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Abstract: Based on ten-year tropical cyclones (TCs) observations from 2009 to 2018, the black
body temperature (TBB, also called cloud-top brightness temperature) data obtained from the
infrared channel 1 (with the wavelength of 10.30–11.30 µm) of the FY-2 satellite image, and the
wind observation data at the automatic weather stations (AWSs) in Guangdong province, this study
explores the relationship between the TBBs and the winds induced by TCs at AWSs. It is found
that the wind speeds at AWSs cannot be obtained directly by using TBB value inversion, but the
maximum potential wind gust (MPG) and the maximum potential average-wind (MPAW) at AWSs
can be estimated when a TBB is known. Influenced by the terrain, the surrounding environment,
and detected height, the MPG and the MPAW values of different AWSs may differ for the same TBB.
The wind data from ERA5 reanalysis is also used to explore the relationship between the TBBs and
the winds over grids area during the TCs’ periods. Similar to the AWSs, there is a capping function
between the winds over the grids and the TBBs. The reanalysis data can generally show the average
wind conditions of the weather stations inside the grids, and therefore, can be used to supplement
the data for the areas where there is no AWS observation available. Such a study could provide
references for estimating the potential wind disasters induced by TCs in the study area.

Keywords: near-surface wind; black body temperature; maximum potential gust; maximum potential
average-wind

1. Introduction

China is a country suffering heavily from tropical cyclones (TCs). There are about
seven TCs making landfall on the southeast coast of China every year, causing more than
9000 casualties (more than 500 deaths) and economic losses accounting for about 0.4% of
GDP [1]. Guangdong, located on the southern coast of China, is the area most affected by
TCs in the country. Additionally, there are about 3.7 TCs making landfall in Guangdong
every year [2]. In all the disasters brought by TCs, wind damage is extremely serious,
which not only brings direct property losses but also determines the extent of storm surge
and other secondary hazards [3]. Therefore, estimating the potential wind due to TCs is
crucial for the safety of the local communities.

For a long time, scientists have been making efforts to explore ways to estimate
the wind speeds induced by TCs. Yang et al. [4] believed that the differences in wind
distribution caused by TCs in different seasons and different areas were closely related to
their intensity at that time. The stronger the TCs were at the landing time, the greater were
the wind speeds and the wider were the influencing ranges. Kaplan et al. [5] developed
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a model based on the observations in the Atlantic that the wind speed decay rate after
TCs landfall was proportional to the wind speed. A correction term accounting for the
distance of TC inland was included in the model. The model can be used to estimate the
maximum inland penetration of hurricane force winds for a given initial storm intensity.
Dong et al. [6] studied the wind distribution of TCs in Guangxi and established the wind
prediction model of TCs by using stepwise regression and neural networks.

In the previous studies, most statistical analyses used ground observation data to
compute the TC induced wind frequency [7], wind spatiotemporal characteristics [8,9], and
temporal wind variation [10]. However, it is difficult to obtain real wind field data in areas
without stations, such as mountains, oceans, deserts, and polar regions. Powell et al. [11]
presented a method to estimate the maximum surface wind speeds from flight-level recon-
naissance wind measurements. However, for regions where there is no aircraft reconnais-
sance for TCs, satellite data is an important source of information [12]. Satellite-derived
cloud-top brightness temperature has good statistical relations with various meteorological
elements [13,14]. The cloud-top brightness temperature can reflect the radiation emitted
into space from the cloud-top and cloud-free or cloudless regions of the Earth’s surface.
It is commonly referred to as black body temperature (TBB) [15]. The lower is TBB, the
higher the cloud-top height will be, which indirectly reflects the intensity of TC activity.
The Dvorak technique [16,17], which estimates the intensity of TCs by analyzing satellite
image patterns and infrared cloud-top temperatures, is widely used for estimating the
maximum wind speeds associated with TCs [18]. DeMaria and Kaplan [19,20] set up the
Statistical Hurricane Intensity Prediction Scheme (SHIPS), using some predictors related to
TBB from GOES (Geostationary Operational Environmental Satellite) to predict the TCs’
intensity over the Atlantic.

In addition to using TBB data as a predictor for TC intensity, the TBB data provided
by satellites can also reflect the distribution of the wind and rain to some extent induced by
TCs. Wind field estimation methods [21] based on the satellite infrared images were also
developed. Knaff et al. [22] estimated TC size from infrared satellite imagery and global
model analyses, and then combined TC location, motion, and intensity to estimate TC wind
radii. Kossin et al. [23] introduced the new objective methods that use readily available
data to estimate various aspects of the two-dimensional surface wind field structure in
hurricanes. The methods correlate a variety of wind field metrics to combinations of
storm intensity, storm position, storm age, and information derived from geostationary
satellite infrared (IR) imagery. In recent decades, cloud motion wind inversion based on
satellite data has been widely used in TC analysis, and its importance has been shown
more intensely [24]. Le Marshall et al. [25] discussed the estimation of cloud motion wind
in infrared and visible images with a high spatial and temporal resolution. At present,
the most effective application of tracer cloud in cloud motion wind computing is the
correlation matching method proposed by Leese et al. [26]. Additionally, Xu et al. [27]
improved the algorithm and achieved remarkable results using satellite images to retrieve
cloud motion wind.

