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Abstract: This paper presents the development of the global to mesoscale air quality forecast and
analysis system (GMAF) and its application to particulate matter under 2.5 µm (PM2.5) forecast
in Korea. The GMAF combined a mesoscale model with a global data assimilation system by the
grid nudging based four-dimensional data assimilation (FDDA). The grid nudging based FDDA
developed for weather forecast and analysis was extended to air quality forecast and analysis for
the first time as an alternative to data assimilation of surface monitoring data. The below cloud
scavenging module and the secondary organic formation module of the community multiscale
air quality model (CMAQ) were modified and subsequently verified by comparing with the PM
speciation observation from the PM supersite. The observation data collected from the criteria
air pollutant monitoring networks in Korea were used to evaluate forecast performance of GMAF
for the year of 2016. The GMAF showed good performance in forecasting the daily mean PM2.5

concentrations at Seoul; the correlation coefficient between the observed and forecasted PM2.5

concentrations was 0.78; the normalized mean error was 25%; the probability of detection for the
events exceeding the national PM2.5 standard was 0.81 whereas the false alarm rate was only 0.38.
Both the hybrid bias correction technique and the Kalman filter bias adjustment technique were
implemented into the GMAF as postprocessors. For the continuous and the categorical performance
metrics examined, the Kalman filter bias adjustment technique performed better than the hybrid bias
correction technique.

Keywords: wet scavenging; grid nudging; nitrate evaporation loss; bias adjustment; CMAQ-AERO7

1. Introduction

Chemical transport models (CTMs) were first developed in the 1980s to investigate the
transport [1–3] and the transformation [4,5] of air pollutants. The CTMs have been further
developed by sophisticating atmospheric processes such as gas and aqueous chemical
reactions [6], dry and wet deposition [7,8], and aerosol formation [9] to address mesoscale
air pollution problems including acid deposition, tropospheric ozone (O3), fine particulate
matter (PM) pollution. The CTMs addressing air quality problems are named as air quality
models. Most of mesoscale air quality models do not simulate atmospheric dynamics inter-
nally, requiring a mesoscale atmospheric model to provide the meteorological variables.

On the other hand, global atmospheric chemistry models have progressed rapidly to
forecast and analyze the air quality despite of its coarse grid resolution and simplification
of physical and chemical processes [10]. One of advantages of using global atmospheric
chemistry models is that it is easy to incorporate polar orbiting satellite observations into
data assimilation. The spatial and temporal resolution of polar orbiting satellite is too coarse
to be used for mesoscale data assimilation. The remedy for this problem is to constrain the
mesoscale model outputs by the global model outputs by using a grid nudging based four-
dimensional data assimilation (FDDA) technique [11]. The grid nudging based FDDA is
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often used in mesoscale atmospheric models to perform continuous, long-term simulation
and to improve the accuracy [12]. However, it has never been applied to mesoscale air
quality models.

This paper presents the development of a global to mesoscale air quality forecast and
analysis system (GMAF). The GMAF uses the weather research and forecasting model
(WRF) and the community multiscale air quality model (CMAQ) as a mesoscale atmo-
spheric model and a mesoscale air quality model, respectively. The grid nudging based
FDDA was applied not only to the WRF but also to the CMAQ for the first time to link
the corresponding global model. Variational assimilation of surface chemical monitor-
ing data was not used because Korea has only a few surface monitoring stations in the
adjacent upwind region by being surrounded by the ocean or the land with few surface
monitoring stations.

The Copernicus atmosphere monitoring service (CAMS) forecast and reanalysis
dataset was used as a gridded global atmospheric chemical composition field. The Euro-
pean centre for medium-range weather forecasts (ECMWF) extended its integrated forecast
system (IFS) to carry out data assimilation and modeling of aerosols and chemically reactive
gases [13]. Four-dimensional variational assimilation of the polar-orbiting satellite data was
implemented to constrain atmospheric composition calculation. The grid nudging based
FDDA using the CAMS dataset makes the aerosol and reactive gas concentrations of the
CMAQ consistent with the satellite observations without explicitly using the satellite data.

The CMAQ is one of the most utilized community air quality models to address
multiscale, multipollutant, multiphase air pollutant behaviors. The CMAQ offers multiple
numerical solvers and chemical/physical modules so that a user may build his own model
tailored to a particular application. Yamaji et al. (2020) [14] built as many as 28 CMAQ
variations by selecting CMAQ versions, gas and aerosol chemical mechanisms, and grid
configurations, let alone emission and boundary conditions. A successful application of the
CMAQ depends on proper selection and adjustment of modules and rigorous evaluation
utilizing observation data [15,16]. In this paper, the CMAQ results were compared with
the observations from the criteria air pollutant monitoring network and the PM supersites
located in Korea [17] to critically evaluate the selected modules and to modify them
if necessary.

Every air quality modeling system including the CMAQ is subject to significant model
errors caused by incompletely understood phenomena, parameterization induced error
and uncertain emission inventories [18]. Observation interpolation and representativeness
errors may cause additional errors [19]. As a way to reduce the errors, bias adjustment
techniques have been developed. There are two kinds of bias adjustment techniques,
the hybrid bias correction technique [20,21] and the Kalman filter bias adjustment tech-
nique [22]. The hybrid bias correction technique algebraically manipulates the forecast
and observation at the previous time to reduce the bias whereas the Kalman filter bias
adjustment technique uses adaptive and recursive method to optimally adjust the bias
using the forecast and observation at the previous time. Both of these bias adjustment
techniques were incorporated into the GMAF and tested.

2. Description of the GMAF

The framework, the major components, and the methodology of the GMAF are
introduced in this section. Modification and update of the CMAQ to enhance the forecast
performance are also described.

2.1. GMAF Configuration and Input Data

As shown in Figure 1, the GMAF is configured with two nested domains. The outer
domain consists of 178 × 128 horizontal grids with 27 km spacing that cover Korean
peninsula, most of China, Japan and parts of Russia, while the inner nest consists of
67 × 82 horizontal grids with 9 km spacing that cover South Korea, parts of North Korea
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and parts of Japan. A hybrid, sigma-pressure vertical coordinate was used with 23 levels
and the top level was located at 200 hPa.
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Figure 1. Model domain and grid configuration of the global to mesoscale air quality forecast and
analysis system (GMAF).

