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Abstract: A set of instruments to measure several physical, microphysical, and radiative properties
of the atmosphere and clouds are essential to identify, understand and, subsequently, forecast and
prevent the effects of extreme meteorological events, such as severe rainfall, hailstorms, frost events
and high pollution events, that can occur with some regularity in the central Andes of Peru. However,
like many other Latin American countries, Peru lacks an adequate network of meteorological stations
to identify and analyze extreme meteorological events. To partially remedy this deficiency, the
Geophysical Institute of Peru has installed a set of specialized sensors (LAMAR) on the Huancayo
observatory (12.04◦ S, 75.32◦ W, 3350 m ASL), located in the Mantaro river basin, which is a part of
the central Andes of Peru, especially in agricultural areas. LAMAR consists of a set of sensors that are
used to measure the main atmosphere and soil variables located in a 30-meter-high tower. It also has a
set of high-quality radiation sensors (BSRN station) that helps measure the components of short-wave
(SW) (global, diffuse, direct and reflected) and long-wave (LW) (emitted and incident) irradiance
mounted in a 6-meter-high tower. Moreover, to analyze the microphysics properties of clouds and
rainfall, LAMAR includes a set of profiler radars: A Ka-band cloud profiler (MIRA-35c), a UHF
wind profiler (CLAIRE), and a VHF wind profiler (BLTR), along with two disdrometers (PARSIVEL2)
and two rain gauges pluviometers. The present study performs a detailed dynamic and energetic
analysis of two extreme rainfall events, two intense frost events, and three high-pollution events
occurring on the Huancayo observatory between 2018 and 2019. The results show that the rainfall
events are similar to the 1965–2019 climatological 90th percentile of the daily accumulated rainfall.
The results also highlighted the patterns of reflectivity in function of height for both events, which is
measured by highlighting the presence of convective and stratiform rainfall types for both events.
The first intense rainfall event was associated with strong easterly circulations at high levels of the
atmosphere, and the second one was associated with the presence of strong westerly circulations and
the absence of BH-NL system around the central Andes. The first frost event was mainly associated
with continuous clear sky conditions in the few previous days, corresponding to a radiative frost
event. The second one was mainly associated with the intrusion of cold surges from extra-tropical
South America. For both events, the energy budget components were strong-lower in comparison
to the mean monthly values during early morning hours. Finally, for the high pollution events, the
study identified that the main source of aerosols were the forest fires that took place in Peru with
certain contributions from the fires in the northern area of Bolivia.

Keywords: LAMAR instruments; Huancayo observatory; intense rainfall events; frost events;
pollution events; mantaro valley; central Andes of Peru
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1. Introduction

Several important impacts on natural and human systems, for instance, damage to
ecosystems, damage of buildings and crops and loss of lives, are associated with weather
and climate-related extreme events. Around the world, different types of extreme events oc-
cur, including storm surges and severe storms, frost and cold outbreaks, flooding, droughts
and blizzards. These extreme events span a wide range of spatial and temporal scales, from
a few kilometers to thousands of kilometers and from minutes to years, respectively [1].
Around the different places, obtaining robust and reliable observational data and model
simulations for extremes is considered difficult, as these events are rare in almost any
location. In general, the intensity and frequency of extreme events are affected by climate
variations on seasonal to inter-annual timescales, such as El Nino-Southern-Oscillation
(ENSO), as well as anthropogenic climate change that will have a greater influence in
the feature [2].

Due to these reasons, the study of weather and climate extremes has been identified as
one of the most important topics that need further investigation in climate research and, in
consequence, has been recognized as one of the World and Climate Research Programme
(WCRP) Grand Challenges [2]. The change of climate and its extremes have been evaluated
and confirmed by the recent Fifth Assessment Report of the Intergovernmental Panel on
Climate Change [3]. WCRP Extremes Grand Challenge highlights four research themes: (a)
documentation, which must focus on observational requirements; (b) understanding, with
a focus on the relative roles of different spatial scales and their interactions; (c) simulations,
focus on model reliability and improvements, and (d) attribute, with a focus on unraveling
the contributors to extreme events [4].

In general, the capabilities for understanding the causes of extreme events and de-
veloping modeling systems for prediction of future variations and changes in extremes
have seriously deteriorated as a result of the limitations on the availability and quality
of observations data-sets around the world. There are several actions that are needed
to be implemented, such as improved observations of key processes, including land–
atmosphere, ocean–atmosphere and land–ice interactions, besides higher time and space
scale observations [5]. There are two great supports that could improve the current and
future monitoring and attribution systems for extremes: reanalysis and conventional data
sources such as the Global Forecast System (GFS) and advances in integration of satellite
systems such as the Global Precipitation Measurement (GPM) and the Moderate Resolution
Imaging Spectro-radiometer (MODIS).

In the central Andes of Peru, it has been found that the most intense precipitation
events occur during the afternoons and early nights when the convergence of thermally
driven moisture fluxes that come from the Pacific Ocean and the Amazon Basin [6,7].
Even more, it has been seen that the strong moisture convergence generated by the interac-
tion between thermally driven westerly winds, coupled with mid and upper-level westerly
circulations and thermally driven easterly winds, cause some severe thunderstorms inside
the Mantaro valley during the afternoons [8,9].

The analysis of the main atmospheric dynamic mechanisms associated with the
occurrence of intense rainfall events above the Huancayo observatory (HYO), during
a field campaign between 2017 and 2018, showed that all of them were associated with
the presence of thermal meso-scale circulations that transport moisture fluxes through
passes with gentle slopes along both sides of the Andes. At the synoptic scale, it was
shown that the rainfall events can be categorized into two groups: one associated with
westerly circulations (WC) and another associated with easterly circulations (EC) at the
mid and upper levels of the atmosphere [10]. Even more, by using two satellite-based data,
namely, from Global Precipitation Measurement Dual Precipitation Radar (GPM-DPR) and
GOES (Geostationary Operational Environmental Satellite), a recent study analyzed the
life cycle properties of the precipitation in the central Andes of Peru [11]. The study results
showed that precipitation characteristics during different phases (developing, mature, and
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dissipating) are related to liquid and ice water amounts and influenced by the orography
of the Andes Mountain.

On the other hand, radiative frosts are one of the main hazards for agriculture in
the central Andes of Peru. By combining case studies and statistical analysis of in situ
data in the HYO, it was found that the specific humidity, low cloud cover, and minimum
temperature have a well-defined seasonal variation, which is more pronounced in the
dry/cool season, while the maximum temperature has a relatively weak seasonality [12].
The key factors controlling the day-to-day variability of minimum temperatures in the
HYO are low cloud cover, surface-specific humidity, and soil moisture. It was also found
that all frost days had surface-specific humidity lower than 7 g kg−1 in the dry season and
lower than 5 g kg−1 in the wet season [12]. Moreover, a recent study presented a detailed
analysis of the diurnal and monthly cycles of the surface boundary layer and surface energy
balance on the HYO during an entire year. The results reveal that minimum mean monthly
temperatures and more stable conditions were observed in the months of June and July
before sunrise, maximum mean monthly temperatures in October and November, and
more unstable conditions in February and March [13].

Furthermore, using wintertime in situ daily minimum temperature observations
from Argentina, Bolivia, and Peru and ERA-40 reanalysis over the 1975–2001 period,
ref. [14] investigates the spatial and temporal characteristics of the cold surges propagating
northward along the eastern flank of the Andes from subtropical to tropical South America.
On average, three to four cold surges are reported each year. Before these cold surges reach
the tropical region, they are characterized by the higher occurrence of a specific circulation
pattern associated to southern low-level winds progression toward low latitudes combined
with subsidence and dry conditions in the middle and low troposphere that reinforce the
cold episode through a radiative effect.

Finally, the time variation of aerosols on the HYO was analyzed using direct sun
irradiance measurements with a CIMEL sun-photometer belonging to the AERONET
network [15]. It also showed the prevalence of background conditions in the measurement
for the period of study from March 2015 to August 2017. These conditions, which constitute
more than 80% of the cases, are occasionally altered, mainly by high aerosols loading, as a
consequence of biomass-burning events occurring from mid-July to mid-October.

As mentioned above, the availability of observational data is one of the main limiting
factor for the complete analysis of weather and climate-related extreme events. This
situation is particularly critical in various regions of Africa, South America, and Asia where
data of high-frequency temperature, precipitation, wind intensity and soil moisture are
non-existent or not accessible. This limitation can be overcome by collecting high-frequency
sub-daily datasets of these variables over long time periods using high-quality sensors.
To begin to cover this deficiency in Peru, the Geophysical Institute of Peru installed a set
of specialized sensors as part of Laboratory of Atmospheric Physics, Microphysics and
Radiation (LAMAR) on the HYO (12.04◦ S, 75.32◦ W, 3350 m ASL), located in the central
Andes of Peru.

The present contribution provides a detailed description of the set of instruments
installed on the HYO, located in the Mantaro river basin (MRB) inside the central Andes
of Peru, which measure several physical, microphysical and radiative properties of the
atmosphere and clouds. Among other purposes, this set of instruments is essential to
identify, understand and, subsequently, forecast and prevent the effects of extreme meteo-
rological events that occur on the central Andes of Peru, such as severe rainfall, hailstorms,
frost events, and high pollution events. The measurements made by this set of sensors
and remote sensing data will allow the analysis of the development of the extreme events
occurred on the HYO.