Most of the existing methods of wind field inversion and wind speed estimation
using satellite data aim to estimate sea surface wind field and wind speed over the ocean.
There are few studies on extreme wind speed estimation near land surface (usually with a
height of 10 m above ground) using satellite data. However, characteristics of the near land
surface wind directly affect the social–economic development and human activities [28].
The spatial characteristics of the wind change due to the underlying surface features and
the surrounding environment. In addition, the distribution of meteorological stations in
complex terrain is generally sparse, making it difficult to provide a large number of reliable
observation data over the remote complex region. Fortunately, satellite data have a high
spatial and temporal resolution, and the data availability is not affected by the underlying
surface, no matter how complicated the terrain is and how remote the area is from the
city. Therefore, it is of great significance to use satellite data to estimate the extreme wind
speed over the near land surface. In this study, the potential relationship between TBB data
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and near land surface wind speed is explored, which can be used as an early warning and
prediction indicator of TC winds and provide a reliable reference tool for wind disaster
prevention and mitigation.

2. Data

The data used in this paper were the hourly observations at more than 2000 regional
automatic weather stations (AWSs) in Guangdong province from 2009 to 2018 provided by
the China Meteorological Administration (CMA). Two kinds of hourly records were used:
one is the 10-min average wind (average-wind), which is the maximum 10-min average
wind speed observed within an hour; the other is the wind gust, which is the maximum 3-s
average wind speed observed within an hour [29]. Unconditional use of the raw data from
AWSs may sometimes lead to wrong conclusions. Therefore, it is necessary to examine
the raw data before proceeding to the analysis. In this study, the data quality control
implemented on the AWSs data mainly contains completeness and internal consistency
checks [28]. A complete record means its information of the wind speed and direction
(both for average-wind and gust) cannot be empty. Additionally, the rule for the internal
inconsistency is identified as the wind gust speed is less than the average-wind speed for
the same hour. Additionally, the qualified AWSs must have records of more than 90% of all
hourly observations during the 10-yr TCs periods, so as to avoid excessive data missing at
the stations. Finally, a total of 1263 AWSs are qualified in the study. The locations of these
stations are illustrated in Figure 1. From the figure, the spatial distributions of the AWSs
are more uniform and denser in the vicinity of the Pearl River Estuary, so the short-time
extreme wind with high spatial and temporal resolution can be effectively detected.
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Figure 1. Locations of the automatic weather stations (AWSs) in Guangdong Province and the geographical features of the
study area. The legend of the color bar exhibits the elevation of the study area.

There are 23 TCs making landfall (only considering the first landfall) along the coast
of Guangdong Province from 2009 to 2018. The real-time TC track data for these 23 TCs
are obtained from CMA, including the TC time (year, month, day, and hour), locations
(longitude and latitude of TC center), TC intensity (sustained maximum wind speed near
the center of a TC), and TC size (in terms of the radius of gale-force winds of 17 m/s).
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The tracks of these 23 TCs are shown in Figure 2. The wind disaster over land due to
TCs generally occurs around the TC’s landfalling time [30,31]. Therefore, the hourly
observations at the AWSs 12 h before and after TCs landfall were selected to explore the
potential TC wind disaster. There were 551 hourly observation data available, as one of the
23 TCs only lasted 11 h after the landfall.

Atmosphere 2021, 12, x FOR PEER REVIEW 4 of 21 
 

 

(longitude and latitude of TC center), TC intensity (sustained maximum wind speed near 

the center of a TC), and TC size (in terms of the radius of gale-force winds of 17 m/s). The 

tracks of these 23 TCs are shown in Figure 2. The wind disaster over land due to TCs 

generally occurs around the TC’s landfalling time [30,31]. Therefore, the hourly observa-

tions at the AWSs 12 h before and after TCs landfall were selected to explore the potential 

TC wind disaster. There were 551 hourly observation data available, as one of the 23 TCs 

only lasted 11 h after the landfall. 

 

Figure 2. The tracks of 23 tropical cyclones (TCs) making landfall along the Guangdong coast from 2009 to 2018. The 

different colors indicate the TCs intensity. 

Satellite data are obtained from the National Satellite Meteorological Center (China). 

The FY-2 series is the first generation of Chinese geostationary meteorological satellites, 

which has a frequency of half an hour for producing the cloud images [32]. In this study, 

we used the satellite cloud images right on every hour. These images are from FY-2D 

satellite for 2009, FY-2E satellite for 2010–2014, and FY-2G satellite for 2015–2018. The 

long-wave infrared channel (IR1, with the wavelength of 10.30–11.30 μm) has reliable 

detection performance. The TBB from IR1 can be guaranteed, no matter in the daytime or 

nighttime, and can be used for continuous monitoring. So, the TBBs obtained from the 

IR1 channel were used in this paper to explore the potential wind disasters. There are 

data missing in satellite images at some moments. A total of 526 full-disk nominal images 

corresponding to the 551 hourly observation data during the above TC landfalling peri-

ods are available. The spatial resolution is 5 km and the temporal resolution is an hour. 

To compare the difference of the satellite images between the periods with TCs and 

without TCs, other 4815 satellite images during June-September without TCs from 2009 

to 2018 were selected as well at the time interval of 6 h. 

To compensate for the shortcoming of the uneven spatial distribution of the AWSs, 

this study also uses reanalysis data from the European Centre for Medium-Range 

Figure 2. The tracks of 23 tropical cyclones (TCs) making landfall along the Guangdong coast from 2009 to 2018. The
different colors indicate the TCs intensity.

