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Abstract: Benzaldehydes are components of atmospheric aerosol that are poorly represented in
current vapour pressure predictive techniques. In this study the solid state (Psat

S ) and sub-cooled
liquid saturation vapour pressures (Psat

L ) were measured over a range of temperatures (298–328 K)
for a chemically diverse group of benzaldehydes. The selected benzaldehydes allowed for the effects
of varied geometric isomers and functionalities on saturation vapour pressure (Psat) to be probed.
Psat

S was measured using Knudsen effusion mass spectrometry (KEMS) and Psat
L was obtained via a

sub-cooled correction utilising experimental enthalpy of fusion and melting point values measured
using differential scanning calorimetry (DSC). The strength of the hydrogen bond (H-bond) was the
most important factor for determining Psat

L when a H-bond was present and the polarisability of the
compound was the most important factor when a H-bond was not present. Typically compounds
capable of hydrogen bonding had Psat

L 1 to 2 orders of magnitude lower than those that could not
H-bond. The Psat

L were compared to estimated values using three different predictive techniques
(Nannoolal et al. vapour pressure method, Myrdal and Yalkowsky method, and SIMPOL). The
Nannoolal et al. vapour pressure method and the Myrdal and Yalkowsky method require the use of
a boiling point method to predict Psat. For the compounds in this study the Nannoolal et al. boiling
point method showed the best performance. All three predictive techniques showed less than an
order of magnitude error in Psat

L on average, however more significant errors were within these
methods. Such errors will have important implications for studies trying to ascertain the role of these
compounds on aerosol growth and human health impacts. SIMPOL predicted Psat

L the closest to the
experimentally determined values.

Keywords: secondary organic aerosol; vapour pressure; KEMS; group contribution method (GCM);
benzaldehyde

1. Introduction

Climate and air quality are both significantly influenced by atmospheric aerosols, of
which organic aerosols (OA) are a major component [1]. The composition of atmospheric
aerosols can vary significantly by region, with OA contributing ~20 to 50% of total aerosol
mass at continental mid latitudes, but being as high as 90% in some tropical forested
areas [2]. Understanding the behaviours and properties of OA is essential to accurately
predict their impacts on climate and human health. Currently, there are substantial uncer-
tainties surrounding many of the physicochemical properties of atmospheric aerosols [3].
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OA consist of primary organic aerosols (POA), which are emitted directly into the atmo-
sphere as particulates, and secondary organic aerosols (SOA), which typically form when
gas phase organic compounds in the atmosphere undergo oxidation. The products of these
oxidation reactions tend to have lower vapour pressures then the reactants and are more
likely to partition to the aerosol phase [2]. To predict whether a compound will partition,
knowledge of its pure component equilibrium vapour pressure, also known as saturation
vapour pressure (Psat), is required [4]. Due to the complexity of the organic fraction of
atmospheric aerosols, estimated to contain over 100,000 distinct organic species [5], and a
lack of experimental data, the Psat of many compounds must be estimated.

The most common way of estimating Psat is using group contribution methods (GCMs).
GCMs are based on the principle that functional groups within a molecule contribute addi-
tively to the property of interest. However, as compounds become more functionalised, the
interaction between functional groups within a compound means this is often not the case.
The Nannoolal et al. method [6], the Myrdal and Yalkowsky method [7], SIMPOL [8] and
EVAPORATION (Estimation of VApour Pressure of Organics, Accounting for Temperature,
Intramolecular, and Non-additivity effects) [9] are among the most common GCMs that
are used for predicting Psat. Both Barley and McFiggans (2010) [10] and O’Meara et al.
(2014) [11] performed detailed assessments for these techniques comparing predicted and
experimental Psat for a range of compounds selected for their particular relevance to the
formation of atmospheric aerosols. In both studies there was significant disagreement
between the experimental and predicted Psat for many of the compounds involved. Several
of the older GCMs were developed primarily for use with higher volatility hydrocarbons or
monofunctional compounds, whereas SOA are lower volatility and often highly function-
alised. EVAPORATION [9] was developed specifically for predicting the Psat of OA and the
assessment by O’Meara et al. (2014) [11] showed the best performance for the compounds
to which it was applicable. This highlights two larger issues GCMs have when predicting
the Psat of SOA. The older and more widely applicable methods show larger errors as Psat

decreases, while the newer and more targeted methods are limited by the functionalities
represented within the data set they are fit to. Further development of new GCMs to
expand the range of compounds to which they are applicable is limited by a lack of experi-
mental data for the Psat of relatively low volatility multifunctional compounds. GCMs also
struggle to account for the impacts the relative positions of the functional groups can have
on the Psat, as well as the effects of internal interactions between functional groups on a
compound of interest.