As shown in Figure 2, the GMAF imported CMAQ [23] for air quality forecast and
analysis. The CMAQ version 5.3.1 was used with the carbon bond version 6 mechanism [24]
as a gas-phase chemical mechanism, which includes 77 chemical species and 218 chemical
reactions. The aerosol dynamics were modeled by AERO7 module, which includes 16 in-
organic aerosol species, 33 organic aerosol species, as described in the github of CMAQ
website [25]. The CMAQ divides sea salt into individual inorganic aerosol species and
includes them except the coarse mode cations. Similarly, the CMAQ divides dust into
individual aerosol species except the unknown composition fraction. The CMAQ treats the
coarse mode cations of sea salt and the unknown composition fraction of dust as lumped
aerosol species. The below-cloud scavenging module and the secondary organic aerosol
formation mechanism were modified, and the evaporation loss of nitrate was added as
detailed in Section 2.4. The WRF-ARW model version 3.6 [26] was used to provide the
values of meteorological variables to the CMAQ.

Global assimilated datasets were used for generation of initial and boundary condi-
tions of the outer domain and for providing gridded data to the grid nudging based FDDA.
The WRF used the 0.25◦ global data assimilation system (GDAS) dataset and the CMAQ
used the 0.4◦ CAMS dataset. The CAMS dataset was produced by the ECMWF’s IFS using
four-dimensional variational data assimilation of the polar orbiting satellite data. A hybrid,
sigma-pressure vertical coordinate was used with 137 levels and the top level was extended
to 0.01 hPa. The CAMS dataset provided the concentration of 14 gaseous species and seven
aerosol species in 3 h intervals [27]. The gaseous species were nitric oxide (NO), nitrogen
dioxide (NO2), sulfur dioxide (SO2), formaldehyde (HCHO), ozone (O3), peroxyacetyl
nitrates (PAN), hydrogen peroxide (H2O2), nitric acid (HNO3), hydroxyl radical (OH),
carbon monoxide (CO), methane, ethane, propane, and isoprene. The aerosol species were
dust, sea salt, hydrophobic black carbon, hydrophilic black carbon, hydrophobic organic
matter, hydrophilic organic matter, and sulfate. The dust and the sea salt were distributed
into the three size bins: 0.030–0.55, 0.55–0.9 and 0.9–20 µm for the dust and 0.03–0.5, 0.5–5
and 5–20 µm for the sea salt.

The clean air policy support system (CAPSS) emission inventory [28] was used to
generate the gridded anthropogenic emission of South Korea. The Korea–United States air
quality study (KORUS-AQ) anthropogenic emission inventory [29] was used for the rest of
the region. The biogenic emissions were generated by MEGAN version 2.1 [30]. The CAPSS
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emission inventory is a national emission inventory compiled and published annually
using the estimated or directly monitored emissions of CO, NO2, SO2, total suspended
particulate (TSP), PM10, PM2.5, black carbon (BC), volatile organic compound (VOC), and
ammonia (NH3) from the point, the area and the mobile sources. The KORUS-AQ emission
inventory was constructed from the CREATE emissions [31] to support the KORUS-AQ
field campaign carried out in the spring of 2016.

The bias adjustment technique was applied to remove the bias of PM2.5 forecast using
the previous days’ PM2.5 observation and forecast. The GMAF retrieved the hourly PM2.5
measurements from the criteria air pollutant monitoring network with a 15 min delay. The
collected hourly measurements were averaged at the end of the day to calculate the daily
mean PM2.5 concentration for the use of bias adjustment.

The three air monitoring networks in Korea measure the PM2.5 and related species.
Those are the criteria air pollutant monitoring network, the PM2.5 speciation monitoring
network and the PM2.5 supersites. The criteria air pollutant monitoring network, consisting
of 264 urban sites, 19 rural sites, three background sites as of 2016, measures the criteria
air pollutant concentration including PM2.5 mass concentration. The PM2.5 speciation
monitoring network and the PM2.5 supersites measure the PM compositions such as sulfate,
nitrate, ammonium, organic carbon, elemental carbon, and mineral species. The PM2.5
compositions measured at the Bulkwang PM supersite were used for verification of the
GMAF. The PM2.5 mass concentrations measured at the criteria air pollutant network were
used to evaluate the GMAF using both the continuous forecast performance metrics and
the categorical forecast performance metrics.
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Figure 2. Schematic diagram of the GMAF.

2.2. Forecasting Period and Area

The first national air quality standard for PM2.5 was promulgated in Korea in 2015 to
begin installation of a PM2.5 monitoring instrument at the criteria air pollutant monitoring
station. Most of the criteria air pollutant monitoring stations in the urban area were
equipped with a PM2.5 monitoring instrument by 2016. Furthermore, KORUS-AQ field
campaign was conducted in the spring of 2016 to provide the measurements from aircraft,
ground sites and ships. The KORUS-AQ emissions were also developed to support the
campaign [32]. Taking into account availability of monitoring data and emission inventory,
this study chose the period from December of 2015 to November of 2016 for verification
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and evaluation of the GMAF. Four major cities in Korea were selected as target areas. Those
are Seoul, Busan, Gwangju, and Daegu as displayed in Figure 3.
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Figure 3. Four major cities selected for forecast performance evaluation.

The PM2.5 pollution in Seoul and Busan expressed in Figure 4, the first and second
largest city in Korea, was the worst in 2016 in the period from 2015 to 2019. As shown in
Table 1, the annual mean PM2.5 concentration was the highest and the number of days
exceeding the PM2.5 standard of 35 µg/m3 was the largest in 2016. Among meteorological
parameters, precipitation, wind velocity and wind direction affect the year-to-year varia-
tions of the PM2.5 concentrations the most. The precipitation from June to September of
2016 was 52% less than the 30-year average in Seoul. This low precipitation reduced the
wet scavenging to increase the PM2.5 concentrations. The PM2.5 concentrations from June
to September of 2016 were higher than the other year averages of the same period by 33%.
The number of days of exceeding the PM2.5 standard of 35 µg/m3 from June to September
of 2016 was larger than the other year averages of the same period by 258% in Seoul as
shown in Figure 4.
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Figure 4. Monthly mean PM2.5 concentrations (top) and the number of days exceeding 35 µg/m3 of
PM2.5 (bottom) obtained from the Korea air monitoring network in Seoul.