Satellite data are obtained from the National Satellite Meteorological Center (China).
The FY-2 series is the first generation of Chinese geostationary meteorological satellites,
which has a frequency of half an hour for producing the cloud images [32]. In this study,
we used the satellite cloud images right on every hour. These images are from FY-2D
satellite for 2009, FY-2E satellite for 2010–2014, and FY-2G satellite for 2015–2018. The
long-wave infrared channel (IR1, with the wavelength of 10.30–11.30 µm) has reliable
detection performance. The TBB from IR1 can be guaranteed, no matter in the daytime or
nighttime, and can be used for continuous monitoring. So, the TBBs obtained from the
IR1 channel were used in this paper to explore the potential wind disasters. There are
data missing in satellite images at some moments. A total of 526 full-disk nominal images
corresponding to the 551 hourly observation data during the above TC landfalling periods
are available. The spatial resolution is 5 km and the temporal resolution is an hour. To
compare the difference of the satellite images between the periods with TCs and without
TCs, other 4815 satellite images during June-September without TCs from 2009 to 2018
were selected as well at the time interval of 6 h.

To compensate for the shortcoming of the uneven spatial distribution of the AWSs,
this study also uses reanalysis data from the European Centre for Medium-Range Weather
Forecasts (ECMWF) to compute the relation between the near land surface wind and the
TBB. ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate.
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Reanalysis combines model data with observations from across the world into a globally
complete and consistent dataset using physics laws [33]. In this study, the ERA5 hourly
reanalysis data on the single level from June to September during the 2009–2018 period
were used. The spatial resolution was 0.25◦ × 0.25◦. The specific 551 hourly moments
corresponding to the above TC periods were chosen out and the meteorological elements
used are the meridional wind (10 m u-component of wind) and zonal wind (10 m v-
component of wind) and wind gust (10 m wind gust since previous post-processing) at the
10 m level.

3. Methods
3.1. Sliding Window

The sliding window has an important application in data mining and extraction [34,35].
The goal of using sliding window segmentation is to find a set of cut points to partition
the sequence of a variable into smaller subintervals. The sliding window size can be
defined based on time or a selected number of samples. The variable values falling within
the sliding window are scanned to determine the minimum or maximum applicable
variable in subintervals [36]. In this study, we used sliding window technology to group
the TBB sequence, and then determine the maximum wind speed and other percentile
values within each TBB group, making the change of the maximum wind speed between
successive groups smoother.

Given a series of T with length m, and a user-defined subsequence length of n, all
possible subsequences can be extracted by sliding a window of size n across T [37]. The
process of a sliding window is shown in Figure 3. For the series of (T1, T2, T3, . . . , Tm),
a sliding window of length n is set at the beginning of the series. The sliding window
thus corresponds to (T1, T2, T3, . . . , Tn). Then sliding window moves along the series by
setting step-size s, corresponding to a sub-series of (T1+s, T2+s, T3+s, . . . , Tn+s) [38]. Finally,
we can get all subsequences and get the maximum value and some percentiles value for
each subsequence.
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3.2. Correlation Analysis

The Pearson correlation coefficient was used to compute the correlation between the
TBB and the wind speed at the AWS [39]:

rxy =
cov(X, Y)√

var(X)×
√

var(Y)
(1)

where rxy is the correlation coefficient between variables X and Y; cov(X, Y) is the covariance
of X, Y, and var(X), var(Y) are the variances of X and Y, respectively. The correlation
significance between TBB and wind speed can be tested by the Student’s T distribution.
The critical correlation coefficient for identifying correlation significance can be obtained as
follows [40]:

rcrit =
tα/2,n∗√

t2
α/2,n∗ + n∗ − 2

(2)

here, the confidence level is chosen to be 95%, so α = 0.05. tα/2,n* is the point in the Student’s
T distribution with n* degrees of freedom that has a probability of exceedance of α/2. When
we had two autocorrelated variables, the effective degree of freedom n* was computed as
follows [41]:

n∗ =
n

∑+∞
τ=−∞

[
rxx(τ)ryy(τ) + rxy(τ)ryx(τ)

] (3)

where n is the number of samples, τ is the lag time, and rxx(τ), ryy(τ) are the autocorrelation
coefficients for TBBs and wind speeds, respectively. rxy(τ) and ryx(τ) refer to the cross
correlations between TBBs and wind speeds. In reality, the computation of n* requires
a finite lag instead of infinite long (∞) [41]. The simplest case is the presence of lag 1
autocorrelation in short series, widely used in much of studies [42–45]. So, we used lag 1
to estimate the effective degree of freedom in this study. If |rxy| > rcrit, we consider there’s
a significant correlation between X and Y.

3.3. Least Square Fitting

Least-squares regression is used to fit the line between the TBBs and the wind gusts or
the average-wind speeds observed at the stations in Guangdong. The regression equation
is shown below:

V = A × (X − X0) + B (4)

where V is the wind speed, X is the TBB (K) value, and X0 is a specified reference TBB. A
and B are constants. R2, the coefficient of determination, is used to check the goodness of
fitting [46].