The paper is organized as follows: Section 2 describes the main climate characteristics
of the Mantaro valley located in the central Andes of Perú. The methodology used in the
research is described in Section 3. It includes Section 3.1, which discusses the main features
of the radars and sensors (Section 3.1.1) and remote sensing data (Section 3.1.2). The estima-
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tion of turbulent energy fluxes and heat flux transfer to the ground that regulate the inter-
action between the earth’s surface and the atmosphere are detailed in Sections 3.3 and 3.4,
respectively. The procedure to identify extreme rainfall, frost and high pollution events is
presented in Section 3.2. The main results and discussions of the main features of extreme
rainfall events, frost events and high pollution events are presented in Sections 4 and 5,
respectively. Finally, Section 6 concludes the paper.

2. Site and Location

The HYO is located inside the Mantaro valley (MV) which is a part of the Mantaro
river Basin (MRB) with a drainage area of 34,550 km2 and placed in the central Andes of
Peru (10.6◦ S–13.6◦ S; 73.9◦ W– 76.7◦ W). The MRB covers some territories of the Ayacucho,
Huancavelica, Pasco, and Junin regions. The Peruvian central Andes has altitudes of
500–5350 m above sea level (m asl), with an average altitude of 3870 m asl (Figure 1). On
the MRB, almost 83% of the annual rainfall occurred during the rainy season (September to
March) and the rest (17%) occurred in the dry season (April to August). Along the MRB, it
was estimated that the average of the annual precipitation is lower than 1600 mm year−1,
with the highest accumulation rainfall observed on the eastern part of the basin and the
lowest over the central and southern regions of the MRB. During the dry season, rainfall is
only significant in the eastern area of the basin due to the warm and moist fluxes from the
Amazon basin [16].

Figure 1. (a) The domain of the Mantaro river basin (MRB) and the Mantaro valley (MV). Geopolitical and altitude contours
and the location of the HYO are indicated; (b) topography around the MV, with higher altitudes close to 5000 m asl.

Moreover, on the MRB, the maximum air temperatures have a less pronounced sea-
sonality; meanwhile, the highest mean value was observed in November (20.8 ◦C) and
the lowest from February to March (18.4 ◦C). In contrast, the minimum air temperatures
have a more significant seasonality, ranging from its lowest mean values during the dry
season (around 0.5 ◦C), and highest mean values in the rainy season (around 7.0 ◦C) [17].
The lowest values of the minimum mean temperature on the HYO were associated with
cloudless conditions and large outgoing long-wave radiation, mainly during the dry season.
The seasonal pattern of the frost events is associated with low cloud cover and low specific
humidity, with minimum values in June and July at 07 LT. For specific humidity, diurnal
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variation is less pronounced with the minimum as close to 5.0 g kg−1 at 07 LT in the dry
months and maximum values around 9.0 g kg−1 at 13 LT between January and March [12].

On the other hand, using a sun-photometer, the background conditions of aerosol
optical detph (AOD) generally prevail in the HYO, with mean values around 0.10 ± 0.07.
The analysis of monthly means reveals that September is the month with the highest
AOD values, followed by August, October, and July. These background conditions are
dominated, firstly, by continental aerosols with 67.1% of all the measured aerosols, followed
by urban-industrial aerosols with 10.1% and, to a lesser extent, maritime aerosols (4%). The
period associated with the increase in registered AOD in the HYO covers from July through
October of each year and considers September as the month of the maxima. During these
months, the background conditions are disrupted by the presence of biomass-burning
aerosols, coinciding with the greater occurrence of forest fires, mainly in Peru, Bolivia, and
Brazil. The biomass aerosols are the main party responsible for the increase of AOD in the
Mantaro Valley and take the second place in all aerosols registered in HYO (18.2%) [15].

3. Methodology
3.1. Instrumentation
3.1.1. Radars and Sensors

With the aim to obtain atmospheric data to study the physical processes associated
with the occurrence of extreme meteorological events, the Geophysical Institute of Peru
implemented the Laboratory of Physics, Microphysics and Radiation (LAMAR) in 2015 at
the HYO (12.08◦ S, 75.38◦ W, 3313 m asl). LAMAR is composed of a set of different instru-
ments and sensors that can be used for atmospheric studies and validation of numerical
models in the Peruvian central Andes. The location of LAMAR’s instruments inside the
HYO is shown in Figure 2h.

The set of the instruments is made up of: a Ka-band cloud and precipitation profiler
radar (MIRA-35C); a VHF BLTR; a disdrometer second-generation particle, size and velocity
(PARSIVEL 2), and some rain gauges pluviometers. Moreover, the new UHF wind profiles
called Clear-Air and Rainfall Estimation radar (CLAIRE) was installed, which was fully
designed and constructed at IGP’s technological development facility, the Jicamarca Radio
Observatory (JRO) [18]. The main characteristics of all radars can be observed in Table 1.
More information about inter-comparison between BLTR, CLAIRE and MIRA-35C can be
found in [19].

LAMAR also has a set of sensors to measure meteorological variables of air and soil
(temperature, relative humidity, wind speed, and wind direction) that were installed in
a 30-meter-high gradient tower. To measure temperature and relative humidity, HMP60
probe of Campbell Scientific was used. Wind speeds and directions were measured using
03002Wind Sentry Set of Campbell Scientific that consists of a 3-cup anemometer and a
wind vane mounted on a small cross-arm. The set also has a HFP01 soil heat flux plate that
sends out a voltage signal proportional to the heat flux of the surrounding medium (soil).

Table 1. Characteristics of BLTR, CLAIRE and MIRA-35C radars.

Characteristics BLTR CLAIRE MIRA-35C

Transmission Power Solid state 30 kW Solid stated 5 kW Magnetron 2.5 kW
Operation frequency 49.92 MHz 445 MHz 34.85 GHz

Beamwidth 19.79◦ 9.46◦ 0.6◦

Range 0.22–10 km 0.52–6 km 0.15–13 km
Range resolution 75 m 75 m 31 m

Temporal resolution 32.8 s 23 s 5.6 s
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Figure 2. (a) Gradient tower located in the HYO with meteorlogical sensors installed at six height levels of 2, 6, 12, 18, 24 and
29 m; (b) tower located in the HYO with radiation sensors installed at 6 m high; (c) magnetron-based pulsed Ka-Band Doppler radar
MIRA-35c; (d) boundary Layer and Troposphere Radar (BLTR). Both instruments are installed in the HYO since 2015; (e) Clear-Air and
Rainfall Estimation (CLAIRE) radar; (f) optical disdrometer PARSIVEL. (g) Sun Sky Lunar Multispectral Photometer model CE318-T;
(h) area of study and location of the instruments inside the HYO.

Moreover, to measure the soil temperature and moisture, a set of Decagon 5TM VWC
tensiometers was used. The 5TM delivered temperature and volumetric water content,
which are measured by an on-board thermistor. It can also determine volumetric water
content (VWC) by measuring the dielectric constant of the soil using capacitance/frequency-
domain technology. All details of these sensors have been mentioned in Table 2.
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Table 2. Main characteristics of the meteorological instrumentation installed in the HYO.

Temperature
(◦C)

Relative
Humidity (%)

Wind Speed
(m s−1)

Wind Direction
(degrees)

Soil Heat
Flux (W m−2)

Soil
Temperature

(◦C)
Soil Moisture

(%)

Sensor HMP60 HMP60 03002 Wind
Sentry Set

03002 Wind
Sentry Set

HFP01 soil
heat flux plate

Decagon 5TM
VWC

Decagon 5TM
VWC

Company Campbell
Scientific

Campbell
Scientific

Campbell
Scientific

Campbell
Scientific

Campbell
Scientific

ICT
International

ICT
International

Range −40 to 60 0–100 0–50 0–360 ±2000 −40 to 50 0–100

Accuracy ±0.6 3% for 0–90
5% for 90–100 ±0.5 ±1.0 −15% to +5% ±1 0.08 for 0–50

0.1 for 50–100

Additionally, in order to measure the hemispherical (global and diffuse) SW irradiance,
three pyranometers CMP10 (Kipp & Zonen) installed in the radiation tower were used
(Figure 2b). Two of them measured the SW global and diffuse irradiances incident at the
surface, and the other measured the SW irradiance reflected by the surface. A small black
sphere mounted on an articulated, shading assembly in a two-axis automatic sun tracker
2AP (Kipp & Zonen) was used to measure the diffuse irradiance from the sky by blocking
the direct solar irradiance (Figure 2b), and a pyrheliometer CHP1 (Kipp & Zonen), was
used to measure direct SW irradiance. Finally, two pirgeometers CGR4 (Kipp & Zonen)
installed in the radiation tower were used to measure LW irradiance incident and emitted
by the surface. The main characteristics of these radiometers can be observed in Table 3.

Table 3. Main characteristics of the radiation instrumentation installed in the HYO.