Table 1. Annual mean concentrations and the number of days exceeding 35 µg/m3 of PM2.5 in Seoul and Busan.

Year
Parameter Annual Mean Concentrations (µg/m3) Number of Days Exceeding the PM2.5 Threshold

Seoul Busan Seoul Busan
2015 23 26 42 66

2016 26 27 75 74

2017 25 26 63 61

2018 23 23 61 61

2019 25 21 64 41

Busan is located about 320 km southeast of Seoul. The observed precipitation from
May to August in 2016 was comparable to the 30-year average in Busan, and therefore the
precipitation is unlikely to contribute to the PM2.5 increase. Instead, the stagnant wind
conditions that occurred in November 2016 increased the monthly mean concentrations
and the number of days of exceedances as shown in Figure 5.
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2.3. Grid Nudging Based FDDA Method

Data assimilation combines model with observation to improve performance of the
forecast and the reanalysis [33]. The grid nudging based FDDA adds a relaxation term that
is supposed to force the observations to the model [34] as

dYmodel
dt

= F(x, Ymodel) + W(x)(Yobs − Ymodel) (1)

where Y is the dependent variable, F is a discretized form of the governing equation, x is
the independent spatial variable, and W is the nudging coefficient. The subscripts ‘obs’ and
‘model’ denote the observations and the model, respectively. Global assimilated datasets
may be used instead of observations to combine the mesoscale model with the global
model. The dependent variables, Y, are defined as

Y = α
(
pt − ps

)
for the WRF, (2)

Y = ϕJs for the CMAQ, (3)

where α is the meteorological variable of the WRF, ϕ is the chemical species concentration,
pt is the air pressure at the top of the domain, ps is the air pressure at the surface and Js is
the vertical Jacobian of the terrain-influenced coordinates. The variables nudged for the
WRF were U, V winds, temperature and water vapor mixing ratio. The water vapor mixing
ratio in the PBL and the surface temperature were not nudged. The nudging coefficients
used for the WRF in this study were set as recommended by Baker et al. (2009) [35] and
listed for completeness in Table 2.
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Table 2. Nudged variable and nudging coefficient.

Nudged Variable
Nudging Coefficient

Outer Domain Inner Nest

WRF

U and V winds 5.0 × 10−4 2.5 × 10−4

Temperature 5.0 × 10−4 2.5 × 10−4

Water vapor mixing ratio 1.0 × 10−4 1.0 × 10−4

CMAQ SO2, CO, NO, NO2, isoprene, O3, dust,
sea salt 3.0 × 10−4 0

The nudged variables of the CMAQ were selected to be consistent with CAMS dataset.
The primary pollutants were selected to minimize the emission uncertainties in the outer
domain. The O3 was added to the FDDA nudged variable list because its satellite observa-
tion data which the CAMS based on were reasonably accurate. In addition, the grid based
FDDA on O3 enables incorporation of stratospheric intrusion into the mesoscale model
domain. The grid spacing of the CAMS dataset is 0.4◦ (about 40 km in mid-latitudes) and
the grid spacing of outer domain and inner nest of the GMAF are 27 and 9 km, respectively.
Interpolation of the CAMS dataset to the inner nest may severely underestimate the peak
values due to a large difference between the grid resolutions. Moreover, the emission
uncertainties in the inner nest, Korea emission, were reasonably small. Therefore, the grid
nudging based on FDDA was applied only to the outer domain. Table 2 presents the list of
nudged chemical species with the corresponding nudging coefficients.

2.4. Modification of the CMAQ

The CMAQ was modified to enhance the model accuracy based on the recent findings
deduced from model verification as described below.

2.4.1. Below-Cloud Scavenging

The CMAQ assumes that accumulation mode and coarse mode particles are com-
pletely absorbed into cloud and rainwater. This assumption is valid only for a cloud
environment where water droplets are readily formed around particles due to high wa-
ter vapor contents but not valid for a rain environment. It may lead to overestimation
of below-cloud scavenging and subsequently to underestimation of particulate matter
concentrations in the below-cloud region.

In order to remove the complete absorption assumption in a rain environment, the
CMAQ was modified to calculate the below-cloud scavenging rate by

∂c(t)
∂t

= −Λc(t) (4)

where c(t) is the particulate species concentration at time t and the Λ is the scavenging
coefficient [36]. The below-cloud scavenging coefficient was calculated by semiempirical
formula derived by Slinn (1983) [37] with the empirically estimated mean raindrop diame-
ter [38]. The calculated below-cloud scavenging coefficients ranged 10−6~10−2 s, consistent
with the field measurements [39].

If the particles are completely absorbed into rainwater as the CMAQ assumes, then
the below-cloud scavenging coefficient should be equal to 1, which is several orders of
magnitude larger than the one estimated here. More importantly, it remains constant
whereas it should increase with the precipitation intensity. As a result, the CMAQ seriously
overestimates the below-cloud scavenging rate and subsequently underestimates PM2.5
concentration especially when the precipitation intensity is low.