4. Results and Discussion

As mentioned in the data section, there were 23 TCs making their first landfall along
the coast of Guangdong Province from 2009 to 2018. Among them, Vicente (2012), Hato
(2017), and Mangkhut (2018) are three typhoons that attacked the Pearl River Delta, causing
intense wind and severe damage along the coast [47]. When Vicente made landfall, the
maximum 2-min average wind near the center was 40 m/s (grade 13) (based on the Beaufort
scale, which is the same hereafter), and the minimum pressure in the center was 955 hPa.
Under the influence of Vicente, strong wind gusts of grade 11–13 appeared on the coast
and sea of Guangdong Province, among which the highest gust of 44.6 m/s (grade 14) was
recorded in Shangchuan Island town [48]. Hato made landfall with a maximum 2-min
average wind of 45 m/s (grade 14) near the TC center and a minimum pressure of 950 hPa.
During the Hato landfall period, average wind speeds of grade 11–14 appeared in coastal
areas of the Pearl River Delta, with gusts reaching grade 16–17 in Zhuhai, Macao, Hong
Kong, and the Pearl River Estuary. The maximum recorded wind gust was in Guishan
Island, Zhuhai with the value of 66.9 m/s (grade 17) [49]. When Mangkhut landed, the
center had a maximum 2-min average wind speed of 45 m/s and a minimum pressure of
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955 hPa [50]. The strong wind caused by Mangkhut had the characteristics of a wide range
and long duration. Hong Kong, Macau, Shenzhen, and Zhuhai generally had the average
wind speeds of grade 13–14 and gusts of grade 16–17. The duration of the wind gust above
grade 12 in the Pearl River Delta coastal area lasted more than 16 h [51].

Figure 4 shows the satellite images of Vicente, Hato, and Mangkhut when making
landfall in Guangdong. The red solid lines in the figure refer to the isolines with a TBB of
210 K, and the red points within the isolines represent the TCs centers. The whole range
of the TC cloud system, the spiral TC cloud belt, the cloud wall around the eye, and the
asymmetrical distribution of the vigorous convective cloud area around the TC eye can be
seen from the figure. The TC cloud structure is tight and the TBB of the TC cloud is much
lower than that of the surrounding cloud [52]. The stations’ locations with the recorded
wind gusts greater than grade 12 (≥32.7 m/s) when the three TCs making landfall are
marked with white points in Figure 4. We can see that all these white points are mostly
located to the northeast of the TCs centers and are close to the TC centers. All the TBBs
of the cloud area corresponding to the location of the white points are low. However, it
is not certain that all locations at low TBB areas can be observed with strong wind gusts.
We cannot directly inverse the near-surface wind speeds by the TBBs. The relationship
between the TBBs from the satellite images and the near-surface wind speeds at stations is
worthy of investigation.

As mentioned before, the hourly observations at the AWSs 12 h before and after
TCs landfall are selected to explore the potential TC wind disaster. There are 551 hourly
observation data available for the 23 TCs. Figure 5 shows the counts of the strong wind
gusts at AWSs in Guangdong Province influenced by these 23 landfalling TCs. During
the TCs landfalling period from 2009 to 2018, 279 stations had wind gusts greater than
grade 12 (≥32.7 m/s). As can be seen from the figure, the stations located in the Pearl River
Delta area had more times with gusts greater than 32.7 m/s. Among those 279 stations,
24 stations had more than 11 (≥11) times that wind gusts were greater than 32.7 m/s.
Among the 24 stations, Yantian International Container Terminal (YICT) is a natural deep-
water terminal and the leading gateway serving import and export container traffic [29].
As the largest and busiest container terminal in Southern China, YICT’s daily operations
rely heavily on weather conditions, especially wind conditions. So, it is crucial to provide
accurate meteorological services for ports and harbors, especially the early warning and
forecast services under the TCs’ influence [53]. Bei Zai Jiao (BZJ) is an important nearby
reference station for YICT. Besides the 24 stations with more than 11 times wind gusts
greater than 32.7 m/s, BZJ, which has 8 times of wind gusts observation greater than grade
12, was also used to explore the potential wind disaster induced by TCs. The information
of all these 25 stations is shown in Table 1.

YICT (G3567) was taken as a representative station to analyze the relationship between
TBBs and the wind speeds at the station. Figure 6 shows the scatter plots of the observed
gusts (a) and average-winds (b) with the corresponding TBBs at YICT from 2009 to 2018.
Blue points refer to the wind observations during TC periods and yellow points refer to
the observations at a 6-h interval from June to September during the study period when
there is no TC. As shown in the figure, the scopes of average-winds and gusts are wide
for a given TBB. For example, for the TBB of 200 K in Figure 6, the range of gust at YICT
during TC periods was from 9 to 33 m/s, and the range of average-wind at YICT during TC
periods was from 6 to 24 m/s. The TBBs cannot determine the speeds of the average wind
and gust at a specific station. However, there is an upper limit of observed average-wind
and gust for a given TBB.
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Figure 4. The satellite images when the Vicente (a), Hato (b), and Mangkhut (c) making landfall in
Guangdong. The red solid lines refer to the isolines with a black body temperature (TBB) of 210 K,
and the red points within the isolines represent the TCs centers. The white points refer to the stations’
locations with the recorded wind gusts greater than grade 12 (≥32.7 m/s).
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Table 1. The information of the 25 representative stations, arranged in the alphabetical order of the
weather stations’ name.