CMP10 Pyranometer CHP1 Pyrheliometer CGR4 Pirgeometer

Company Kipp & Zonen Kipp & Zonen Kipp & Zonen
Spectral range (50% points) 285 to 2800 nm 200 to 4000 nm 4500 a 42000 nm

Sensitivity 7 to 14 µV W−1 m−2 7 to 14 µV W−1 m−2 5 a 15 µV W−1 m−2

Response time <5 s <5 s <18 s
Directional response (up to 80◦ with

1000 W m−2 beam) <10 W m−2 - -

Temperature dependence of sensitivity
(−20 ◦C to +50 ◦C) <1% <0.5% -

Operational temperature range −40 ◦C to +80 ◦C −40 to +80 ◦C −40 a +80 ◦C
Maximum solar irradianciance 4000 W m−2 4000 W m−2 -

Limites de irradiancia neta - - −250 a + 250 W m−2

Finally, on 19 March, 2015, as part of the AERONET network, a sun-photometer
CIMEL CE-318T for aerosol measurement in the HYO was installed. (Figure 2g). This
is the only instrument used for ground-based detection point for aerosol measurements
in Peru. The CIMEL CE-318T uses eight spectral bands for solar and sky irradiance
measurements (340, 380, 440, 500, 675, 870, 1020, and 1640 nm). Direct sun measurement
(sun scenario) is the common procedure of the sun-photometer for aerosol measurements
using a sample frequency of 15 min, which can help retrieve the spectral AOD and the
Angström Exponent. On the other hand, the almucantar and principal plane scenarios
are used for the sky irradiance measurements from which various aerosol properties are
retrieved using inversion methods such as aerosol sizes distribution, single scattering
albedo, and extinction coefficient [15]. The agricultural area of the study and location of all
instruments in the HYO are shown in Figure 2h.

3.1.2. Global Precipitation Measurement (GPM), Global Forecast System (GFS) and
MODIS Data

The GPM mission was built on the base of the Tropical Rainfall Measuring Mission
(TRMM), which is a joint space mission between NASA and JAXA designed to monitor
and study tropical and subtropical precipitation and associated release of energy. The
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GPM-IMERG products provide a greater coverage between 65◦N and 65◦ S and generate
global rainfall estimations every 30 min at 0.1◦ resolution. Furthermore, the GPM-IMERG
products have shown improvements against rainfall gauges in comparison with another
satellite-based precipitation products (TRMM-TMPA), under different climatic and topo-
graphic conditions located in China, Iran, United States, Tibetan plateau and slopes of the
subtropical Andes [20–27]. A study over a 17-month period from April 2014 to August 2015
in Ecuador and Peru showed that GPM-IMERG has a superior detection and quantitative
rainfall intensity estimation ability than TMPA, against a network of rain gauges, partic-
ularly in the high Andes [28]. For the present study, we used GPM-IMERG precipitation
estimations to identify some intense rainfall events on the HYO.

Moreover, the GFS is a weather forecast model generated by the National Centers for
Environmental Prediction (NCEP). The dataset of GFS contains several atmospheric and
land-soil variables from atmospheric ozone concentration and soil moisture to precipitation,
winds, and temperatures. The GPS products are used by the operational forecasters who
predict weather about 16 days ahead because it covers the entire planet at a base horizontal
resolution of 28 km between grid points. Finally, the MODIS instrument is a sensor on
board of Terra and Aqua satellites. Its detectors measure 36 spectral bands between 0.405
and 14.385 µm. It acquires data at three spatial resolutions: 250 m, 500 m, and 1000 m.
Finally, the MODIS Cloud Product combines infrared and visible techniques to determine
both physical and radiative cloud properties. The MODIS Cloud Product includes the
cirrus reflectance in the visible spectrum at the 1-kilometer-pixel resolution, which is useful
for removing cirrus scattering effects from the land-surface reflectance product. There are
two MODIS Cloud data product files: MOD06_L2, containing the data collected from the
Terra platform; MYD06_L2, containing the data collected from the Aqua platform.

3.2. Identification of Extreme Events

To identify extreme rainfall events, we used boxplot and whiskers diagrams of ac-
cumulated hourly rainfall (mm h−1) for each month during 2018 and 2019. In addition,
we used monthly climatological (1965–2019) mean, standard deviation, 90th percentile
and maximum of daily accumulated rainfall (mm day−1). The two intense rainfall events,
analyzed here, are hourly rainfall outliers of boxplot diagrams for January 2018 and Decem-
ber 2019, respectively. Moreover, both rainfall events have hourly rainfall values between
standard deviation and 90th percentile of climatological daily accumulated rainfall.

A similar procedure was used to identify frost events. The boxplot and whiskers
diagrams of hourly minimum temperatures (◦C) for each month between July 2018 and
July 2019, allow us to identify the minimum temperatures. Even more, we used monthly
climatological (1965–2019) mean, standard deviation, 10th percentile and minimum values
of daily minimum temperatures. The two frost events, analyzed here, are inside the
minimum whiskers of boxplot diagrams of hourly minimum temperatures during June 2018
and April 2019, respectively. In addition, both frost events have minimum temperatures
between 10th percentile and minimum of climatological daily air temperatures. In general,
the occurrence of frost events can be analyzed in terms of the energy budget of the surface.
The nocturnal cooling, which generates frost events at early morning hours, is mainly
driven by the net long-wave radiation loss. However, the other energy budget components,
such as heat and latent turbulent energy fluxes and heat flux transmitted to the ground,
are also important to characterize the frost events and their estimations are shown in
Section 3.3.

In relation to the high pollution events analyzed here, we selected them considering
values of aerosol optical depth (AOD), estimated by the sun-photometer CIMEL CE-318T
type, much higher than the mean value plus standard deviation of AOD equal to 0.10 ± 0.07
for the period from March 2015 to August 2017. The three high pollution events identified
for the present study occurred between 6 and 10 August, 17 to 22 August and 29 August to
2 September 2019 on the HYO.
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3.3. Estimation of Energy Balance Components

To estimate the turbulent energy fluxes (sensible and latent), we used the aerodynamic
flux–gradient method [29] based on average profiles of atmospheric variables and the de-
gree of turbulent activity. The aerodynamic method uses measurements of air temperature,
relative humidity, and wind speed and direction with sensors located in the gradient tower
(Figure 2a) with six different levels, as described in Section 3.1.1. The method is based on
the similarity principle proposed by Monin and Obukhov [30,31]. This principle supports
the equivalence between the diffusion coefficients and the aerodynamic resistance for
momentum, heat, water vapor and carbon dioxide. This condition means that a turbulent
eddy can carry heat, vapor, and momentum with equal efficiency. Moreover, we used
the Bulk Richardson number (RiB), which is a non-dimensional stability parameter, to
characterize atmospheric stability and the turbulence state near the surface [32], as it is
a ratio that accounts for the effects of buoyancy and mechanical forgings (free to forced
convection) and is expressed as follows:

RiB =
g
T

.
∆T/∆z

(∆u/∆z)2 (1)

Here, g (m s−2) is the acceleration due to gravity, T (K) is the mean temperature in
the layer ∆z (m), and ∆T is the difference of the temperatures in the layer ∆z, ∆u is the
difference of wind speed in the layer ∆z. For Equation (1), the change of wind direction
in low levels was assumed to be very low and, therefore, could be ignored. For neutral
stability conditions, which generally occurred in early morning and/or evening periods
on cloudy days with strong winds, RiB approaches toward zero (±0.01). Meanwhile, for
stable conditions, which occurred during early morning, evening, or night periods and
overcast days when temperatures near the surface are cooler than away from the surface,
RiB corresponds to positive values. Finally, negative values of RiB indicate strong lapse rate
(unstable) conditions where surface heating enhances buoyancy effects. During the diurnal
cycle, the atmosphere presents dominant periods of stable and unstable conditions, with
neutral conditions representing only a minor fraction of the total period. The neutral form
of the aerodynamic equations to estimate the turbulent energy fluxes of momentum (τ),
sensible (QH) and latent (QE), can be generalized according to the level of stability [32,33],
as given by RiB in the following operational equations:

QH = −Cak2z2
(

∆u
∆z

.
∆T
∆z

)
.(ΦMΦH)

−1 (2)

QE = −Lvk2z2
(

∆u
∆z

.
∆ρv
∆z

)
.(ΦMΦV)

−1 (3)

τ = ρk2z2
(

∆u
ln(z2/z1)

)2
.(Φ2

M)−1 (4)

In Equation (2) , ρv is the water vapor density, which was estimated using the relative
humidity, saturation vapor pressure and air temperature. Moreover, Ca is the heat capacity
of air, Lv is the latent heat of vaporization, k is the Von Karman’s constant (∼0.40), z is the
log mean height (=(z2 − z1)/(ln(z2/z1)), and ΦM, ΦH , and ΦV are dimensionless stability
functions for momentum, heat and water vapor, respectively, which can be expressed as
the functions of the Richardson number [32], using the following equation:

Φ−1
M =

{
(1− 15 Ri)1/4 for Ri < 0
(1− 5 Ri) for 0 < Ri < 0.2

(5)

Φ−1
X =

{
(1− 15 Ri)1/2 for Ri < 0
(1− 5 Ri) for 0 < Ri < 0.2
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Here, ΦX is the appropriate stability function for the property being transferred. Using
these functions, it is possible to calculate the combined terms used in Equation (2):

(ΦMΦX)
−1 =

{
(1− 15 Ri)3/4 for Ri < 0
(1− 5 Ri)2 for 0 < Ri < 0.2

(6)

For neutral conditions of the atmosphere (Ri between±0.01), only forced convection is
significant in comparison to thermal effects. For stable atmospheric conditions (Ri around
to +0.25) vertical mixing is absent and the flow is laminar. In contrast, for conditions
of higher instability (Ri larger higher than −1.0) there are weak horizontal motion and
strong convective instability because buoyancy effects grow in importance through the
mixed regime.