The WRF-CMAQ simulation was performed from 21 March to 27 April in 2016 to
test the modified below-cloud scavenging module. Figure 6 compares the modeled and
observed precipitations at Seoul. The modeled and observed surface PM2.5 concentrations
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were also compared. The modeled precipitation agrees very well with the observation ex-
cept 21 April. The dates of the modeled precipitation between 0.1 mm/day and 1.0 mm/day
are 29, 30 March, and 3, 6, 8, 9, 10, 14, 19, 22 April. As also shown in Figure 6, the CMAQ
without modification considerably underestimated the PM2.5 concentrations on these dates
of little precipitation. As noted earlier, this is because the CMAQ severely overestimated the
below-cloud scavenging rates by assuming complete absorption of particles into rainwater.
The CMAQ with the proposed modification reduced overestimation of the below-cloud
scavenging rates, resulting that the modeled PM2.5 concentration agreed well with the
observation.
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2.4.2. Secondary Organic Aerosol Formation

In the present study, the AERO7 module including 12 primary organic aerosols
(POA) and 21 secondary organic aerosols (SOAs) were used to model SOA formation.
Compared to the previous versions of aerosol module, the AERO7 module expanded
the SOA formation mechanism by adding pcSOA, organic nitrates from monoterpene
oxidation and SOA from glyoxal and methylglyoxal. The pcSOA, standing for the potential
SOA from combustion emissions, is a surrogate species designed to compensate missing
and underestimated mass from combustion.

The pcSOA production rate of the AERO7 module was optimized for the southern
and northern California sites and was known to overestimate the SOA in the continental
US application [40]. Figure 7 displays the model calculated SOA compositions by season
in Seoul. Here, the SOA was divided into four groups, pcSOA, SOA from biogenic VOCs
(SOA_BVOC), SOA from anthropogenic VOCs (SOA_AVOC), and SOA from glyoxal and
methylglyoxal (SOA_gly) for convenience. The pcSOA was the most dominant SOA in
the winter due to low temperatures whereas the SOA_BVOC was the most dominant
SOA in the summer due to high emission fluxes of biogenic VOCs and fast photochemical
production. These seasonal characteristics of SOA compositions appeared similarly in most
urban areas in Korea.
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Figure 7. Modeled chemical compositions of secondary organic aerosols (SOAs) in winter (a), spring
(b), summer (c), fall (d) in 2016 in Seoul. pcSOA: potential SOA from combustion, SOA_BVOC: SOA
from biogenic volatile organic compounds (VOCs), SOA_AVOC: SOA from anthropogenic VOCs,
SOA_gly: SOA from glyoxal and methylglyoxal.

The CMAQ with the AERO7 module considerably overestimated the PM2.5 mass in
the winter. As the pcSOA was a dominant species in the winter, the PM2.5 overestima-
tion might be lessened by adjusting the pcSOA concentration by multiplying the pcSOA
weighting factor (PWF). As shown in Figure 8, the AERO7 module with the PWF of 1.0
overestimated the observed monthly mean PM2.5 concentrations at Seoul by 12~49%. As
the PWF decreased to 0.4 and to 0.0, the modeled PM2.5 concentrations were getting smaller.
The modeled monthly mean PM2.5 concentrations best agreed with the observations when
the PWF was set to 0.4.
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weighting factors (PWF) of 0, 0.4 and 1.0.

In addition, we conducted statistical performance evaluation to search an optimum
value of the PWF. As listed in Table 3, the model performances in PM2.5 forecast at four
major cities in Korea in 2016 were evaluated by correlation coefficient (R), normalized
mean bias (NMB), normalized mean error (NME), probability of detection (POD), false
alarm ratio (FAR), and Heidke skill score (HSS), the definition and the usage of which were
presented in Section 2.6. As the PWF increased, the R increased indicating performance
improvement. However, there was no clear relation between the PWF and the NME. The
POD increased with the PWF indicating performance improvement whereas the FAR
decreased with the PWF indicating performance decline.
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Table 3. Statistical analysis on the model performance in forecasting PM2.5 concentration at four
cities (Seoul, Busan, Gwangju, Daegu) in 2016 with the PWF changing from 0 to 1.

Region
Name

Weighting
Factor

Continuous Forecast Categorical Forecast

R NMB NME POD FAR HSS

Seoul

0.0 0.76 4% 22% 0.68 0.30 0.61

0.2 0.77 9% 23% 0.75 0.35 0.61

0.4 0.78 13% 25% 0.81 0.38 0.61

0.7 0.78 19% 28% 0.83 0.47 0.53

1.0 0.78 26% 33% 0.91 0.52 0.49

Busan

0.0 0.79 −20% 26% 0.39 0.16 0.47

0.2 0.81 −17% 24% 0.44 0.14 0.52

0.4 0.81 −14% 22% 0.51 0.16 0.58

0.7 0.82 −9% 21% 0.57 0.20 0.60

1.0 0.83 −5% 21% 0.64 0.25 0.63

Gwangju

0.0 0.75 −2% 25% 0.49 0.26 0.54

0.2 0.77 2% 25% 0.53 0.36 0.51

0.4 0.78 6% 25% 0.66 0.38 0.58

0.7 0.80 12% 26% 0.77 0.39 0.62

1.0 0.81 18% 29% 0.89 0.44 0.62

Daegu

0.0 0.77 −7% 23% 0.43 0.19 0.51

0.2 0.78 −4% 22% 0.48 0.24 0.53

0.4 0.78 −1% 22% 0.60 0.30 0.59

0.7 0.79 4% 22% 0.69 0.32 0.62

1.0 0.79 9% 24% 0.74 0.41 0.58

The R, the NMB, the NME, the POD, and the FAR are simple statistical metrics
evaluating a partial performance of the model and therefore they may not agree with each
other as happened here. This study used the HSS to decide an optimum value of the
PWF, because the HSS evaluates the overall performance. The HSS averaged over the four
cities was the highest when the PWF was equal to 0.4 or 0.7. The HSS at Seoul, the most
populated city in Korea, was the highest when PWF was equal to 0.4. This value of the
PWF is the same as the value previously derived using Figure 8. Therefore, the PWF was
set equal to 0.4 in this study.

The PM supersite located at Bulkwang in Seoul collected PM2.5 on a quartz filter
every three days and analyzed them for organic carbon (OC). The observed OC at the
Bulkwang PM supersite was compared with the modeled OC in Figure 9. The CMAQ
calculated organic matter (OM) concentrations instead of OC concentrations. Therefore, the
calculated OM concentrations were converted to the OC concentrations by taking account
of molecular formula of individual organic aerosol species constituting the OM. As shown
in Figure 9, the modeled OC agreed well with the observation except the summer. As
the pcSOA dominated except the summer, the model must have accurately estimated the
pcSOA concentration with the PWF of 0.4.
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One other thing to note is that the model significantly over-predicted the OC in the
summer. As most of SOA in this period is the SOA from biogenic VOCs as shown in
Figure 7, it is highly likely that the emissions of biogenic VOCs, isoprene and terpenes
were overestimated or that the conversion rates from the biogenic VOCs to the SOA were
overestimated. More studies are necessary to address this over-prediction problem.

