period.

Location of AQMS Air Pollutant Correlation Coefficient Type of Correlation

Sheffield Devonshire Green

NO
NO2
NOx
PM10
PM2.5

0.30
0.35
0.33
−0.28
−0.26

Weak positive
Weak positive
Weak positive
Weak negative
Weak negative

Sheffield Barnsley Rd

NO
NO2
NOx
PM10
PM2.5

0.39
0.45
0.41
N/A
−0.10

Weak positive
Moderate positive
Moderate positive
N/A
Weak negative

Manchester Piccadilly

NO
NO2
NOx
PM10
PM2.5

0.48
0.66
0.58
−0.10
−0.10

Moderate positive
Moderate positive
Moderate positive
Weak negative
Weak negative

Leeds Headingly

NO
NO2
NOx
PM10
PM2.5

0.51
0.53
0.53
−0.34
−0.19

Moderate positive
Moderate positive
Moderate positive
Weak negative
Weak negative

According to the current study, the levels of NO, NO2, and NOx have relatively
decreased during the lockdown period compared to the control periods (whether pre-
lockdown in 2020 or equivalent period in 2019). The NOx species are predominantly
emitted by road traffic in urban areas; therefore, their levels in the atmosphere are directly
associated with the levels of traffic. However, reductions in road traffic are more than the
reductions in atmospheric concentrations (e.g., reduction in road traffic was about 70%,
whereas reduction in pollutant levels was much less). The association between air pollutant
emissions and their atmospheric concentrations is complicated by several factors including
meteorological conditions, boundary layer height and geographical settings.

Changes in the levels of PM10 and PM2.5 during the lockdown period are more
controversial. Previous studies have shown conflicting results ranging from reductions to
positive gains even in different cities of the same country as shown in Table 1. For example,
Donzelli et al. [20] reported +33.0% increase in Pisa and −50.0% reduction in Florence,
Italy in the levels of PM2.5. In the UK, similar to the current study, several researchers
have reported that the levels of PM10 and PM2.5 have increased [29,30]. In contrast, others
have reported that reduction in the levels of PM is much subtler compared to NO2 [28].
Why PM levels have increased or not decreased as much as expected, is a question not
yet answered satisfactorily. However, researchers have provided different explanations
according to their understanding and based on the local meteorological and emission
conditions. Donzelli et al. [20], Marinello et al., [24] and Hormann et al. [22] thought that
people used the indoor heating system more frequently as they spent more time indoors
during the lockdown, which increased PM emissions. They suggested further research to
fully comprehend this matter. Hormann et al. [22] stated that the reduction in traffic levels
did not result in a significant reduction in PM10 levels because PM10 pollution in urban
areas is not a monocausal phenomenon. They mentioned that increases in indoor residential
emissions could be a possible cause for the positive PM10 gain during the lockdown period.
In addition, they also mentioned that PM10 values were unusually low in the control group.
In addition, Marinello et al., [24] suggested that primary emissions, biomass combustion,
PM precursors emissions, meteorological conditions, and the formation of secondary PM
could have resulted in the high levels of PM during the lockdown period. Furthermore,
industrial sources, harbour emissions, construction works, dust resuspension, regional air
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mass transport, and Saharan dust episodes could be responsible for the PM episodes [26].
Ropkins and Tate [30] highlighted that public transport, mainly buses which were not
stopped in most areas during the UK lockdown, could be a potential source of PM that
did not let the PM levels decrease as expected during the lockdown period. Buses are
considered as major airborne particle sources due to: (a) tail-pipe emissions from buses,
not equipped with diesel particle filters; (b) higher levels of particle resuspension associated
with the large frontal area. Shi et al. [29] stated that relative minor reduction in primary
PM2.5 emissions from road traffic could be readily overwhelmed by enhanced secondary
PM2.5 formation and transportation of PM2.5 from more polluted regions. The conclusion
of Shi et al. [29] supports the findings of the current study as we showed using back
trajectory that air masses in the UK during the lockdown period originated in central and
eastern Europe bringing along polluted air that resulted in the formation of secondary
PM formation.

Considering the outcomes of previously published works and the results of our
data analysis, the main causes for positive gains or less reduction in PM levels could be
summarised as follows:

(a) Waste burning (as they were not timely collected and people started burning them in
their gardens;

(b) Formation of secondary PM controlled by meteorological conditions and PM emis-
sions precursors;

(c) Regional transport of PM from other polluted regions;
(d) Increase in indoor emissions as more people worked from home and used their indoor

heating system more frequently, including wood burner stoves;
(e) Public transport, especially buses, did not stop in many areas during the lockdown

period, which did not let the PM levels decrease.

The above analysis showed that sustained improvement in air quality requires actions
across various sectors, including cutting local emissions and working with international
and European initiatives on long-range transport air pollutants, especially PM2.5.

4. Conclusions

The lockdown period in the UK provided an opportunity to investigate the impact of
substantial abrupt reductions in mobility levels on air quality. This study analyses changes
in selected air pollutant concentrations due to COVID-19 lockdown measures in Leeds,
Sheffield, and Manchester. The non-parametric GAM and other statistical methodologies
exhibited significant reductions in NO, NO2, and NOx concentrations during lockdown
period, highlighting the influence of reduction in vehicular emissions.

The results demonstrated a stronger positive relationship of mobility with NO, NO2,
and NOx concentrations, and a weaker negative relationship with PM10 and PM2.5. In fact,
correlation coefficient values for NO, NO2, and NOx were higher for Manchester Piccadilly
and Leeds Headingly areas probably showing that the association of pollutant levels with
mobility data gets stronger in the cities with heavier traffic. Our results echoed the findings
of previous studies which showed that quarantine mobility pattern resulted in immediate
and substantial reductions in transportation traffic that reflected upon NO, NO2, and NOx
concentrations. On the contrary, PM showed weak association with mobility indicating
that PM at the sites included in this study is emitted predominantly by other sources than
the road traffic. The weekly cycles of these pollutants during pre-lockdown, lockdown
and post-lockdown periods assisted in understanding the consequences of the mobility
behaviour on air quality.

Both PM10 and PM2.5 concentrations indicated reasonable increase at all AQMS during
lockdown compared with the pre-lockdown period in 2020. However, further statistical
analysis of PM10 and PM2.5 concentrations between the lockdown period in 2020 and the
equivalent period in 2019 showed that the concentrations of both measured and deweath-
ered data of all air pollutants in 2020 were lower than in 2019. This comparison confirmed
that increases in PM levels during the COVID-19 lockdown period was more strongly
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associated with seasonal variations, and in the absence of lockdown the PM levels would
have been even higher. Hence we concluded that COVID-19 lockdown measures have
improved the air quality in selected Northern England cities. In this study, both measured
and deweathered data was used. The difference in measured and deweathered concen-
trations was not as much as we expected. This was probably due to the fact that it was a
partial deweathering using only WS, WD, and temperature as data for other meteorological
parameters like cloud, atmospheric pressure and relative humidity was not available.

As a short-term strategy, UK policymakers should consider a reduction in mobility
as a mitigation measure to improve air quality. However, as a long-term strategy, an in-
tegrated policy needs to be developed to cut emissions from various sectors and change
people’s behaviour towards environmental issues for sustainable air quality improvement.
The results of PM recommend investigation of cross-boundary air pollutant transport to
analyse dominant source apportionment across Europe as shown with our metrological
pollution roses and back trajectory analysis.
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