This work builds on previous work by Booth et al. (2012) [12], Dang et al. (2019) [13]
and Shelley et al. (2020) [14] investigating the impacts of functional group positioning
and the interaction of functional groups within a molecule on Psat. In previous work by
Shelley at al. (2020) [14] large absolute differences between experimental and estimated
Psat were observed, especially for nitrophenol compounds. One of the major reasons for
these differences was due to the lack of previous experimental Psat data for compounds
with similar functionalities. Similar to nitroaromatics, benzaldehydes also have a lack of
experimental Psat data available. In this study the solid state saturation vapour pressure
(Psat

S ) of atmospherically relevant benzaldehydes and other benzaldehydes of similar
functionalities are determined using Knudsen Effusion Mass Spectrometry (KEMS). A sub-
cooled correction is then made using data obtained using differential scanning calorimetry
(DSC) to calculate the sub-cooled liquid saturation vapour pressures (Psat

L ).
Benzaldehydes have both anthropogenic [15] and biogenic sources [16] and can be

emitted directly into the atmosphere or formed as secondary pollutants [17]. The major
primary source for benzaldehydes is the direct emission from vehicle exhausts and they
are therefore ubiquitous in the polluted urban atmosphere, with undiluted emissions from
engines containing up to several hundred ppb [18]. Engine emission studies have found
benzaldehydes from both diesel and biodiesel powered engines [19], as well as from petrol
and petrol/ethanol blended powered engines [20]. Benzaldehydes are also produced in situ
within the atmosphere and act as intermediates in the oxidation of aromatic compounds [15].
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Benzaldehydes have also been observed in multiple atmospheric chamber experiments
such as those by Hamilton et al. (2005) investigating the photo-oxidation of toluene in a
large volume smog chamber [21] and those by Caralp et al. (1999) investigating the reaction
kinetics of benzoyl and peroxybenzoyl radicals in a smog chamber [15]. Benzaldehydes are
present in the Master Chemical Mechanism (MCM v3.2) [22,23] as precursors, reactants and
products. Benzaldehydes are therefore an important class of compounds to have accurate
measurements of Psat

L , which are then compared to the predicted Psat
L values of multiple

GCMs to highlight areas of uncertainty. This will enable studies trying to ascertain the
role of benzaldehydes on aerosol growth and human health impacts to be supported by
accurate experimental data.

In this work Psat
S and Psat

L values are presented for 17 benzaldehydes. The Psat
L values

are compared to each other and chemical and steric arguments are given to explain the
observed trends and differences. Following on from this, the experimental Psat

L values
and predicted Psat

L values from several GCMs are compared. In this comparison areas and
functionalities that perform well, as well as those that perform poorly are highlighted and
recommendations for the GCM most suited to predicting benzaldehydes are made.

2. Experimental

A total of 17 benzaldehydes were selected for this study, shown in Table 1. All
compounds selected for this study were purchased at a purity of 99% and used without
further preparation. All compounds are solid at room temperature. The compounds
selected cover a range of functionalities in addition to benzaldehyde including phenol,
amino, ether, ester, and carboxylic acid. Several compounds also contain more bulky ethyl
groups that can disrupt intermolecular interactions. Of the 17 compounds selected 8 can
form H-bonds.

Table 1. Benzaldehydes measured with the Knudsen effusion mass spectrometry (KEMS). Compounds above the dashed
line are capable of H-Bonding in the pure component and those below cannot.

Compound Structure CAS Supplier

Vanillin
(4-hydroxy-3-methoxybenzaldehyde)
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Table 1. Cont.