2.4.3. Evaporation Loss of Nitrate

A national reference method for PM2.5 in many countries including Korea specifies
Teflon membrane filter for collection of ambient particles. Teflon membrane filter may
cause a significant evaporation loss of particulate nitrate (NO3

−) during and after the
sampling in the warm environment [41,42]. Assuming equilibrium, the evaporation loss
(∆NO−3 ) is expressed as

∆NO−3 =
745.7

TR
∑i=24

i=1

√
Ki

24
, (5)

where TR is the daily average temperature of the sampled air and Ki is the dissociation
constant for ammonium nitrate evaluated at the ambient temperature and the relative
humidity for hour i as described by Frank (2006) [43].

The GMAF applied Equation (5) to the temperature and humidity calculated by the
WRF to estimate the nitrate evaporation loss. The estimated nitrate evaporation loss was
subtracted from the nitrate concentration calculated by the CMAQ to estimate the nitrate
concentration left on the filter after evaporation.

2.5. Implementation of Bias Adjustment Techniques

The accuracy of air quality forecast may be improved by applying bias adjustment
techniques. Both the hybrid bias correction technique and the Kalman filter bias adjust-
ment technique were implemented into the GMAF as postprocessors. The hybrid bias
correction technique uses either the difference or the ratio between the forecast and the
observation [44]. The former is an additive correction and expressed as

Ct+∆t = Ft+∆t +
1

Nday ∑j=0
j=Nday−1(Ot−j∆t − Ft−j∆t). (6)

The latter is a multiplicative correction and expressed as

Ct+∆t = Ft+∆t ×
∑

j=0
j=Nday−1 Ot−j∆t

∑
j=0
j=Nday−1 Ft−j∆t

, (7)
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where C is the corrected forecast value, F is the raw forecast value and O is the observation.
Nday denotes the number of previous days representing a training period. Typical values
for Nday are the numbers between 1 and 5.

Kalman filter bias adjustment technique predicts the future bias by correcting the
previous estimate of the bias using the difference between the bias estimate and the forecast
error at the previous time. The predicted future bias is used to adjust the forecast. The
Kalman filter bias adjustment technique was implemented into the GMAF by following the
work by Delle Monache et al. (2006) [22]. Kalman filter bias adjustment technique is sensi-
tive to the error ratio, which determines the relative weighting between the observation
and the forecast and needs to be optimized.

2.6. Forecast Performance Evaluation Metrics

The methods for forecast performance evaluation are introduced in this section. Se-
lected forecast period and variables for forecast evaluation are also discussed.

2.6.1. Forecast Variables

The GMAF can forecast most of the criteria air pollutants but this study selected the
PM2.5 for performance analysis. As of 2016, 25 PM2.5 monitoring stations were located in
Seoul, 19 stations in Busan, six stations in Gwangju and seven stations in Daegu. Korea uses
the PM2.5 concentration averaged over all the stations in the city of interests to set a policy
goal and to calculate the air quality index (AQI). Taking averages over the city improves
the spatial representativeness of monitoring data and reduces the associated errors.

Although the recent advances in analytical chemistry have made it possible to measure
PM2.5 mass and composition at time intervals equal to or less than 1 h, most of PM2.5 toxicity
and PM2.5 management studies still use the daily mean or annual mean concentrations
as a metric of PM2.5. This study used the daily mean PM2.5 concentration for forecast
performance evaluation.

2.6.2. Performance Evaluation Metrics of Continuous Forecasts

Continuous forecast aims at forecasting the values of continuous variables. Temper-
atures, wind velocities and air pollutant concentration are good examples of continuous
variables. The model performance of continuous forecast was measured by three statistical
metrics in this study; R, NMB and NME. The R, correlation coefficient, gives a measure of
linear relationship between two variables and ranges between −1 and 1. The R between
the forecast and observed values is defined as

R =
∑i=N

i=1
(
Oi −O

)(
Fi − F

)√
∑i=N

i=1
(
Oi −O

)2
√

∑i=N
i=1
(
Fi − F

)2
, (8)

where Oi and Fi are the observation and the forecast, respectively, and N is the number of
paired data sets.

The NMB, normalized mean bias, is the difference between observed and forecasted
mean value normalized by the observed mean value and is defined by

NMB =
F−O

O
× 100. (9)

The NMB is a useful metric for measuring the systematic errors. However, as the
number of datasets increases, under-forecasted values tend to offset over-forecasted values
to improve the NMB even if the accuracy remains unchanged. The root mean square
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(RMSE) uses the square of the difference between the observed and forecasted value to
measure the errors as defined by

RMSE =

√√√√ 1
N

i=N

∑
i=1

(Fi −Oi)
2. (10)

The squaring operation makes the RMSE strongly dominated by the largest errors.
The RMSE is not recommended for the air quality forecast and analysis because of its high
sensitivity to the largest concentrations [10,45].

The normalized mean error (NME) uses the absolute value of the difference instead of
the squares of them as defined by

NME =
1
N

∑i=N
i=1 |Fi −Oi|

O
× 100. (11)

The NME gives a measure of the overall forecast error and is used in this study instead
of RMSE.

Emery et al. (2017) [45] analyzed the model performance evaluation studies published
from 2006 to 2012 in the United States and recommended the criteria and goal of the R, the
NMB and the NME as listed in Table 4, which is used in this study as a reference.

Table 4. Goals and criteria of the R, the normalized mean bias (NMB) and the normalized mean error
(NME) for the forecast of daily mean PM2.5 concentrations.