OBTID Station Name Abbreviation Longitude Latitude

G3536 Bei Zai Jiao BZJ 114.3 22.6
G2185 Beidouzhen Naqinxu NQX 112.4 21.7
G2425 Deyu Jidi DYJD 110.3 21.3
G2012 Dongfengzhen DFZ 113.3 22.7
59682 Gao Lan Dao GLD 113.3 22.0
G1820 Gongping Shuiku GPSK 115.4 23.1
G1201 Gui Shan Dao GSD 113.8 22.1
G2310 Hailing Dadi HLDD 111.9 21.7
G1251 Hengshan HS 113.2 22.3
G1805 Honghaiwan HHW 115.6 22.7
G2451 Huangpozhen Caizhengsuo HPZCZS 110.6 21.3
G1833 Jiadongzhen JDZ 116.1 22.9
G2950 Jinghaizhen JHZ 116.5 23.0
G1209 Jiuzhougang JZG 113.6 22.2
G3525 Longqi LQ 114.5 22.6
G3524 Luohu Dangxiao LHDX 114.2 22.6
G1206 Nanping Guangchang NPGC 113.4 22.2
G1838 Piyangzhen PYZ 115.9 23.0
G2046 Quanlucun QLC 113.3 22.5
G2017 Shenwan Dapaicun SW 113.4 22.6
G1811 Shunzhou Baoyuchang SZBYC 115.6 22.7
G6868 Xiqiao Shanding XQ 113.0 22.9
G2111 Ya Nan Shuilihui YNSLH 113.1 22.2
G3567 Yantian International Container Terminal YICT 114.3 22.6
G1205 Zhuhai Jichang ZHJC 113.4 22.0
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The relationship between TBBs and the wind speeds was similar to the relationship
between the sea surface temperature (SST) and TC intensity. Merrill [54] suggested that a
wide range of intensities is observed over a given range of SSTs. The SSTs are more likely
to be a capping function of the TC’s intensity rather than a direct predictor of intensity.
DeMaria and Kaplan [55] developed an empirical relationship between climatological SST
and the maximum sustained winds of the Atlantic TCs from 1962 to 1992. Their studies
indicated that an exponential function was fit to predict the MPI (maximum potential
intensity) of a TC. Whitney and Hobgood [56] found the empirical maximum potential
intensity relationship for TCs over the eastern North Pacific Ocean was a linear function
compared with an empirical relationship over the Atlantic Ocean. Additionally, some other
studies [57,58] had also explored the upper limit function between SST and MPI.

The relationship between TBBs and the gusts or the average-winds at the station was
similar. We could find a capping function to predict the maximum potential gusts and
maximum potential average-winds of TCs with the 10-year observations. To determine
the capping function of the gusts and average-winds with a given range of the TBBs, we
grouped the TBBs by the sliding window of size 10 and the sliding interval of 5. Taking
YICT as an example again, the historical TBB observations from 195 to 310 K at the station
were divided into 22 groups, as indicated in Table 2. Except for the group above 300 K, the
difference between the average TBB and the TBB midpoint in each group was less than
1 K. For the sake of simplification, we used the midpoint value of TBB in each group to
represent the group. Each sample was assigned to the nearest TBB group. Since only ten
TBBs at YICT were less than 195 K, those observations were included in the 200 K group to
prevent a possible analysis bias due to a few low TBBs [56].

Among the 23 TCs studied in this paper, Mangkhut (2018) is the most intense one.
YICT had the maximum wind gust observation of 44.4 m/s during the Mangkhut land-
falling period. Figure 7 shows the curves for the maximum, 99th, 95th, 90th, and 50th
percentiles of the hourly wind gusts (a) and average-winds (b) for every TBB group at YICT.
The top four curves, i.e., the maximum hourly observation, 99th, 95th, and 90th percentile
hourly wind speeds, decreased sharply when TBBs were above 215 K, while the median
(50th percentile) curve varied slowly as a function of TBB.
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Table 2. Information of the TBB groups corresponding to the wind observations at YICT.

TBB
Midpoint (K)

Number of
Observations

Average
TBB (K)

Maximum
Gust (m/s)

Maximum Average-Wind
Speed (m/s)

200 69 200.49 32.9 23.9
205 101 205.47 44.3 29.1
210 146 210.61 44.4 31.0
215 189 215.32 44.4 31.0
220 223 220.3 32.5 26.5
225 252 225.22 35.2 24.7
230 261 229.97 35.2 24.7
235 258 234.91 32.5 23.7
240 256 240.13 32.5 23.7
245 257 245.12 25.7 15.3
250 301 250.36 25.7 17.5
255 353 255.11 25.2 17.5
260 372 260.11 27.2 17.2
265 402 265.18 27.2 17.2
270 457 270.36 22.8 14.7
275 519 275.24 21.0 16.0
280 674 280.64 21.0 16.0
285 1038 285.74 18.0 14.0
290 1738 290.85 17.1 12.2
295 1711 294.09 13.7 10.7
300 656 296.95 11.8 7.4
305 49 301.31 11.7 6.6Atmosphere 2021, 12, x FOR PEER REVIEW 12 of 21 
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Figure 7. Curves of the maximum, 99th, 95th, 90th, and 50th percentiles of the hourly wind gusts (a) and average-winds
(b) for each TBB group at YICT. The X coordinate refers to the midpoint value of TBB in each group, and the Y coordinate
refers to the hourly wind gust and average-wind, respectively.