Compound Structure CAS Supplier

3-hydroxybenzaldehyde
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Table 1. Cont.

Compound Structure CAS Supplier

methyl-4-formylbenzoate

Atmosphere 2021, 12, x FOR PEER REVIEW 4 of 17 

4-hydroxybenzaldehyde 123-08-0 Fisher Scientific 

2,5-dihydroxybenzaldehyde 1194-98-5 Fisher Scientific 

3-ethoxy-4-hydroxybenzaldehyde 121-32-4 Sigma Aldrich 

2-formylbenzoic acid 119-67-5 Fisher Scientific 

4-dimethylaminobenzaldehyde 100-10-7 Fisher Scientific 

4-diethylaminobenzaldehyde 120-21-8 Sigma Aldrich 

methyl-4-formylbenzoate 1571-08-0 Sigma Aldrich 

terephthalaldehyde 623-27-8 Sigma Aldrich 

3,4-dimethoxybenzaldehyde 120-14-9 Sigma Aldrich 
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2,6-dimethoxybenzaldehyde 3392-97-0 Alfa Aesar 

3-ethoxy-4-methoxybenzaldehyde 1131-52-8 Sigma Aldrich 

2,4-dimethoxy-3-methylbenzaldehyde 7149-92-0 Sigma Aldrich 

2,3,4-trimethoxybenzaldehyde 2103-57-3 Sigma Aldrich 

2.1. The Knudsen Effusion Mass Spectrometry System (KEMS) 
KEMS is an established vapour pressure measurement technique capable of measur-

ing vapour pressures from 101 to 10−8 Pa. The KEMS system is the same instrument that 
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sity of the mass spectrum, and the temperature at which the mass spectrum was taken are 
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2.1. The Knudsen Effusion Mass Spectrometry System (KEMS)

KEMS is an established vapour pressure measurement technique capable of measuring
vapour pressures from 101 to 10−8 Pa. The KEMS system is the same instrument that has
been used in previous studies [4,14,24,25] and a summary of the measurement procedure
will be given here. For a more detailed overview see Booth et al. (2009) [25]. To calibrate
the KEMS, a reference compound of known Psat is used. In this study the polyethylene
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glycol series (PEG series), PEG-3 (P298 = 6.68 × 10−2 Pa) and PEG-4 (P298 = 1.69 × 10−2 Pa) [26]
were used as was implemented in Booth et al. (2017) [27], Bannan et al. (2019) [28], and
Shelley et al. (2020) [14].

The reference compound is placed in a temperature controlled stainless steel Knudsen
cell. The cell has an orifice through which the sample effuses creating a molecular beam.
The size of the orifice is ≤1/10 the mean free path of the gas molecules in the cell. This
ensures that the particles effusing through the orifice do not significantly disturb the
thermodynamic equilibrium of the cell [25,29]. The molecular beam is then ionised using a
standard 70 eV electron ionisation and analysed using a quadrupole mass spectrometer.

The ionisation cross sections for each compound were estimated by summing the
ionisation cross section for each atom in the compound at the ionisation energy (70 eV) [29].
The ionisation cross sections for each atom where taken from the NIST: Electron-impact
cross section database [30]. After correcting for the ionisation cross section, the mass
spectral signal is proportional to the Psat. Once the calibration process is completed it
is possible to measure a sample of unknown Psat. When the sample is changed it is
necessary to isolate the sample chamber from the measurement chamber using a gate valve
so that the sample chamber can be vented, whilst the ioniser filament and the secondary
electron multiplier (SEM) detector can remain on and allow for direct comparisons with
the reference compound. The Psat of the sample can be determined from the intensity
of the mass spectrum, and the temperature at which the mass spectrum was taken are
known. The samples of unknown Psat are typically solid so it is the Psat

S that is determined.
After the Psat

S (Pa), has been determined for multiple temperatures, the August equation
(Equation (1)) can be used to determine the enthalpy and entropy of sublimation as shown
in Booth et al. (2009) [25].

ln
(

Psat) = −∆Hsub
RT

+
∆Ssub

R
(1)

where T is the temperature (K), R is the ideal gas constant (J mol−1 K−1), ∆Hsub is the
enthalpy of sublimation (J mol−1) and ∆Ssub is the entropy of sublimation (J mol−1 K−1).
Psat was obtained over a range of 30 K in this work starting at 298 K and rising to 328 K.
The reported solid state vapour pressures are calculated from a linear fit of ln(Psat) vs. 1/T
using the August equation. ∆Hsub can be extracted from the gradient of this linear fit and
∆Ssub can be extracted from the intercept [4].