R NMB NME

Goal Criteria Goal Criteria Goal Criteria

>0.70 >0.40 <±10% <±30% <±35% <±50%

R = 1 is perfect correlation
R = 0 is no correlation

NMB < 0 is under-forecast
NMB > 0 is over-forecast NME = 0 is perfect forecast

2.6.3. Performance Evaluation Metrics of Categorical Forecasts

Categorical forecast aims at forecasting the occurrence of a specific event. The event
of interests in this study is that the PM2.5 concentration exceeds the Korean PM2.5 standard
of 35 µg/m3. The contingency table used for analysis of the relationship between two
categorical variables is presented in Table 5, where the “A” is the number of event forecasts
with event occurring. The “B” is the number of event forecasts with event not occurring.
The “C” is the number of no-event forecasts with event occurring. Finally, the “D” is the
number of no-event forecasts with event not occurring.

Table 5. Contingency table structure.

Event Forecast
Event Observed

Yes No

Yes A B

No C D

The A, B, C, D in the contingency table may formulate various performance metrics,
including probability of detection (POD), probability of false detection (PODF), false alarm
ratio (FAR), success ratio (SR), critical success index (CSI), true skill statistic (TSS), Gilbert
skill score (GS), Heidke skill score (HSS), bias (B), and accuracy (A) [46].

The POD ranges from 0 to 1 with 1 being a perfect forecast and is defined by

POD =
A

(A + C)
. (12)
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The POD considers missed events only, neglecting false alarms and therefore it can be
artificially improved by over-forecasting. The FAR complements the POD in this aspect
and is defined by

FAR =
B

(A + B)
. (13)

The FAR ranges from 0 to 1 with 0 being a perfect forecast. The FAR considers false
alarm events only, neglecting missed events and therefore it can be artificially improved by
under-forecasting.

The POD and the FAR are examples of simple skill metrics. The problem of simple
skill metrics is that a good score does not necessarily mean a good overall forecasting
performance. One can overcome this problem by combining two or more simple skill
metrics. This kind of skill metrics, called here as complex skill metrics, are the CSI, the
TSS and the HSS. The CSI and the TSS may not work properly for rarely occurring events.
As exceedance of the PM2.5 standard, the event in this study, may occur rarely in certain
seasons and regions, we selected the HSS as a complex skill metric.

The HSS is the fraction of accurate forecast with correction of random forecasts as
defined by

HSS =
A + D− E

A + B + C + D− E
, (14)

where E is the number of correct random forecasts as defined by

E =
(A + B)(A + C) + (B + D)(C + D)

A + B + C + D
. (15)

The HSS ranges from −∞ to 1 with 1 being a perfect forecast. The HSS above zero
means that the forecast is better than a random guess and the HSS above 0.5 is deemed a
good score.

Studies on categorical forecast performance evaluation of PM2.5 forecast were much
more limited than studies on continuous forecast performance evaluation [47]. The POD
for the event of exceeding the 8-h O3 standard in the Northeastern United States ranged
between 0.07 and 0.37 whereas the FAR, often larger than the POD, ranged between 0.64
and 0.76 [48]. The POD for the event of exceeding the 24-h PM2.5 standard in the Eastern
United States was 0.28 whereas the FAR was 0.35 [49]. The POD for the event of exceeding
the 24-h PM2.5 standard in Korea ranged between 0.1 and 0.39 whereas the FAR ranged
between 0 and 0.64 [50].

3. Results and Discussion

The performance evaluation results of the GMAF are presented in this section. Test
results of performance improvement attained by incorporating the nitrate evaporation and
the bias adjustment techniques are also presented.

3.1. Performance Evaluation of the Base Forecast

The GMAF was used to forecast the PM2.5 for the year 2016. All the modifications
described in Section 2.4 were included except nitrate evaporation loss. Table 6 shows the
seasonal and yearly values of performance metrics, where the seasons were defined as
winter (December, January, February), spring (March, April, May), summer (June, July,
August), and fall (September, October, November). The average PM2.5 concentrations in
the winter and the spring were higher than those in the summer and the fall in all the four
selected cities, which are very typical of the PM2.5 concentrations in Korea. The annual
values of R were higher than 0.78 in all four cities, satisfying the goal set in Table 4. The
winter values of R were the higher than the other seasons and the summer values of R were
lower than the other seasons except Busan.
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Table 6. Performance evaluation of continuous and categorical forecast at Seoul, Busan, Gwangju, Daegu in 2016. A
threshold value for the categorical forecast was set to the daily mean PM2.5 35 µg/m3.

PM2.5,obs #
Continuous Forecast

N_Day %
Categorical Forecast

R NMB NME POD FAR HSS

Seoul

Winter 26.4 µg/m3 0.87 26% 27% 17 1.00 0.48 0.58
Spring 30.2 µg/m3 0.78 3% 21% 31 0.90 0.15 0.81

Summer 23.8 µg/m3 0.72 12% 26% 12 0.58 0.53 0.44
Fall 23.8 µg/m3 0.77 12% 25% 15 0.60 0.50 0.45
Year 26.0 µg/m3 0.78 13% 25% 75 0.81 0.38 0.61

Busan

Winter 30.2 µg/m3 0.86 −16% 20% 22 0.68 0.17 0.68
Spring 30.8 µg/m3 0.72 −11% 23% 25 0.52 0.24 0.51

Summer 21.8 µg/m3 0.81 −9% 20% 9 0.22 0.00 0.34
Fall 24.5 µg/m3 0.79 −19% 25% 14 0.43 0.00 0.56
Year 26.8 µg/m3 0.81 −14% 22% 70 0.51 0.16 0.58

Gwangju

Winter 25.9 µg/m3 0.83 11% 24% 22 0.86 0.27 0.72
Spring 28.0 µg/m3 0.70 −1% 25% 21 0.52 0.42 0.43

Summer 18.6 µg/m3 0.68 11% 27% 3 0.00 1.00 −0.03
Fall 21.3 µg/m3 0.80 7% 23% 7 0.71 0.44 0.59
Year 23.5 µg/m3 0.78 6% 25% 53 0.66 0.38 0.58

Daegu

Winter 28.6 µg/m3 0.82 −6% 19% 25 0.72 0.18 0.68
Spring 26.3 µg/m3 0.77 2% 21% 16 0.69 0.35 0.59

Summer 20.0 µg/m3 0.64 7% 27% 2 0.00 1.00 −0.03
Fall 23.4 µg/m3 0.79 −5% 21% 15 0.40 0.25 0.46
Year 24.6 µg/m3 0.78 −1% 22% 58 0.60 0.30 0.59

# observed seasonal or yearly averaged concentration of PM2.5. % number of days exceeding PM2.5 standard of 35 µg/m3.

The NMBs at Seoul were positive in all the seasons, indicating over-forecasting,
whereas those at Busan were all negative, indicating under-forecasting. Out of total
16 cases (four seasons and four cities), half of the cases had the NMB value less than ±10%,
achieving the goal set in Table 4 and the other half of cases had the NMB value less than
±30%, satisfying the criteria also set in Table 4. The seasonal NME ranged between 19%
and 27%, achieving the goal set in Table 4. Unlikely to the R, the NME did not exhibit a
distinctive seasonal variation.