The Pearson correlation coefficient and Student’s T distribution were applied to test
the correlation between TBBs and the maximum wind speeds. We took YICT, for example,
to explain the detailed process. The variable X refers to the TBB midpoint value for each
TBB group as shown in Table 2. The variable Y refers to the maximum gust for each
group in the table. The correlation coefficient rxy, which can be calculated by Formula
(1), is −0.95 at YICT. Additionally, rxx(τ) and ryy(τ) are the autocorrelation coefficients
with the lag time τ for the TBBs and wind gusts, respectively. rxy(τ) and ryx(τ) are the
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cross correlations with the lag time τ between TBBs and wind gusts. They are used to
calculate the effective degree of freedom n*, which is computed by Formula (3). n is the
sample number, which is 22 for all stations, and the lag time is 1 in this study. The TBB
midpoint values are the same for all stations and this variable series is linear, so rxx(1) is 1
for all stations. ryy(1) is computed to be 0.94, rxy(1) is computed to be −0.95, and ryx(1) is
computed to be −0.94 for the wind gust at YICT. n* is computed to be 11.82 at YICT by
Equation (3). In this paper, the confidence level was chosen to be 95%, so α = 0.05. The
tα/2,n* was 2.18 by looking up the Student’s T distribution table with a 95% confidence
level at YICT. Then the critical correlation coefficient rcrit was calculated by Formula (2),
which was 0.57 for the wind gust at YICT. The absolute value of the correlation coefficient
(−0.95) was more than the critical correlation coefficient (0.57) at YICT; therefore, there was
a significant negative correlation between TBBs and the maximum gusts at YICT. All the
computed results of the correlation coefficients, effective degrees of freedom, and critical
correlation coefficients for the 25 representative stations are listed in Table 3. It can be found
from the table that the absolute values of the correlation coefficients between TBBs and the
maximum gusts or average-winds were greater than the corresponding critical correlation
coefficients at all the 25 representative stations. Therefore, there were significant negative
correlations between TBBs and the maximum gusts or the maximum average-winds at all
the 25 stations.

Table 3. Correlations between TBBs and the maximum wind observations (including wind gusts and
average-wind speeds) for the 25 representative stations.

Gust (m/s) Average-Wind Speed (m/s)

Station r n* rcrit r n* rcrit

BZJ −0.95 11.97 0.57 −0.97 11.58 0.58
NQX −0.94 12.32 0.56 −0.85 13.40 0.54
DYJD −0.90 12.44 0.56 −0.87 12.95 0.55
DFZ −0.93 12.29 0.56 −0.89 13.63 0.53
GLD −0.92 12.91 0.55 −0.89 13.51 0.54
GPSK −0.93 12.76 0.55 −0.86 14.49 0.52
GSD −0.95 11.72 0.57 −0.97 11.58 0.58

HLDD −0.96 12.06 0.57 −0.94 12.12 0.57
HS −0.94 12.26 0.56 −0.90 12.49 0.56

HHW −0.94 12.80 0.55 −0.95 12.01 0.57
HPZCZS −0.95 12.11 0.57 −0.93 12.60 0.55

JDZ −0.93 12.21 0.56 −0.9 12.86 0.55
JHZ −0.88 12.99 0.55 −0.88 13.01 0.55
JZG −0.89 12.78 0.55 −0.95 12.09 0.57
LQ −0.94 12.30 0.56 −0.96 11.82 0.57

LHDX −0.95 12.09 0.57 −0.93 12.38 0.56
NPGC −0.91 12.66 0.55 −0.81 14.99 0.51
PYZ −0.94 12.84 0.55 −0.9 13.63 0.53
QLC −0.93 12.19 0.56 −0.88 13.12 0.54
SW −0.91 12.62 0.55 −0.9 12.94 0.55

SZBYC −0.97 11.96 0.57 −0.95 12.52 0.56
XQ −0.91 12.42 0.56 −0.79 14.63 0.52

YNSLH −0.90 13.04 0.55 −0.86 13.65 0.53
YICT −0.95 11.82 0.57 −0.94 12.07 0.57
ZHJC −0.87 13.23 0.54 −0.89 14.19 0.52

Similar to the study of the relationship between the SST and the maximum intensities
of TCs over the Eastern North Pacific Ocean [56], a least-squares regression was used to fit
the line between the TBBs and the maximum wind gusts or the maximum average-wind
speeds at those representative stations. Based on Equation (4), X0 was set to be 180 K, which
is the minimum TBB. The constants in Equation (4) were computed by the least-squares
regression. Figure 8 shows the fitting lines between the TBBs and the maximum wind
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gusts (a), and between the TBBs and the maximum average-wind speeds (b) at YICT. In
the remaining of this paper, the wind gust calculated by Equation (4) is referred to as the
maximum potential gust (MPG) and the average-wind calculated by Equation (4) is referred
to as the maximum potential average-wind (MPAW). Similar to the study of Whitney and
Hobgood [56], which excluded the maximum SST group in the best-fit computation, we
also found the fitting lines of the maximum wind gusts and the maximum average-wind
speeds that excluded the minimum TBB group of 200 K that were better than the lines with
the 200 K group. As shown in Figure 8, the initial lines that include the 200 K category
generally underestimated the maximum wind speeds when TBBs were less than 270 K,
compared with the lines that did not include the data of the 200 K category. The constants A
and B were −0.30 and 49.37, and R2 was 0.90 for the fitting line with the 200 K group of the
wind gusts at YICT. Additionally, the constants A and B were −0.33 and 52.12, and R2 was
0.96 for the fitting line without the 200 K group of the wind gusts at YICT. The constants
A and B were −0.21 and 34.09, and R2 was 0.88 for the fitting line with the 200 K group
of the average-wind speeds at YICT. Additionally, the constants A and B were −0.22 and
35.68, and R2 was 0.92 for the fitting line without the 200 K group of the average-wind
speeds at YICT. The R2 of the fitting lines without the 200 K group for both wind gusts and
average-wind speeds at YICT was larger than that of the fitting lines with the wind data of
the 200 K group. Therefore, the fitting lines without the 200 K were used to represent the
fitting results of the MPG and MPAW.
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Figure 8. Comparison of best-fit lines with and without the 200 K TBB group for the maximum gusts (a) and for the
maximum average-wind speeds (b) at YICT.