2.2. Differential Scanning Calorimetry (DSC)

According to the reference state used in atmospheric models and as predicted by
GCMs, Psat

L is required. Therefore, it is necessary to convert the Psat
S determined by the

KEMS system into a Psat
L . As with previous KEMS studies [4,14,24] the melting point

(Tm) and the enthalpy of fusion (∆Hfus) are required for the conversion. These values
were measured with a TA Instruments DSC 2500 Differential Scanning Calorimeter (DSC)
sourced from TA Instruments UK, Elstree, UK. Within the DSC, heat flow and temperature
were calibrated using an indium reference, and heat capacity using a sapphire reference.
A heating rate of 10 K min−1 was used, then, 5–10 mg of sample was measured using a
microbalance and then pressed into a hermetically sealed aluminium DSC pan. A purge
gas of N2 was used with a flow rate of 30 mL min−1. Data processing was performed
using the “Trios” software supplied with the instrument. ∆cp,sl was estimated using
∆cp,sl = ∆Sfus [31,32].

2.3. MOPAC2016

MOPAC2016 [33] is a semi empirical quantum chemistry program based on the neglect
of diatomic differential overlap (NDDO) approximation [34]. This software was used to
calculate the partial charges of the phenolic carbon and the molecular polarisibility (αm) of
the compounds investigated.
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3. Theory
3.1. Sub-Cooled Correction

The conversion between Psat
S and Psat

L is done using the Prausnitz equation [35]
(Equation (2)).

ln
(

Psat
L

Psat
S

)
=

∆Hfus
RTm

(
Tm

T
− 1

)
−

∆cp,sl

R

(
Tm

T
− 1

)
+

∆cp,sl

R
ln
(

Tm

T

)
(2)

where ∆Hfus is the enthalpy of fusion (J mol−1), ∆cp,sl is the change in heat capacity between
the solid and liquid states (J mol−1K−1),T is the temperature (K), and Tm is the melting
point (K).

3.2. Vapour Pressure Predictive Techniques

Due to a lack of experimental data for SOA GCMs are often used to predict Psat values.
GCMs operate under the principal that the contribution, from a functional group, to a
property is constant and that the contribution is unaffected by the base molecule (e.g., the
contribution from -OH to a property of interest in ethanol and propanol is the same) [3].
This concept is valid in many instances, however there are many where it is not. The most
common of which is when multiple functional groups within a molecule interact with each
other, changing each of their relative contributions.

GCMs such as EVAPORATION [9] and SIMPOL [8] predict Psat requiring only chem-
ical structure and target temperature, whereas other GCMs such as the Nannoolal et al.
method [6] and the Myrdal and Yalkowsky method [7] also require boiling point (Tb),
which are known as combined methods. For many of the same reasons as for Psat, there is
also a lack of experimental Tb data for SOA and Tb must also be predicted using GCMs.
The Nannoolal et al. method [36], the Joback and Reid method [37], and the Stein and
Brown method [38] are most commonly used. The Joback and Reid method [37] is not
considered in this work because the Stein and Brown method [38] is an improved version
and it is known to have many biases [10]. For the combined GCMs the need to also estimate
Tb gives rise to another source of error. This size of the error introduced by estimating Tb
increases the greater the difference between the estimated Tb and the temperature at which
Psat is calculated [11].