3.4. Ground Heat Flux at the Surface

The ground surface and the canopy are heated by the incoming short-wave irradiance
during diurnal hours. Meanwhile, during night hours, the emission of long-wave up-
welling irradiance leads to the cooling of the surface, which becomes cooler than the air
above and the deeper soil layers. In general, the available energy, supplied by the net all-
wave irradiance (Q∗) is distributed by the turbulent sensible (QH) and latent (QE) heat
fluxes and the mainly molecular ground heat flux (QG), which is based mainly on molecular
heat transfer and is proportional to the soil temperature gradient (∂T/∂z) multiplied by
the thermal molecular conductivity aG (W m−1 K−1). To estimate the ground heat flux at
the surface, we used the sum of the soil heat flux measured at 8 cm, by a soil heat flux plate
and the heat storage in the layer between the surface and the plate [34]:

QG(0) = QG(−8cm) +
∫ 0

−z
CG(z) T(z) dz (7)

Here, CG is the volumetric heat capacity, CG(z) = aG/νT (νT is the molecular thermal
diffusivity) that can be assumed constant with depth in the case of uniform soil moisture.
To implement Equation (7), we used two integrating temperature sensors of the soil layer,
located at a distance of 2 cm and 5 cm between the surface and the heat flux plate (8.0 cm).
For the ground heat flux near the surface, it follows the equation given below:

QG(0) = QG(−8cm) +
CG |∆z| |T(t2)− T(t1)|

t2 − t1
(8)

In addition, CG values of moist soil at different soil levels were calculated by adding
the heat capacity of the dry soil to that of the soil water, as represented by the follow-
ing equation:

CG = Cd + θV ρW CW (9)

Here, Cd is the heat capacity of dry soil, θV is the soil water content on a volume
basis, ρW is the density of water (1000 kg m−3), and CW is the specific heat of water
(4.18 × 103 J kg−1 K−1). A value of 1.25 × 106 J m−3 K−1 for the heat capacity of dry soil
is reasonable for clay soil according to the soil characteristics of the HYO [35]. Section 4
shows the analysis of the main results of the present study.

4. Analysis of the Results
4.1. Intense Rainfall Events
4.1.1. Event on 17 January 2018

The time series of the accumulated hourly rainfall rate (mm h−1) measured by in-
situ pluviometers above the HYO during January 2018 is shown in Figure 3a. A total of
three events with high rainfall rate were observed: the first one occurred on 11 January
at 19 LT with a peak of 15.75 mm h−1, the second on 17 January at 20 LT with a peak
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of 13.46 mm h−1, and the third on 18 January at 18 LT with a peak of 7.37 mm h−1. It is
important to note that the last two events occurred on two consecutive days, and for those
days, weaker precipitation during the night hours was observed. These rainfall events
were extremes in the sense of that the hourly accumulated rainfall are higher than the
mean values plus the standard deviations in a boxplot and whiskers diagrams, as shown
in Figure 3b. It was observed that during January 2018, the events mentioned above were
two of the higher outliers with a rainfall median close to 1 mm h−1 and a maximum close
to 4 mm h−1.

Figure 3. (a) Time series of precipitation rate (mm h−1) obtained from an in situ pluviometer (red line) above the HYO during January
2018. (b) Monthly variation of hourly accumulated precipitation quantiles (boxplot) above the HYO. Green circles highlight the
intensity and time of both the rainfall events on 17 and 18 January, 2018. The rainfall values are outliers that highly exceed the mean
monthly precipitation of January, close to 1 mm h−1. (c) Monthly and diurnal cycles of mean accumulated hourly precipitation above
the HYO during the years 2017, 2018, and 2019. The dotted red lines indicate the time period when the greatest amount of rainfall
occurs (15 LT to 21 LT). (d) Spatial distribution of precipitation rate (mm h−1) for the MV obtained from the GPM data for 17 January,
2018, at 21 LT. Longitudes, latitudes and contours of the MV and MB are indicated. The red circle indicates the location of the HYO.

In addition, the maximum rainfall peak on 17 January (13.46 mm h−1) was lower
than the maximum climatological (1965–2019) daily accumulated rainfall, as shown in
Figure 6d, with maximum values close to 42 mm day−1 in January, and approximately
equal to the climatological percentile 90% (14 mm day−1) for the same month. Monthly
and diurnal cycles of mean hourly accumulate rainfall during 2017, 2018, and 2019 are
shown in Figure 3c. It is important to note that the highest amount of rainfall occurred
between August and March at 15 LT and 21 LT for all years. Particularly, during 2018, the
highest mean hourly rainfall occurred in January at around 18 LT. The spatial distribution
of rainfall rate estimated by GPM system for 17 January 2018 at 21 LT is shown in Figure 3d.
Four areas of high precipitation rate that aligned from north-east to south-west with a core
of 7 mm h−1 above the HYO were observed.

Moreover, the reflectivity factor in function of time and altitude estimated by radar
MIRA-35C and radar CLAIRE above the HYO on 17 January 2018 are shown in Figure 4a,b,
respectively. Note that the range closest to the surface from which the radars begin to be
measured are 250 m for MIRA-35C and 750 m for CLAIRE. Both radars identified high
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values of reflectivity close to 40 dBZ between 20 LT and 21 LT. However, the reflectivity
data from MIRA-35C, working at 35 GHz (λ = 8.6 mm), was usually more attenuated than
that from CLAIRE that works at 445 MHz (λ = 670 mm). Moreover, it was observed that the
data from MIRA-35C was degraded by clouds and precipitation, in comparison with the
data from CLAIRE, with the attenuation being higher when the radar beam flows through
a large number of hydrometeors from the surface up to a high of approximately 4 km
high. This attenuation was also found to be between 23 LT and 0730 LT when observed
on the HYO for the stratiform precipitation. The MIRA-35C radar determined maximum
reflectivity values to be between 20 dBZ and 30 dBZ. Meanwhile, CLAIRE radar measured
maximum values between 30 dBZ and 40 dBZ as its attenuation effects are negligible due
to its lower operating frequency (445 MHz).

In addition, Figure 4b shows the time series of rain rate (mm h−1) and reflectivity (dBZ)
measured by PARSIVEL2, MIRA-35C, and CLAIRE at their lowest level of measurement.
It is important to note that the rain rate reaches close to 30 mm h−1 around 21 LT at its
minimum level (2 m). Meanwhile, for MIRA-35C and CLAIRE, the rain rates are lower,
with values between 10 mm h−1 and 20 mm h−1, which is probably due to their higher
minimum level of measurement, which is 250 m for MIRA-35C and 750 m for CLAIRE.
However, around 00 LT, CLAIRE radar measured high rain rate with maximum values
between 20 mm h−1 and 30 mm h−1, which indicated the presence of hydrometeors at
750 m; however, MIRA-35 and PARSIVEL2 are able to observe almost nothing at 250 m and
750 m. This situation revealed that the concentration of hydrometeors is highly dependent
on height and time during a convective process occurring above the HYO. A similar
behavior was observed for the reflectivity values measured by all the devices. Moreover,
the drop size distribution retrieval by MIRA-35C, CLAIRE and PARSIVEL2 are shown in
Figure 4c. It was observed that PARSIVEL2 measured a high concentration of hydrometeors
with sizes between 0.2 and 2 mm and some hydrometeors of sizes around 3 mm. On the
contrary, MIRA-35C and CLAIRE observe a wide variety of hydrometeor sizes, with values
up to 8 mm due to their higher observation rate.

The mean synoptic conditions obtained from the GFS reanalysis data for the event
on 17 January, 2018, at 13 LT are shown in Figure 5. At high levels (200 hPa: Figure 5a) of
the atmosphere, the event is characterized by the presence of the centered BH-NL system,
approximately at 22◦ S and 60◦ W, which generates strong easterly circulations at latitudes
around the MV between 5◦ S and 20◦ S. At mid levels of the atmosphere (500 hPa: Figure 5c
and 700 hPa: Figure 5d), strong easterly circulations around the Mantaro valley were also
observed, on the east side of the Andes cordillera, which is probably associated with the
intensification of south-easterly trade winds. At low levels of the atmosphere (950 hPa:
Figure 5d), strong north-westerly thermal circulations were observed along the east side of
the Andes in association with the South America Low Level Jet (SALLJ) that intrude into
the higher altitudes of the Andes. Meanwhile, at the west side of the Andes, strong south-
easterly circulations coming from the Pacific Ocean were observed that intrude into the
continent, generating strong ascending vertical velocities with values around −1.2 Pa s−1.
This atmospheric configuration showed that during the occurrence of the events on 17 and
18 January 2018, the patterns of easterly circulation events in the central Andes of Peru
prevailed, as identified in [10].
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Figure 4. (a) Time series (UTC-5) of reflectivity (dBZ) obtained from the Magnetron-based cloud
radar (MIRA-35C) (top figure) and CLAIRE (bottom figure) above the HYO for the event on 17
January 2018. (b) Time series of rain rate (mm h−1) (top figure) and reflectivity (dBZ) (bottom figure)
obtained from PARSIVEL2 at a 2 m height, MIRA-35C at a 250 m height and CLAIRE at a 750 m
height. (c) Time series of raindrop size distribution (mm) with a density of the particles obtained
from the PARSIVEL2 (top figure), MIRA-35C (middle figure), and CLAIRE (bottom figure).
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Figure 5. Composites of wind streamlines (m s−1) and mean vertical velocities (Pa s−1) for the
event on 17 January 2018 at 18 UTC (13 LT) for high levels: (a) 200 hPa, mid levels: (b) 500 hPa,
(c) 700 hpa and low levels: (d) 950 hPa. Positive values indicate downdraft vertical winds and
negative values indicate updraft vertical winds. All composites data were obtained from GFS-
reanalysis data (resolution: 0.5◦). Longitudes, latitudes and contours of the MRB and Mantaro valley
are indicated.