Figure 9 shows the fitting lines without the 200 K group computed by formula (4) and
all the observations used in the analyses at YICT. As shown in the figure, the MPG and
MPAW can provide reasonable estimates for the maximum observed gusts and average-
wind speeds at YICT induced by landfalling TCs.

Similar to the YICT station, the MPG and MPAW at the other 24 representative stations
were computed according to Equation (4). Table 4 shows the fitting parameters of all
representative stations. It can be seen from the parameters that the MPG and MPAW of
different stations were different, even though the stations were close to each other. For
example, BZJ (G3536) and YICT (G3567) were all located in Yantian District, Shenzhen. The
distance between them was 7.08 km. However, due to the influence of the topography and
surrounding environment, the wind induced by TCs was generally greater at YICT than
that at BZJ, though they might have a similar TBB at the same time. Figure 10 shows the
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comparison of the MPG and MPAW between the two stations. As shown in the figure, the
computed MPG and the MPAW are generally greater at YICT than those at BZJ.
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Table 4. The parameters of the fitting lines for the maximum potential gust (MPG) and maximum
potential average-wind (MPAW) at the 25 stations.

Gust (m/s) Average-Wind Speed (m/s)

Station A B R2 A B R2

BZJ −0.23 40.37 0.90 −0.16 25.26 0.93
NQX −0.31 48.97 0.89 −0.20 30.63 0.72
DYJD −0.32 47.67 0.82 −0.20 28.84 0.76
DFZ −0.29 56.93 0.87 −0.17 30.43 0.79
GLD −0.36 59.17 0.84 −0.22 38.01 0.78
GPSK −0.35 53.09 0.86 −0.22 33.20 0.74
GSD −0.28 46.65 0.78 −0.18 29.04 0.82

HLDD −0.25 44.66 0.91 −0.17 32.03 0.89
HS −0.30 47.81 0.88 −0.18 28.45 0.82

HHW −0.42 64.13 0.88 −0.24 37.63 0.91
HPZCZS −0.24 43.67 0.90 −0.16 26.31 0.86

JDZ −0.26 46.85 0.86 −0.18 31.33 0.81
JHZ −0.33 52.50 0.78 −0.22 33.75 0.77
JZG −0.32 50.21 0.79 −0.19 32.87 0.90
LQ −0.28 49.44 0.88 −0.16 26.38 0.92

LHDX −0.27 47.15 0.91 −0.13 24.26 0.86
NPGC −0.23 44.43 0.84 −0.16 29.23 0.66
PYZ −0.34 54.72 0.88 −0.21 33.17 0.81
QLC −0.34 47.18 0.86 −0.21 28.64 0.78
SW −0.28 46.87 0.84 −0.15 25.45 0.81

SZBYC −0.36 56.19 0.93 −0.24 37.57 0.90
XQ −0.27 47.86 0.83 −0.11 19.43 0.63

YNSLH −0.35 48.94 0.81 −0.25 33.53 0.75
YICT −0.33 52.12 0.96 −0.22 35.68 0.92
ZHJC −0.29 47.13 0.76 −0.14 25.98 0.79
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Figure 10. Comparison of the MPG (a) and MPAW (b) between YICT (G3567) and Bei Zai Jiao (BZJ, G3536).

Considering the unevenly spatial distribution of the weather stations, we used ERA5
reanalysis data for further study. The reanalysis data can make up for the shortage of
observation in the remote area. The specific elements used were the hourly maximum 10 m
wind gust and 10 m average-wind. To investigate similarities and discrepancies between
the wind observations and the corresponding reanalysis data, the observed wind speeds at
a representative station were compared with the wind speeds from the closest reanalysis
grid. We assumed that this closest series matches the observed data better than any other
series from more distant grid points [59]. From the longitude and latitude of the station,
YICT and BZJ match the same grid. The comparisons between the measured wind speeds
at the two stations and reanalysis data of the corresponding grid are shown in Figure 11.

As shown in Figure 11a, the scatter points of wind gusts at YICT were distributed
almost uniformly on both sides of the line y = x. More scatter points of the wind gusts at
BZJ were below the line of y = x. For the average-wind (Figure 11b), more scatter points for
YICT were above the line of y = x; while more scatter points for BZJ were below the line of
y = x. However, the scatter plots of the points for YICT and BZJ were uniformly distributed
along the line of y = x. Thus, the wind speeds of the nearest grids from the reanalysis data
can generally represent the average wind conditions of the two weather stations. Then
we further explored the relationship between TBBs and the 10 m wind gusts or the 10 m
average-winds of reanalysis data from 2009 to 2018.