The number of days exceeding the 24-h PM2.5 standard, which is the frequency of
occurrence of events, ranged between 17 and 31 days during the winter and the spring
because of severe PM2.5 pollution in Korea. The frequency of occurrence of events in this
study is several times higher than that in the literature quoted in Section 2.6.3. It may be
noted here that categorical forecasts perform better for the frequent events than for the
rare events. During the winter, the skill scores were very good; the POD were 0.68~1.0 and
exceeded the FAR by 0.41~0.59, and HSS were 0.58~0.68. Although the skill scores went
down in the spring and fall, all three skill scores were still deemed fairly good.

The categorical forecast performed poorly during the summer compared to the other
seasons because of two reasons. Firstly, as noted above, the R values and the NME values
in the summer were generally lower than those in the other seasons, indicating the GMAF
might not perform well in the summer. Secondly, the events occurred less frequently in
the summer due to lessened PM2.5 pollution in Korea, which might worsen the categorical
skill scores measured by the POD, the FAR and the HSS.

As discussed above, both the GMAF performed the best during the winter and
worst during the summer. In order to investigate the effects of seasons on the forecast
performance, the modeled seasonal PM2.5 chemical compositions are displayed in Figure 10.
The nitrate was a dominant PM2.5 species in the winter. The PM2.5 nitrate in the urban
area is rather locally produced than regionally transported [51]. The local emissions of
nitrogen oxides (NOx) were well known and the homogeneous and heterogeneous chemical
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pathways were well defined such that the GMAF was able to accurately predict the PM2.5
nitrate concentrations and subsequently the PM2.5 mass concentrations during the winter.
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Seoul in 2016.

During the summer, the PM2.5 mass was dominated by the OM, the most of which
was the SOA from biogenic VOC as shown in Figure 7. There was large uncertainty in
estimating biogenic VOC emission and in modeling aerosol formation processes from
biogenic VOCs, which probably degraded the model performance.

3.2. Modeling of Nitrate Evaporation Loss

The PM supersite located at the Bulkwang in Seoul measured the PM2.5 mass and
PM2.5 nitrate using Teflon membrane filter. Teflon membrane filter causes a significant
evaporation loss of particulate nitrate during and after the sampling in the warm envi-
ronment. Here, the nitrate before evaporation loss is defined as as-is nitrate, whereas the
nitrate left on the filter after evaporation loss is defined as retained nitrate.

The monthly mean concentrations of the retained nitrate at the Bulkwang site were
calculated by applying Equation (5) to the temperature and the humidity forecasted by
WRF and the nitrate concentration modeled by CMAQ. As displayed in Figure 11, both the
as-is and retained PM2.5 nitrate concentration were the highest during the winter months
and the lowest during the summer months because the ratios of nitrate aerosol to nitric acid
gas (NO3

−/HNO3) decrease with temperature increase. In the summer months, the nitric
acid mainly stayed in the gas phase due to the warm temperature. It may be noted that the
nitric acid gas is readily removed by wet and dry deposition to have shorter lifespan than
the nitrate aerosol.

The difference between as-is nitrate and retained nitrate is the evaporation loss of
nitrate taking place during and after Teflon filter sampling. The evaporation loss is less
than 10% of as-is nitrate during the winter months whereas it was more than 80% of as-is
nitrate during the summer months. Therefore, the retained nitrate was negligibly small by
being less than 0.5 µg/m3 during the summer months.
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Figure 11. Forecasted monthly mean as-is and retained PM2.5 nitrate at Bulkwang PM2.5 supersite in
Korea from December 2015 to November 2016.

Figure 12 compares the observed nitrate with the modeled nitrate between April and
October during which Equation (5) predicted a significant evaporation loss of nitrate as
shown in Figure 11. As the nitrate was measured every three days, the modeled nitrate
concentrations were also selected every three days in the Figure 12. The modeled retained
nitrate agreed well with the observed nitrate in April, August, September, and October,
indicating that Equation (5) calculated the nitrate evaporation loss accurately. The retained
nitrate concentrations were kept below 5 µg/m3 to lessen the nitrate overestimation ap-
peared in the as-is nitrate concentration. However, the observed nitrate was closer to the
modeled as-is nitrate than the modeled retained nitrate about half of May, June and July.
This underestimation of the retained nitrate is probably due to inaccurate estimation of the
temperature to which the nitrate evaporation loss is sensitive.
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Figure 12. Comparison of the nitrate observation and the nitrate forecast at the Bulkwang site in
Seoul from April to November 2016.

Table 7 shows the effect of inclusion of nitrate evaporation loss on the forecast perfor-
mance in the spring and the fall during which the nitrate evaporation loss had a discernible
effect on the PM2.5 mass concentration. The CTMs including the CMAQ are exposed to
high degrees of uncertainty in modeling physical and chemical processes and in preparing
input data such as emissions, meteorological parameters. Enhancement of one module does
not necessarily mean improvement of the forecast performance. As the nitrate evaporation
loss was included, the NMB decreased as expected. The R decreased in all the four cities
for the spring whereas it increased in Gwangju and Daegu for the fall. The NME increased
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in most cases. Therefore, it may be concluded that the performance of the continuous
forecast was not improved although the nitrate evaporation loss was included. Moreover,
the categorical forecast measured by the POD, the FAR and HSS was declined in most cases
considered here.