4.1.2. Event on 28 December 2019

The time series of the accumulated hourly rainfall rate (mm h−1) measured by in situ
pluviometers above the HYO during December 2019 is shown in Figure 6a. Two events
with high rainfall rates were observed: the first one occurred on 26 December at 19 LT with
a peak of 8.3 mm h−1 and the second on 28 December at 17 LT with a peak of 12.1 mm h−1.
It was observed that these two events lasted for only two hours and occurred on with only
one day of separation. As in the previous case, these rainfall events are extreme in the
sense of that they are outliers in a boxplot and whiskers diagrams, which are shown in
Figure 3b. It was observed that during December 2019, the events mentioned above are the
higher outliers with a rainfall median close to 0.5 mm h−1 and a maximum value close to
2.1 mm h−1.

In addition, the maximum rainfall peak on 28 December (12.1 mm h−1) was lower
than the maximum climatological (1965–2020) daily accumulated rainfall, as shown in
Figure 6d, which has maximum values close to 47 mm h−1 in December, and close to
the climatological percentile 90% (13 mm day−1) for the same month. Furthermore, the
spatial distribution of rainfall rate estimated by GPM system for 28 December 2019 at
18 LT is shown in Figure 6c. In contrast to the event on 17 January 2018, two areas of high
precipitation rate aligned from north-west to south-east with a core of 7 mm h−1 above the
HYO were observed.
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Figure 6. (a) Time series of precipitation rate (mm h−1) obtained from an in-situ pluviometer (red line) above the HYO during
December, 2019. (b) Monthly variation of hourly accumulated precipitation quantiles (boxplot) above the HYO. Green circles highlight
the intensity and time of both rainfall events on 26 and 28 December 2019. The rainfall values are outliers that greatly exceed the mean
monthly precipitation of January close to 0.5 mm h−1. (d) Spatial distribution of precipitation rate (mm h−1) for the MV obtained from
the GPM data for 28 December, 2019, at 18 LT. Longitudes, latitudes and contours of the MV and Mantaro basin are indicated. The
red circle indicate the location of the HYO. (d) Mean, maximum, minimum, percentile 10%, and percentile 90% of daily accumulated
precipitation (mm day−1) between 1965 and 2019 on the HYO.

Moreover, the monthly and diurnal cycles of mean hourly temperatures at a height of
2 m above the HYO between July 2017 and July 2018 are shown in Figure 9a. In general,
maximum mean hourly temperatures were observed between September and November
at around 12 LT and 15 LT with values close to +18◦C. Meanwhile, minimum mean hourly
temperatures were observed during April and July between 00 LT and 07 LT with values of
around +2◦C. Furthermore, the variations of monthly minimum temperatures quantiles
(boxplot) are shown in Figure 9b. The minimum values of monthly minimum temperatures
were observed in June, July, and August with values between -2.0◦C and -4◦C.

It is important to note the continuous decrease (increase) of minimum temperatures
during the days preceding (following) the occurrence of this extreme frost event. Moreover,
Figure 8b shows the mean hourly temperature vertical profiles between 02 LT and 08 LT
for the event on 21 June 2018 above the HYO. At night hours, very stable conditions of
the surface boundary layer, with positive lapse rates close to 0.27 ◦C m−1 and minimum
temperatures close to -2.5◦C at 07 LT, were observed.

Mean hourly vertical profiles of water vapor mixing ratio between 02 LT and 08 LT of
21 June 2018 above the HYO are shown in Figure 8c. It is important to note that the water
vapor vertical profiles become inverted near the surface (below 6 m) during night hours
reached a positive lapse rates around +0.038 g kg−1 m−1 and minimum values of water
vapor mixing ratios at a height of 2 m close to 3.35 g kg−1 at 07 LT. Moreover, the mean
hourly wind speed vertical profiles between 02 LT and 08 LT of 21 June 2018 above the HYO
are shown in Figure 8d. It is important to note the presence of a surface jet with maxima
of 2.2 m s−1 at a height of 12 m at around 04 LT. This jet reached its maximum intensity

Figure 6. (a) Time series of precipitation rate (mm h−1) obtained from an in situ pluviometer (red line) above the HYO
during December 2019. (b) Monthly variation of hourly accumulated precipitation quantiles (boxplot) above the HYO.
Green circles highlight the intensity and time of both rainfall events on 26 and 28 December 2019. The rainfall values are
outliers that greatly exceed the mean monthly precipitation of January close to 0.5 mm h−1. (c) Spatial distribution of
precipitation rate (mm h−1) for the MV obtained from the GPM data for 28 December 2019, at 18 LT. Longitudes, latitudes
and contours of the MV and MRB are indicated. The red circle indicate the location of the HYO. (d) Mean, maximum,
minimum, percentile 10%, and percentile 90% of daily accumulated precipitation (mm day−1) between 1965 and 2019 on
the HYO.

The mean synoptic conditions obtained from the GFS reanalysis data for the event on
28 December 2018 at 13 LT are shown in Figure 7. In contrast to the event on 17 January
2018, at high levels (200 hPa: Figure 7a) of the atmosphere, this event was characterized
by the absence of the BH-NL system and presence of strong westerly circulations around
the location of the MV. However, at the level of 500 hPa (Figure 7c), a small anticyclonic
system that generates easterly circulations around the location of the MV was observed.
Similarly, at the level of 700 hPa: (Figure 7d), easterly circulations at the east side of the
Andes cordillera, associated with the intensification of trade winds, were also observed.
At low levels of the atmosphere (950 hPa: Figure 7d), strong north-westerly circulations
along the east side of the Andes, associated with the SALLJ that intrude into the higher
altitudes into the Andes, were observed. Meanwhile, at the west side of the Andes, it was
observed that there were strong south-easterly circulations coming from the Pacific Ocean
that intrudes into the continent, generating strong ascending vertical velocities with values
around −1.8 Pa s−1, which are higher than the values for the event on 17 January, 2018.
This atmospheric configuration showed that during the events on 17 and 18 January 2018,
there prevailed easterly circulations in the central Andes of Peru, as was identified in [10].
This atmospheric configuration also showed that during the occurrence of events on 26 and
28 December 2019, there prevailed patterns of westerly circulation in the central Andes of
Peru, as identified in [10].
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Figure 7. Composites of wind streamlines (m s−1) and mean vertical velocities (Pa s−1) for the event
on 19 December 2019 at 18 UTC (13 LT) for high levels: (a) 200 hPa, mid levels: (b) 500 hPa, (c) 700 hpa
and low levels: (d) 950 hPa. Positive values indicate downdraft vertical winds and negative values
indicate updraft vertical winds. All composites data was obtained from the GFS-reanalysis data (at a
resolution: 0.5◦). Longitudes, latitudes, and contours of the MRB and MV are indicated.

4.2. Intense Frost Events
4.2.1. Event on 21 June 2019

In this section, we analyzed the intense frost event on 21 June 2019 above the HYO.
Time series of air temperature at heights of 2 m and 29 m between 19 and 23 June, 2018, are
shown in Figure 8a. The minimum temperatures reached nearly −3.0 ◦C at a height of 2 m
and +2◦C at 29 m high at around 0603 LT on 21 June 2018. This frost event was identified
as extreme because the minimum temperature at 2 m was close to the lower values of
mean hourly minimum temperatures during June 2019, as shown in the boxplot diagram
in Figure 9b. Moreover, this value (−3.0 ◦C) was close to the climatological (1965–2019)
percentile 10% of minimum temperatures, as shown in Figure 9e. However, the minimum
climatological temperature reached about -8 ◦C above the HYO during June.

Moreover, the monthly and diurnal cycles of mean hourly temperatures at a height of
2 m above the HYO between July 2017 and July 2018 are shown in Figure 9a. In general,
maximum mean hourly temperatures were observed between September and November
at around 12 LT and 15 LT with values close to +18 ◦C. Meanwhile, minimum mean hourly
temperatures were observed during April and July between 00 LT and 07 LT with values of
around +2 ◦C. Furthermore, the variations of monthly minimum temperatures quantiles
(boxplot) are shown in Figure 9b. The minimum values of monthly minimum temperatures
were observed in June, July, and August with values between −2.0 ◦C and −4 ◦C.

It is important to note the continuous decrease (increase) of minimum temperatures
during the days preceding (following) the occurrence of this extreme frost event. Moreover,
Figure 8b shows the mean hourly temperature vertical profiles between 02 LT and 08 LT
for the event on 21 June 2018 above the HYO. At night hours, very stable conditions of
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the surface boundary layer, with positive lapse rates close to 0.27 ◦C m−1 and minimum
temperatures close to −2.5 ◦C at 07 LT, were observed.

Mean hourly vertical profiles of water vapor mixing ratio between 02 LT and 08 LT of
21 June 2018 above the HYO are shown in Figure 8c. It is important to note that the water
vapor vertical profiles become inverted near the surface (below 6 m) during night hours
reached a positive lapse rates around +0.038 g kg−1 m−1 and minimum values of water
vapor mixing ratios at a height of 2 m close to 3.35 g kg−1 at 07 LT. Moreover, the mean
hourly wind speed vertical profiles between 02 LT and 08 LT of 21 June 2018 above the HYO
are shown in Figure 8d. It is important to note the presence of a surface jet with maxima
of 2.2 m s−1 at a height of 12 m at around 04 LT. This jet reached its maximum intensity
around 04 LT and was probably associated with the katabatic wind of mountain-valley
circulations inside the MV.