Due to many of the GCMs often used to predict Psat of SOA having been originally
developed for use with monofunctional compounds and hydrocarbons [25], they do not ac-
count for intramolecular interactions or steric effects, which are present in multifunctional
compounds. There are also some functionalities that are either poorly represented within
the fitting data set of a GCM or not represented at all. If the functionality is poorly repre-
sented within a GCM it can lead to overfitting. If the functionality is not represented at all,
the effects of the functional group may be misrepresented or ignored entirely. For instance,
many GCMs do not account for hydroperoxides (-O-O-H) but do account for both ethers
(-O-) and hydroxy (-O-H). If the GCM does not contain a parameter for hydroperoxides it
would instead treat the group as a combination of an ether and a hydroxy which would
lead to a large error, as chemically these groups are very different [3]. Alternatively, if a
GCM contained no parameters for halogens, it would simply ignore any halogen atoms
when predicting Psat. GCMs also struggle with the proximity effects and isomers that
can occur in multifunctional compounds. The Nannoolal et al. method [6] does contain
parameters for -ortho, -meta, -para isomerism, but as soon as a third functional group is
added to the aromatic ring it can no longer distinguish between the different isomers.
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Despite the previous work to assess the performance of GCMs such as those by Barley
and McFiggans (2010) [10] and O’Meara et al. (2014) [11] these assessments were done
generally for a wide range of SOA and contained few benzaldehydes in the test set. Barley
and McFiggans (2010) [10] only contained 2 benzaldehydes in the test sets and O’Meara
et al. (2014) [11] contained no more than 5.

4. Results and Discussion
4.1. Solid State Vapour Pressure

Psat
s measured directly by the KEMS is given in Table 2. Measurements were made

at increments of 5 K from 298 K to 328 K for a total of seven measurements (with the
exception of compounds that melted during the temperature ramp). A minimum of two
KEMS measurements were made for each compound, with each individual measurement
calculating Psat

s using both PEG-3 and PEG-4 as reference compounds. Psat
s was then taken

as the mean of these four values. In the instances where there were large differences
between the calculated Psat

s additional measurements were made. The calculated Psat
s of

each KEMS measurement can be found in the accompanying dataset [39]. The August
equation (Equation (1)) was used to calculate the enthalpies and entropies of sublimation
over the studied temperature range. Overall, the compounds with the highest vapour
pressure are incapable of forming hydrogen bonds (H-bonds) as they do not contain any
H-bond donors. The compounds that cannot H-bond have on average 50% higher Psat

s ,
with this discussed in detail in Section 4.2.

Table 2. Psat
S at 298 K, and enthalpies and entropies of sublimation of benzaldehydes determined using KEMS. The

compounds below the dashed line are capable of H-bonding in the pure component and those above the dashed line are not.

Compound P298 (Pa) ∆Hsub (kJ mol−1) ∆Ssub (J mol−1 K−1)

Methyl 4-formylbenzoate 3.97 × 10−1 75.98 247.24
terephthalaldehyde 2.34 × 10−1 76.66 245.10

2,3,4-trimethoxybenzaldehyde 1.11 × 10−1 87.51 275.35
2,4-dimethoxy-3-methylbenzaldehyde 1.09 × 10−1 79.02 246.18

3,4-dimethoxybenzaldehyde 6.64 × 10−2 91.58 284.67
3-ethoxy-4-methoxybenzaldehyde 5.72 × 10−2 94.49 293.23

4-dimethylaminobenzaldehyde 5.19 × 10−2 95.42 295.11
4-diethylaminobenzaldehyde 4.44 × 10−2 92.28 283.70
2,6-dimethoxybenzaldehyde 7.29 × 10−3 118.09 355.16

o-vanillin 3.88 × 10−1 67.75 219.30
3-ethoxy-4-hydroxybenzaldehyde 3.14 × 10−2 100.35 307.95

Vanillin 2.14 × 10−2 108.16 330.77
2,5-dihydroxybenzaldehyde 1.63 × 10−2 102.50 309.66

3-hydroxybenzaldehyde 1.58 × 10−2 109.90 334.17
4-hydroxybenzaldehyde 5.86 × 10−3 107.76 318.80

Isovanillin 3.43 × 10−3 119.00 352.12
2-formylbenzoic acid 1.11 × 10−3 114.82 328.51

4.2. Sub-Cooled Liquid Vapour Pressure

Psat
L were obtained from the Psat

S using thermochemical data obtained through use of
a DSC and Equation (2). The results are detailed in Table 3 for H-bonding compounds and
Table 4 for non H-bonding compounds.
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Table 3. Psat
L at 298 K, melting point, enthalpy of fusion, entropy of fusion, and the partial charge of the phenolic carbon of

the H-bonding benzaldehydes (carboxylic carbon in the case of 2-formyl-benzoic acid).