Table 7. Effect of inclusion of nitrate evaporation loss on the performance of continuous and
categorical forecast at Seoul, Busan, Gwangju, Daegu during spring and fall in 2016. A threshold
value for the categorical forecast was set to the daily mean PM2.5 35 µg/m3.

Nitrate
Evaporation Loss

Continuous
Forecasting Categorical Forecasting

R NMB NME POD FAR HSS

Seoul
Spring Not included 0.78 3% 21% 0.90 0.15 0.81

Included 0.76 0% 22% 0.68 0.13 0.67

Fall
Not included 0.77 12% 25% 0.60 0.50 0.45

Included 0.77 4% 23% 0.33 0.50 0.31

Busan
Spring Not included 0.72 −11% 23% 0.52 0.24 0.51

Included 0.67 −13% 26% 0.52 0.24 0.51

Fall
Not included 0.79 −19% 25% 0.43 0 0.56

Included 0.78 −22% 27% 0.5 0 0.63

Gwangju
Spring Not included 0.70 −1% 25% 0.52 0.42 0.43

Included 0.64 −6% 27% 0.33 0.42 0.31

Fall
Not included 0.80 7% 23% 0.71 0.44 0.59

Included 0.81 −2% 22% 0.29 0.33 0.37

Daegu
Spring Not included 0.77 2% 21% 0.69 0.35 0.59

Included 0.72 −3% 23% 0.56 0.25 0.58

Fall
Not included 0.79 −5% 21% 0.4 0.25 0.46

Included 0.80 −10% 22% 0.4 0 0.53

3.3. Application of Bias Adjustment Technique

The bias adjustment techniques described in Section 2.5 were applied to the PM2.5
forecasts at the four cities for the year 2016. We tested different values of the number of
previous days (Nday) for additive and multiplicative bias correction and different values of
the error ratio for the Kalman filter bias adjustment, and chose 2 as the number of previous
days and 0.5 for the error ratio.

The additive and multiplicative bias correction techniques were designed to remove
the biases by algebraic manipulation. They successfully eliminated the biases at all the four
cities as shown in Table 8. However, the improvements of biases did not propagate to the
other performance evaluation metrics. They did not generally improve the R and the NME
except for Seoul. Moreover, they generally degraded the POD and the HSS.

Although the Kalman filter bias adjustment technique was less efficient in reducing
the NMB than the additive and multiplicative bias correction techniques, it improved all
the other performance metrics significantly. The averaged values over the four cities were
improved by 5% for the R, 13% for the NME, 11% for the POD, 8% for the FAR, and 10%
for the HSS.
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Table 8. Performance comparison of continuous and categorical forecast between the additive bias
correction, multiplicative bias correction, Kalman filter bias adjustment at Seoul, Busan, Gwangju,
Daegu in 2016.

Continuous Forecast Categorical Forecast

R NMB NME POD FAR HSS

Seoul

Raw forecast 0.78 13% 25% 0.81 0.38 0.61
Additive bias correction 0.78 0% 23% 0.68 0.32 0.59

Multiplicative bias correction 0.80 1% 21% 0.65 0.34 0.57
Kalman filter bias adjustment 0.82 7% 21% 0.80 0.37 0.62

Busan

Raw forecast 0.81 −14% 22% 0.51 0.16 0.58
Additive bias correction 0.78 0% 21% 0.65 0.32 0.58

Multiplicative bias correction 0.76 1% 23% 0.68 0.33 0.59
Kalman filter bias adjustment 0.83 −7% 19% 0.62 0.24 0.62

Gwangju

Raw forecast 0.78 6% 25% 0.66 0.38 0.58
Additive bias correction 0.79 0% 25% 0.68 0.29 0.64

Multiplicative bias correction 0.78 1% 25% 0.62 0.39 0.55
Kalman filter bias adjustment 0.83 3% 22% 0.75 0.25 0.71

Daegu

Raw forecast 0.78 −1% 22% 0.60 0.30 0.59
Additive bias correction 0.77 0% 23% 0.67 0.34 0.59

Multiplicative bias correction 0.75 1% 23% 0.67 0.38 0.57
Kalman filter bias adjustment 0.82 −1% 20% 0.70 0.26 0.66

4. Conclusions

The GMAF was developed by utilizing the currently available multiscale air quality
modeling system and the global forecast and analysis dataset. The GMAF implemented
the grid nudging based FDDA onto the CMAQ for the first time to take advantage of data
assimilation done in the global modeling. Although the current forecast verification was
limited to the next day forecast and analysis, the forecasting period can be extended up to
five days permitted by the global forecast and analysis model without a significant loss
of accuracies.

The GMAF lessened the tendency of underestimating the PM2.5 concentrations in the
case of little precipitation by improving the below-cloud scavenging coefficient estimation.
The CMAQ-5.3.1 with carbon bond version 6 mechanism and AERO7 module significantly
enhanced the accuracy of nitrate formation rate calculation by updating homogenous reac-
tion rate constants and heterogeneous reaction mechanism. The SOA formation mechanism
was also expanded by adding pcSOA, organic nitrates from monoterpene oxidation and
SOA from glyoxal and methylglyoxal. The expansion of the SOA formation mechanism
amended the underestimation problem of SOA frequently found in the previous version.
However, a comparison with the observations indicated that the pcSOA in the winter and
the SOA from biogenic VOCs in the summer might be overestimated. A more refined
estimation of the pcSOA emissions and more accurate modeling of biogenic VOCs are
recommended as future studies.

A severe PM2.5 episode often arises in the winter and the spring in Korea. The Korea
government agency relies on the numerical forecast during these PM2.5 season in issuing a
PM2.5 advisory or warning to the people. The GMAF performed very well especially in the
winter suiting the needs of the government. In the winter, the R between the observed and
forecasted PM2.5 was 0.87, the POD for event exceeding the national PM2.5 standard was
1.00, and the FAR was only 0.48 at Seoul. The GMAF also showed good performance at the
other three cities, Busan, Gwangju and Daegu.
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