Moreover, the monthly and diurnal cycles of mean water vapor mixing ratio at a
height of 2 m above the HYO between July 2017 and July 2018 are shown in Figure 9c.
Maximum mean hourly water vapor mixing ratios with values close to 10 g kg−1, were
observed between January and March around 16 LT and 21 LT; meanwhile, minimum
mean water vapor mixing ratio with values close to 5 g kg−1 were observed between May
and August at around 00 and 07 LT, and 12 LT and 16 LT. We emphasized that these value
of minimum temperature (−2.5 ◦C) and minimum water vapor mixing ratio (3.3 g kg−1),
which were registered during the extreme frost events on 21 June 2018, were lower than the
mean monthly minimum values shown in boxplots and whiskers diagrams during June
2018, indicating minimum temperatures close to −3.0 ◦C (Figure 9b) and minimum water
vapor mixing ratios of around +4.5 g kg−1 (Figure 9d).

Figure 8. (a) Time series of air temperature (◦C) at a height of 2 m and 29 m above the HYO between
19 June and 23 June, 2018. (b) Mean hourly vertical profiles of air temperature (◦C) during night and
early morning hours of 21 June 2018. (c) Mean hourly vertical profiles of water vapor mixing ratio
(g kg−1) during night and early morning hours of 21 June, 2018. (d) Mean hourly vertical profiles of
wind speed (m s−1) during night and early morning hours of 21 June 2018.
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Figure 9. (a) Monthly and diurnal cycles of mean hourly temperature (◦C) at 2 m high above the HYO
between July 2017 and July 2018. (b) Monthly variation of hourly minimum temperature quantiles
(boxplot) at 2 m high above the HYO between July 2017 and July 2018. (c) Monthly and diurnal
cycles of mean water vapor mixing ratio (g kg−1) at 2 m high above the HYO between July 2017 and
July 2018. (d) Monthly variation of hourly water vapor mixing ratio quantiles (boxplot) at 2 m high
above the HYO between July 2017 and July 2018. (e) Mean, minimum, maximum, percentile 10% and
percentile 90% of minimum temperatures (◦C) between 1965 and 2019 on the HYO.

The spatial distribution of the cloud fraction products obtained by MODIS sensor
(MOD06_L2 and MYD06_L2) onboard of Terra and Aqua satellites above the HYO on
19 January 2018 at 0955 LT and 20 January 2018 at 1040 LT are shown in Figure 10a and
Figure 10b, respectively. For both times, clear sky conditions along the Andes cordillera
including the HYO were observed. Figure 10c shows the time series of mean cloud fraction
obtained from MODIS sensor around 10 km above the HYO during June 2018. It was
observed that three days before the occurrence of the frost event on 21 June at 06 LT,
the amount of cloud fraction above the HYO was almost zero, favoring the surface net-
long wave radiation loss (L∗). Later, the cloud fraction increased slightly up to almost
0.3. Moreover, another period of three days with almost zero cloud fraction up to the
occurrence of the next frost event on 29 June was also observed.

On the other hand, the daily cycle of mean hourly values and standard deviations
of the energy balance components during the frost event on 21 June 2018 are shown in
Figure 11a. During early morning hours (05 LT), the net irradiance (Q∗) had minimum val-
ues close to −69.8 W m−2, the sensible heat flux (QH) showed minimum values of around
−10.0 W m−2, the latent heat flux (QE) showed minimum values of around −27.2 W m−2,
and finally, the ground heat flux (QG) presented minimum values close to −13.3 W m−2.
These mean hourly values of the energy balance components were significantly lower than
those during June 2018, which are shown in Figure 11b, with the exception of QH whose
value is higher than the mean monthly value. During night hours, the mean monthly
values of Q∗ showed minimum values close to−51.15 W m−2, QH showed minimum value
close to −23.66 W m−2, QE showed a minimum value close to −6.36 W m−2, and finally,
QG showed a minimum value of around −5.22 W m−2. It is important to highlight that the
imbalance term (Q∗ − QH − QE − QG) was equal to −19.21 W m−2 at 05 LT.
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Figure 10. (a) Spatial distribution of cloud fraction obtained by MODIS sensor onboard of Terra
satellite above the HYO for 19 January 2018 at 1455 UTC (955 LT). (b) Spatial distribution of cloud
fraction obtained by MODIS sensor onboard of Terra satellite above the HYO for 20 January 2018 at
1540 UTC (1040 LT). One indicates completely overcast sky and zero indicates complete clear sky
conditions. Longitudes, latitudes and geopolitical contours are indicated. Time series of cloud fraction
obtained by MODIS sensor above the location of the HYO during (c) June 2018 and (d) April 2019.

During diurnal hours on 21 June 2018, maximum Q∗ reached values close to
520.4 W m−2 around noon, which was higher than the mean monthly values in June
(495.2 W m−2 around noon). In contrast, the standard deviation values of Q∗ were signifi-
cantly lower than the mean monthly values, which was an indication of the prevalent clear
sky conditions on 21 June. In contrast, maximum QH was 278.1 W m−2 at around 14 LT,
which was slightly lower than the mean monthly values of QH in June (309.2 W m−2 at
14 LT). The same occurred for QE with maximum values of 34.49 W m−2 at around 14 LT,
which was lower than the mean monthly values of QE in June (74.86 W m−2). Finally, maxi-
mum QG value was 220.6 W m−2 at 10 LT, which was higher than the mean monthly values
in June (181.5 W m−2 at 10 LT). In general, the standard deviations of all energy balance
components on 21 June 2018 were significantly lower than the mean monthly values.
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Figure 11. (a) Daily cycle of mean hourly values and standard deviations during 21 June 2018 of the
energy balance components: net irradiance (Q∗), sensible heat flux (QH), latent heat flux (QE) and
ground heat flux (QG). The mean hourly values of all components at 05 LT are shown. (b) Daily cycle
of mean monthly values and standard deviations during June 2018 of the energy balance components.
The mean monthly values of all components at 05 LT are shown.

4.2.2. Event on 5 April 2019

In this section, we analyzed the intense frost event on 5 April 2019 above the HYO.
Time series of air temperature at a height of 2 m and 29 m between 3 and 7 April 2019 are
shown in Figure 12a. The minimum temperatures reached values close to +0.23 ◦C at a
height of 2 m and +6 ◦C at a height of 24 m at around 0521 LT on 5 April 2019. In contrast
to the previous frost event on 21 June 2018, the minimum temperature of the days before
and after the occurrence of this frost event presented with higher temperatures close to
4◦ at a height of 2 m. However, as in the previous case, this frost event was identified as
extreme as the minimum temperature at 2 m height was close to the lower values of mean
hourly minimum temperatures during April 2019, as shown in the boxplot diagram in
Figure 9b. Furthermore, this value (+0.23 ◦C) was close to the climatological (1965–2019)
percentile 10% of minimum temperatures (1.0 ◦C), as shown in Figure 9e. However, the
minimum climatological temperature reached above the HYO in June was about −4 ◦C.

Moreover, Figure 12b shows the mean hourly temperature vertical profiles between
02 LT and 08 LT on 5 April 2018 above the HYO. At night hours, very stable conditions of
the surface boundary layer with positive lapse rates higher than the previous frost event,
with values close to +0.34 ◦C m−1, were observed. Moreover, it was also the minimum
temperature was higher than the previous frost event, with values close to +0.30 ◦C at
06 LT.

Mean hourly vertical profiles of water vapor-mixing ratio between 02 LT and 08 LT on
5 April 2019 above the HYO are shown in Figure 12c. As in the previous frost event, the
water vapor vertical profiles become inverted near the surface (below 6 m) in night hours,
reached lower positive lapse rates at around +0.011 g kg−1 m−1 and higher minimum
values of water vapor mixing ratios at a height of 2 m close to 5.03 g kg−1 at 06 LT.
Moreover, the mean hourly wind speed vertical profiles between 02 LT and 08 LT on 5
April 2019 above the HYO are shown in Figure 12d. As in the previous frost event, the
presence of a surface jet with maximum of 2.33 m s−1 around 29 m at 02 LT was observed.
This jet reached its maximum intensity at around 02 LT and was probably associated with
the katabatic wind of mountain-valley circulations inside the MV.
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Figure 12. (a) Time series of air temperature (◦C) at 2 m and 29 m high above the HYO between 3
April and 7 April 2019. (b) Mean hourly vertical profiles of air temperature (◦C) during night and
early morning hours of 05 April 2019. (c) Mean hourly vertical profiles of water mixing ratio (g kg−1)
during night and early morning hours of 5 April 2019. (d) Mean hourly vertical profiles of wind
speed (m s−1) during night and early morning hours of 5 April 2019.

As in the previous frost event on 21 June 2018, the value of minimum temperature
(+0.23 ◦C) and water vapor mixing ratio (+5.03 g kg−1) registered during the extreme frost
events on 5 April, 2019, were lower than the mean monthly minimum values showed in
the boxplots and whiskers diagrams in April 2019, which indicate minimum temperature
close to +1.0 ◦C (Figure 9b) and minimum water vapor mixing ratio at around +6.5 g kg−1

(Figure 9d).
The time series of mean cloud fraction around 10 km above the HYO in April 2019,

obtained from MODIS sensor, is shown in Figure 10d. In contrast to the previous frost
event on 21 June 2018, it was observed that only one day before the occurrence of the frost
event on 5 April 2019 at 06 LT, the amount of cloud fraction above the HYO became almost
zero. Later, the cloud fraction increased significantly up to around 1.0, which contributed
to the increase in the minimum temperatures in the following days (Figure 12a).