Figure 12 shows the scatter plot of TBBs and the wind gusts (Figure 12a) or average-
wind speeds (Figure 12b) from the reanalysis data for the nearest grid of YICT (and BZJ).
As can be seen in Figure 12, the relationship between the TBBs and the wind gusts or
average-wind speeds of the reanalysis data resembles the relationship between the TBBs
and the observed wind speeds at stations. Similarly, we fitted the maximum potential
wind gusts and the maximum potential average-wind speeds of the reanalysis data using
Equation (4). The fitting lines are also shown in Figure 12. The result suggests that the
historical TBBs of a certain grid point can determine the upper limits of the 10 m wind
gusts or the 10 m average-wind speeds over the grid area.
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Figure 12. Scatter plot of TBBs and the wind gusts (a) and average-wind speeds (b) from the reanalysis data for the nearest
grid of YICT (and BZJ) from 2009 to 2018. The fitted lines of the MPG (a) and MPAW (b) are also shown in the figure.

We also computed the MPGs and MPAWs for other grids that are close to the repre-
sentative stations using Equation (4). Table 5 shows the calculated parameters of all grids.
It can be seen that the differences in the parameters of MPG and MPAW between different
grids were less than the differences between different stations. For example, the slope
of the fitting line was −0.33 for the wind gusts at YICT, and the slope of the fitting line
was −0.42 for the wind gusts at HHW; the slope of the fitting line was −0.26 for the wind
gusts at the nearest reanalysis grid of YICT, and the slope of the fitting line was −0.28 for
the wind gusts at the nearest reanalysis grid of HHW. The difference of slopes between
the two reanalysis grids was less than the difference between the two stations. Therefore,
the reanalysis data can represent an average condition over a region and can provide a
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general supplement for the area, which lacks weather stations; however, it cannot reflect
the extreme condition in a region.

Table 5. The parameters of the fitting lines for the MPGs and MPAWs at the nearest grids of the 25 stations based on the
ERA5 reanalysis data.

Station Longitude Latitude
Gust (m/s) Average-Wind (m/s)

A B R2 A B R2

BZJ (YICT, LHDX) 114.25 22.5 −0.26 47.5 0.88 −0.12 20.92 0.94
NQX 112.5 21.75 −0.22 41.51 0.9 −0.12 24.09 0.83
DYJD 110.25 21.25 −0.2 38.73 0.84 −0.09 18.51 0.85
DFZ 113.25 22.75 −0.27 43.63 0.9 −0.12 20.23 0.91
GLD 113.25 22 −0.22 41.57 0.92 −0.14 26.28 0.89
GPSK 115.5 23 −0.23 43.19 0.78 −0.1 18.52 0.87
GSD 113.75 22.25 −0.27 46.34 0.78 −0.16 27.51 0.82

HLDD 112 21.75 −0.2 37.88 0.89 −0.12 21.55 0.9
HS 113.25 22.25 −0.26 43.3 0.95 −0.13 22.32 0.97

HHW (SZBYC) 115.5 22.75 −0.28 46.78 0.95 −0.17 27.66 0.97
HPZCZS 110.5 21.25 −0.22 42.38 0.85 −0.11 21.16 0.86

JDZ (PYZ) 116 23 −0.29 49.68 0.86 −0.14 23.8 0.91
JHZ 116.5 23 −0.27 47.78 0.89 −0.18 29.37 0.9

JZG (NPGC) 113.5 22.25 −0.27 45.35 0.95 −0.13 22.89 0.94
LQ 114.5 22.5 −0.31 52.57 0.86 −0.17 28.58 0.87

QLC 113.25 22.5 −0.26 43.48 0.91 −0.11 18.81 0.87
SW 113.5 22.5 −0.31 48.66 0.89 −0.14 22.48 0.92
XQ 113 23 −0.27 45.06 0.89 −0.14 22.95 0.85

YNSLH 113 22.25 −0.21 39.04 0.84 −0.09 18.32 0.82
ZHJC 113.5 22 −0.24 46.39 0.67 −0.13 28.17 0.73

5. Conclusions

Based on the historical TCs, which made their first landfall in Guangdong Province
from 2009 to 2018, the hourly wind observations of AWSs in the province, and the TBBs
data obtained from the infrared channel 1 (with the wavelength of 10.30–11.30 µm) of
FY-2 satellite images, this study tried to explore the relationship between the near-surface
wind speeds at the stations in Guangdong Province induced by landfalling TCs and the
corresponding TBBs data. Twenty-five stations that generally suffer significantly during
TCs’ landfalling periods are applied as the representatives to explore the relationship.

The result shows that there is not a direct relationship between TBB and the wind
observation at the AWSs. However, TBBs have significant negative linear relationships
with the maximum wind gusts and the maximum average-wind speeds at the stations.
TBBs can provide a capping function for the wind gusts and average-winds at the AWSs
induced by TCs. The MPG and MPAW can provide reasonable estimates for the maximum
observed gusts and average-wind speeds at the AWSs induced by TCs. Additionally, it
was found that the parameters of MPG and MPAW were different at different stations due
to the diverse terrain and surrounding environment of the AWS, even though the distance
between the AWSs may be very close.

Furthermore, the relationship between the wind speeds of ERA5 reanalysis data
during the ten years and the corresponding TBBs data is explored. Similarly, there is a
negative linear relationship between the TBBs and the 10 m maximum wind gusts (or
the maximum average-wind speeds) at the grids close to the representative stations. The
differences in the parameters of the MPG and MPAW between different grids were generally
less than the differences between the corresponding stations with strong wind observations.
The reanalysis data can provide a good supplement for the area, which lacks weather
stations; however, it cannot reflect the extreme condition in a region.
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