Compound P298 (Pa) Tm (K) ∆Hfus (kJ mol−1) ∆Sfus (J mol−1 K−1)
Partial Charge of the
Phenolic/Carboxylic

Carbon

o-vanillin 6.44 × 10−1 320.09 19.06 59.55 0.311
3-ethoxy-4-

hydroxybenzaldehyde 1.31 × 10−1 351.70 25.27 71.85 0.244

3-hydroxybenzaldehyde 9.21 × 10−2 378.98 23.19 61.20 0.272
2,5-dihydroxybenzaldehyde 7.02 × 10-2 373.15 20.16 54.02 0.329 (intra) 0.184 (inter)

Vanillin 6.73 × 10−2 356.82 18.88 52.90 0.245
4-hydroxybenzaldehyde 2.78 × 10−2 391.40 18.60 47.53 0.335

Isovanillin 2.36 × 10−2 390.34 23.20 59.44 0.167
2-formylbenzoic acid 4.96 × 10−3 375.12 20.36 54.28 0.621

Table 4. Psat
L at 298 K, melting point, enthalpy of fusion, entropy of fusion and polarisability of the non H-bonding

benzaldehydes.

Compound P298 (Pa) Tm (K) ∆Hfus (kJ mol−1) ∆Sfus (J mol−1 K−1) αm (Å3)

methyl 4-formylbenzoate 1.07 × 100 337.21 22.48 66.66 17.424
terephthalaldehyde 9.43 × 10−1 390.06 16.82 43.11 14.888

2,4-dimethoxy-3-
methylbenzaldehyde 2.38 × 10−1 327.43 22.81 69.66 19.931

2,3,4-trimethoxybenzaldehyde 1.73 × 10−1 313.63 22.64 72.17 20.658
4-dimethylaminobenzaldehyde 1.57 × 10−1 349.37 20.24 57.93 18.488

3,4-dimethoxybenzaldehyde 1.38 × 10−1 321.53 20.77 64.61 18.206
3-ethoxy-4-methoxybenzaldehyde 1.14 × 10−1 324.96 21.67 66.67 20.071

4-diethylaminobenzaldehyde 6.49 × 10−2 314.53 18.59 59.11 22.224
2,6-dimethoxybenzaldehyde 4.50 × 10−2 373.19 25.16 67.43 17.944

When comparing the Psat
L of two compounds direct comparisons were made when

only one change occurs between the compounds. If more than one structural change
occurs, it becomes difficult to determine the exact cause of the change in Psat

L due to
the many competing factors, such as steric effects, inter- and intra- molecular bonding,
and interactions between neighbouring groups. In previous KEMS studies where direct
comparisons have been made between the Psat of similar compounds this was done in the
solid state [13,14]. In this work the comparisons will be done for Psat

L rather than Psat
S as

Psat
L is more often used in models and is what is predicted by GCMs allowing for easier

comparisons to take place.
For the direct comparisons between compounds the key factors are, in order of appar-

ent importance, if the compounds are capable of forming H-bonds, to what extent these
H-bonds are intermolecular vs. intramolecular [14], and if no H-bonds are present, the αm
of the compound. Previous studies have found a strong correlation between αm and Psat

for compounds whose primary interactions are dispersive in nature [40–42].
For compounds that are capable of forming H-bonds, the relative positioning of the

functional groups is an important factor in determining the potential strength of these H-
bonds, and by extension Psat. Through the inductive and resonance effects the positioning
of the functional groups can affect the partial charge on the phenolic carbon and the more
positive this value the stronger the H-bonds formed, assuming no other effects such as
steric hindrance occur. The phenolic carbon of an aromatic compound is shown in Figure 1.
This is discussed in more detail in Shelley at el. (2020) [14].