Furthermore, the daily cycle of mean hourly values and standard deviations of the
energy balance components during the frost event on 5 April 2019 are shown in Figure 13a.
During night hours, the net irradiance (Q∗) showed minimum values close to−82.7 W m−2,
the sensible heat flux (QH) showed minimum values of around −18.27 W m−2, the latent
heat flux (QE) showed minimum values around −2.10 W m−2, and finally, the ground heat
flux (QG) presented minimum values close to −29.8 W m−2. These mean hourly values of
the energy balance components were significantly lower than those during April 2019, as
shown in Figure 13b, with the exception of QE, which is higher than the mean monthly
value. During night hours, the mean monthly values of Q∗ showed minimum values
close to −34.4 W m−2, QH showed minimum values close to −8.63 W m−2, QE showed
minimum values close to +6.9 W m−2 and finally, QG showed minimum value at around
−8.29 W m−2.
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Figure 13. (a) Daily cycle of mean hourly values and standard deviations of the energy balance
components on 05 April 2019: net irradiance (Q∗), sensible heat flux (QH), latent heat flux (QE), and
ground heat flux (QG). The mean hourly values of all components at 05 LT are shown. (b) Daily
cycle of mean monthly values and standard deviations during April 2019 of the energy balance
components. The mean monthly values of all components at 05 LT are shown.

During day hours on 5 April 2019, maximum Q∗ reached values close to 770.0 W m−2

around noon, which was higher than the mean monthly values during April (570.0 W m−2

around noon). In contrast, the standard deviation values of Q∗ were significantly lower
than the mean monthly values, which was an indication of the prevalence of clear sky
conditions on 5 April 2019. Moreover, the maximum QH with values close to 350.0 W m−2

at 13 LT, and QE with values close to 300.0 W m−2 at 13 LT, were higher than their maximum
mean monthly values during April, which were 300 W m−2 for QH and 250 W m−2 for
QE at 11 LT. On the other hand, QG presented an unusual daily cycle in comparison with
the mean monthly cycle, with a minimum value of around −90 W m−2 at 07 LT and
maximum that is close to +50 W m−2 at 13 LT. In contrast, the mean monthly values of QG
showed a minimum value close to −80 W m−2 at 16 LT and a maximum value of around
+160 W m−2.

In addition, Figure 14 (first row) shows the contours of pressure reduced to sea level
(hPa), and Figure 14 (second row) shows the contours of specific humidity (g kg−1) over
South America on 4–6 April 2019. On 4 April 2019 at 12 UTC (07 LT), it can be observed that
there is the presence of a cold front with a SW–NE orientation above the south west region
of Argentina. Moreover, the advance of a migratory anticyclone over the southern region
of Pacific Ocean, with high pressure values close to 1030 hPa, was observed. Furthermore,
the dry air of the cold front had specific humidity values between 4 g kg−1 and 10 g kg−1

at latitudes below 10◦ S. On 5 April 2019, at 12 UTC (07 LT) when the intense frost occurred
event on the HYO, several typical characteristics of the frontal development appeared: the
rapid displacement of the cold front to south-eastern Brazil and the development of an
anticyclone over the Pacific Ocean, which causes an increase in the south wind over the
continent, which, in turn, causes an increase in the cold front advection. During this time,
the high pressure system and the dry air of the cold front reached latitudes of around 12◦ S.
On 6 April 2019, the migratory anticyclone reached its maximum intensity and its lower
latitude, with the dry air of the cold front arriving to latitudes around 9◦ S.
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04 April 2019 05 April 2019 06 April 2019

Figure 14. Contours of pressure reduced to sea level (hPa) and contours of specific humidity (g kg−1)
for South America (first column) on 4 April 2019 at 12 UTC (07 LT), (second column) on 5 April
2019 at 12 UTC (07 LT) and (third column) 6 April 2019 at 12 UTC (07 LT). Geopolitical contours
are indicated.

4.3. High Pollution Events

In 2019, between August and September, a large number of forest fires occurred in
the Amazon region, mainly in Brazil and northern Bolivia. The large number of aerosols
generated by these fires affected several regions of South America, including Peru. Several
events with high aerosol loads were recorded during these months in the HYO, as shown in
Figure 15a. The behavior of the AOD between 1 August and 8 September 2019 and, as can
be seen, practically every day, the aerosols generated by the biomass burning (green dots)
were recorded. A total of three events with high AOD values are highlighted, especially the
ones recorded between August 17 and 23, where the maximum AOD value with a value of
0.67 recorded on August 20 at 12:30:56 UTC (07:30:56 LT) took place.

The aerosol classification determined from a scatterplot (Figure 15b) between AOD
at 440 nm and the Angstrom Parameter within the range of 440–870 nm [15]. As can be
seen in Figure 15c, the highest percentage of aerosols presence corresponds to the aerosols
generated by the biomass burning (81%), followed by the Continental (CNT) aerosol
type (18%). The remaining registered aerosols types during this period have a very little
presence; in all cases, less than 1%. To determine the possible source regions where the
aerosols registered during the aforementioned period were generated, the backtrajectories
were calculated using the HYSPLIT model. The trajectories were calculated every three
hours, 120 h backwards for each day between August 17 and 23, and for three altitude
levels— 500, 1500, and 3000 m (Figure 15d). The NCEP-NCAR reanalysis was used as
input meteorological data.

As can be seen in the figure, the trajectories of 500 and 1500 meter levels have their
origin and pass through the Amazonian regions of Peru, and in the case of the 1500 m,
level some trajectories pass over the northern region of Bolivia. In the case of the 3000 m
trajectory, most of the trajectories also cross over the northern portion of Bolivia, where large
forest fires were recorded during this period. In conclusion, it can be affirmed that the main
source of biomass aerosols measured in the HYO between August 17 and 23 corresponds
to the forest fires that took place in Peru itself with a certain level of contribution from the
fires that had occurred in the northern region of Bolivia.
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Figure 15. (a) AOD at 440 nm between 1 August and 8 September 2019. Green dots represent the
AOD related to biomass aerosols, and black dots represent the other aerosols types. (b) Scatterplot
of AOD (440 nm) vs Angstrom parameter (440–870 nm) for aerosol classification. The green dots
represent the classification of biomass aerosols and black dots other aerosols types. (c) Percentage
of presence of each type of aerosol according to the classification performed. (d) Backtrajectories
calculated with HYSPLIT for every days between 17 August and 23 August 2019 for three levels: 500,
1500 and 3000 m. Trajectories were calculated every 3 h and for 120 h backwards.

5. Discussions
5.1. Intense Rainfall Events

For the present contribution, we presented two intense rainfall events: the first one oc-
curred on 17 January 2018 at 20 LT (RE1) with a maximum peak of 13.46 mm h−1 and the sec-
ond one occurred on 28 December 2019 at 17 LT (RE2) with maximum peak of 12.1 mm h−1.
It is important to highlight that both events were succeeded (RE1) or preceded (RE2) by
another intense rainfall event with only a few days in between. In addition, the amount
of rainfall for both events was lower than the climatological (1965–2020) values of maxi-
mum daily accumulated rainfall, which were 42 mm day−1 for January and 47 mm day−1

for December. However, they were also similar to the climatological percentile 90% of
daily accumulated rainfall, which were 14 mm day−1 for January and 13 mm day−1 for
December [16]. The spatial distribution for both rainfall events were identified by the GPM
system, a core of high rainfall rate of 7 mm h−1 above the HYO for both events (RE1 and
RE2). For the RE1 event, four areas with high precipitation rates aligned from north-east
to south-west were observed. In contrast, for the RE2 event, there were two areas of high
precipitation rate aligned from north-west to south-east.

For both events, the patterns of reflectivity in function of height, measured by radars
MIRA-35C and CLAIRE, demonstrated the presence of rainfall above the HYO. During
the occurrence of an RE1 event, different types of rainfall (convective and stratiform) were
observed. The convective rainfall with high values of reflectivity (40 dBZ) occurred at
approximately between 1930 LT and 21 LT; meanwhile, the stratiform rainfall occurred
approximately between 23 LT and 07 LT with values of reflectivity between 20 dBZ and
30 dBZ. In general, data from MIRA-35C was degraded by clouds and precipitation, as
compared to the data from CLAIRE, due to its higher working frequency (35 GHz against
445 MHz) and, in consequence, it was necessary to make an attenuation correction. On
the other hand, the PARSIVEL2 optical disdrometer, which measured the raindrop size
distribution (RSD), allowed the estimation of rainfall rate (R), liquid water content (LWC),
concentration total number (Nt), mass weighted mean diameter (Dm), intercept parameter
(Nw) and reflectivity factor (Z) [9]. In addition, this set of parameters allows us to test
different microphysical parameterizations from atmospheric numerical models and find
the best performance against the in-situ observed data [36].
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The mean synoptic conditions obtained from the GFS reanalysis data showed the
important differences for both events (RE1 and RE2). For RE1, around the latitude of the
HYO, strong easterly circulations at high levels (200 hPa), associated with the presence of
the BH-NL system, were observed. On the contrary, for RE2, at high levels (200 hPa), it was
found that there were observed strong westerly circulations and an absence of the BH-NL
system around the location of the MB. These atmospheric configurations were identified in
a recent study [10]. According to the results, RE1 corresponded to an easterly circulation
(EC) event and RE2 to a westerly circulation (WC) event.

5.2. Intense Frosts Events

During frost events, the surface temperature of the ground or canopy falls below
0 ◦C, and these events can be caused by in situ radiation cooling with clear skies and
light winds (radiative events), as the atmosphere is open to the transmission of long-wave
radiation (L∗), or advection of cold air to a region accompanied by strong winds (advective
events) [37]. For the present study, we analyzed two intense frost events: the first one
occurred on 21 June 2018 at 0603 LT (FE1) and the second on 5 April 2019 (FE2), at 0521 LT.
For FE1 event, a continuous decrease in minimum temperatures during days before the
occurrence of this frost event up to −3.0 ◦C at a height of 2.0 m and 2.0 ◦C at a height of
29 m. This behavior can be explained because the clear sky conditions above the HYO,
estimated by the cloud product of MODIS sensor, during the days before and after the
occurrence of this frost event, which corresponds to a radiative frost event [12].

In contrast, for the FE2 event, minimum temperature close to +0.23 ◦C at a height of 2 m
and +6 ◦C at a height of 24 m. The minimum temperatures during the days before and after
the occurrence of this frost event, corresponded to higher values close to 4 ◦C at a height of
2 m, probably associated with the presence of high cloud fraction cover during the days
preceding and following the occurrence of this frost event. The abrupt drop in minimum
temperatures can be explained by the intrusion of cold surges from extra-tropical South
America that move northward, accompanied by the progression of low-level winds and by a
subsidence and dry conditions in the middle and low troposphere (1000–500 hPa) [14]. This
cold and dry air arrived at the latitude of the MV (12◦ S) approximately at 00 UTC (19 LT)
on 5 (4) April 2019, and intruded in central Andes a few hours later, which was observed
by high intensities of wind speed in the early morning hours during FE2 event.

Moreover, during night hours and clear sky conditions, the surface loses more heat
through radiation than the heat received from the air and subsoil [32]. Consequently,
there is an abrupt drop in air temperature, which falls faster near the surface, causing
temperature inversion. For FE1 event, during night hours, very stable conditions of the
surface boundary layer were observed, with positive lapse rates of around +0.27 ◦C m−1

and minimum mean hourly temperature (2 m high) close to −2.5 ◦C at 07 LT. In contrast,
for FE2 event, higher positive lapse rates with values close to +0.34 ◦C m−1 and higher
minimum mean hourly temperature (2 m high) of around +0.30 ◦C at 06 LT were observed.

In addition, during some frost events, the water vapor profile may become inverted
(positive lapse rates) near the surface under some conditions, such that vapor is transferred
downwards as dew-fall. This process depletes moisture in the lowest layer of the atmo-
sphere, while humidity decreases. For FE1 event, the positive lapse rate reached around
+0.038 g kg−1 m−1 and the minimum water vapor mixing ratios at a height of 2 m, reached
values close to 3.35 g kg−1 at 07 LT. In contrast, for the FE2 event, the positive lapse rates
were lower, reaching +0.011 g kg−1 m−1, but the minimum water vapor mixing ratios were
higher at 5.03 g kg−1 at 06 LT. These differences can be explained by the seasonality of
surface layer temperatures and moisture content in the HYO [13].

We highlighted that these minimum temperatures (−3.0 ◦C for FE1 and +0.23 ◦C
for FE2) and minimum water mixing ratios (3.35 g kg−1 for FE1 and 5.03 g kg−1 for FE2)
registered during FE1 and FE2 events were below the range of minimum mean monthly
temperatures and water mixing ratios during June 2018 and April 2019, respectively
(Figure 9). Moreover, due to the cooling of the surface by the emission of long-wave
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radiation, the lower air layers from the mountain slopes cool and slide down-slope due
to the gravity pull as a result of katabatic wind of mountain-valley circulations inside the
MV. During both of the extreme frost events (FE1 and FE2), the presence of a surface jet
with maximum wind speeds of around 2.2 m s−1 at a height of 12 m, with maximum at
04 LT for FE1 and close to 2.3 m s−1 at a height of 29 m and with maximum at 02 LT for
FE2 were observed.

In addition, both the mean hourly values and standard deviations of the surface
energy balance components: net irradiance (Q∗), sensible heat flux (QH), latent heat flux
(QE), and ground heat flux (QG), were lower than the mean monthly values and standard
deviations of these components for both extreme frost events, during early morning hours
before sunrise. This behavior was especially intense for Q∗ and QE that showed strong
negative values [12] as compared to the mean monthly values of these energy budget
components for the same months of both frost events, which were estimated and analyzed
for the HYO in a recent contribution [13].

5.3. High Pollution Events

By using a sun-photometer CIMEL CE-318T type, belonging to the AERONET [38],
aerosol measurements have been performed since March 2015 on the HYO. Owing to these
measurements, the definition of the period with the greatest presence of aerosols generated
by the burning of biomass was possible. This period with high aerosol load was found to
be between July and October, with September being the month with the maximum AOD
values. The biomass-type aerosols registered in the HYO have their origin, mainly in the
fires that had taken place in the Amazon region of Peru. However, under certain conditions,
biomass aerosols originating in Brazil and northern Bolivia could reach the HYO.

These forest fires that had occurred in the Amazon release large amounts of gases and
aerosols into the atmosphere, transported by air masses to regions distant from the fires
that generated them, including several regions of South America such as the central Andes
of Peru. In the present study, we analyzed three events with high values of AOD that
occurred between 06 and 10 August, 17 and 22 August, and 29 August and 2 September
2019 on the HYO. The AOD values range from 0.55 to 0.65, which exceed the mean value
of AOD that is equal to 0.10 ± 0.07 for the period of March 2015 to August 2017 [15].
Moreover, by using the HYSPLIT model [39–41], we estimated the possible source regions
from where the aerosols registered on the HYO were generated. The trajectories showed
that the main sources of biomass measured during the period of intense aerosol events in
the HYO correspond to the forest fires that took place in Peru with certain contributions
from the fires from the northern area of Bolivia.

6. Conclusions

The aim of this study was to present a set of the instruments to measure several
physical, microphysical, and radiative properties of the atmosphere and clouds, which
can be used to identify, understand, and subsequently, forecast and prevent the effects of
extreme meteorological events, such as severe rainfall, hailstorms, frost, and high pollution
events that can occur with some regularity in the regions of the central Andes of Peru,
specifically in the MB. For this, the instruments were installed in the HYO, with the
expectation to carry out observation field campaigns in different places of the MB, mainly
in valleys and agricultural areas. According to the results and discussions presented above,
we conclude the following:

Two intense rainfall events were analyzed; one occurred on 17 January 2018 at 20 LT
and the other on 28 December 2019 at 17 LT. Both rainfall events were similar to the
climatological (1965–2019) percentile 90% of daily accumulated rainfall. The patterns of
reflectivity in function of height for both events were also shown, which were measured
by radars MIRA-35C and CLAIRE, highlighting the presence of convective and stratiform
rainfall types for both events. Moreover, the PARSIVEL2 optical measured the raindrop
size distribution, which allows the estimations of several micro-physics parameters of
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convective and stratiform rainfall events. The GPM system was used to identify the
spatial distribution around the Mantaro valley of both rainfall events. The first intense
rainfall event was associated with strong easterly circulations at high levels (200 hPa) of
the atmosphere, and the presence of the BH-NL system. In contrast, the second one was
associated with the presence of strong westerly circulations and the absence of the BH-NL
system around the location of the MRB.

In addition, we analyzed two intense frost events; one occurred on 21 June 2018, at
06 LT and the other on 5 April 2019, at 05 LT. The first one was mainly associated with
the continuous clear sky conditions during the previous days of the frost event, above the
HYO, corresponding to a radiative frost event. On the contrary, the second one was mainly
associated with the intrusion of cold surges coming from extra-tropical South America.
However, clear sky conditions was also observed one day before the occurrence of the
frost event. In consequence, there was a combination of advective and radiative conditions
for the second frost event. Moreover, the energy budget analysis of both the frost events
revealed that the energy components were highly negative in comparison with the mean
monthly values during the early morning hours. Finally, we presented a detailed analysis of
three high pollution events that had occurred on the HYO between August and September
in 2019. The HYSPLIT model, was used to identify the possible source regions where the
aerosols registered on the HYO were generated, which correspond to the forest fires that
took place in Peru with certain contributions from the fires in the northern area of Bolivia.

Taking these results into account, we concluded that the set of instruments of LAMAR
can be used to identify and analyze the extreme meteorological events in other regions
of the central Andes, mainly agricultural areas, by means of operational field campaigns.
The adequate understanding of the physical processes, associated with the occurrence of
extreme meteorological events, such as intense rainfall, frost, and high pollution events,
can improve the ability of physical models to forecast the occurrence of these events and
to plan strategies to mitigate the impact of those events on agricultural crops. Moreover,
higher time and space scale observations of atmospheric variables performed by LAMAR
instruments and better observations of key processes, including land–atmosphere inter-
actions, can be used to improve global coverage of daily and sub-daily observations for
temperature and precipitation extremes.
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Abbreviations
The following abbreviations are used in this manuscript:

AERONET Aerosol Robotic Network
BSRN Baseline Surface Radiation Network
HYO Huancayo observatory
LAMAR Laboratory of Atmospheric Physics, Microphysics and Radiation
MRB Mantaro river basin
MV Mantaro valley
GPM Global Precipitation Measurement
GFS Global Forecast System
GOES Geostationary Operational Environmental Satellite
MIRA-35C METEK Meteorologische Messtechnik Radar
CLAIRE CLear Air and Rainfall Estimations
BLTR Boundary Layer and Tropospheric Radar
ENSO El Niño-Southern-Oscillation
WCRP World and Climate Research Programme
SALLJ South America Low Level Jet
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