For compounds that are not capable of forming H-bonds there appears to be a rela-
tionship between Psat and the polarisability of the compound. This relationship has been
investigated in work done by Staikova et al. (2004, 2005) and Liang and Gallagher (1998).
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This relationship between Psat and αm is strongest for non-polar compounds, gets weaker
the more polar the compound of interest becomes, and is weakest for compounds capable
of forming H-bonds. The strong correlation between αm and Psat for nonpolar hydrocar-
bons is consistent with the fact that αm is related to the dispersion forces, which are the
main component of the intermolecular forces for nonpolar compounds [43]. The poorer
performance for polar compounds such as ketones can be explained by the permanent
dipoles of these compounds reducing the chance of instantaneous dipoles forming, which
are the basis of dispersion interactions.
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4.2.1. H-Bonding Compounds

Looking first at the compounds capable of H-bonding Figure 2 shows a plot of Psat
L

vs. partial charge. In general, as the partial charge of the phenolic carbon increases Psat
L

decreases.
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Looking at Figure 2 it is obvious that o-vanillin is an outlier. o-Vanillin has a Psat
L

greater than many of the non H-bonding compounds looked at in this study. o-Vanillin
can be directly compared to its isomers, vanillin and isovanillin, and when looking at
the structures of these three compounds the reason for o-vanillin’s larger Psat

L becomes
obvious. Due to the relative positioning of the functional groups around the aromatic
ring o-vanillin can form an intramolecular H-bond between the H of its phenol group



Atmosphere 2021, 12, 397 11 of 18

and O of its aldehyde group, whereas this is not possible for vanillin and isovanillin, as
shown in Figure 3. If intramolecular H-bonding dominates, then very little intermolecular
H-bonding can occur, leading to an increase in Psat

L . Whilst it is possible for vanillin and
isovanillin to form internal H-bonds between the phenol and methoxy groups, it has been
shown both theoretically [44] and experimentally [45] that these intramolecular H bonds
are weak and the H-bonding is dominated by intermolecular H-bonding.
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Figure 3. Intramolecular H-bonds of o-vanillin, vanillin and isovanillin. Dashed line illustrates H-bond.

4-hydroxybenzaldehyde can be directly compared to 3-hydroxybenzaldehyde, 3-
ethoxy-4-hydroxybenzaldehyde and vanillin, with 4-hydroxybenzaldehyde having a lower
Psat

L and larger partial charge of the phenolic carbon than each of these compounds, match-
ing the expected trend as can be seen in Figure 2.

Direct comparisons can also be made between vanillin and 3-ethoxy-4-hydroxybenzaldehyde,
with the difference between the two compounds being that the methoxy group of vanillin
was replaced with an ethoxy group. Vanillin and 3-ethoxy-4-hydroxybenzaldehyde have
almost identical partial charges of their respective phenolic carbons (0.245 vs. 0.244)
however the Psat

L of 3-ethoxy-4-hydroxybenzaldehyde is almost double that of vanillin’s.
This can be explained by the steric hindrance around the phenol group caused by the free
rotation of the ethoxy group in 3-ethoxy-4-hydroxybenzaldehyde inhibiting the formation
of intermolecular H-bonds leading to a higher Psat

L , shown in Figure 4.
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2,5-dihydroxybenzaldehyde is a more complex compound to look at as it contains
multiple H-bond donors and can form both inter and intramolecular H-bonds. 2,5-
dihydroxybenzaldehyde can be compared directly to 3-hydroxybenzaldehyde. Despite 2,5-
dihydroxybenzaldehyde being capable of forming two H-bonds compared to



Atmosphere 2021, 12, 397 12 of 18

3-hydroxybenzaldehydes one, the Psat
L is not significantly lower as shown in Figure 2.

Whilst 2,5-dihydroxybenzaldhyde can form two H-bonds one of these, as shown in Figure 5,
is dominated by intra molecular H-bonding. The other hydroxy group has a lower par-
tial charge on the phenolic carbon than 3-hydroxybenzaldehyde. So overall, whilst 2,5-
dihydroxybenzaldehyde can form two H bonds, one of these is weaker than the one in
3-hydroxybenzaldehyde and the other is dominated by intramolecular H-bonding.
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Figure 5. Intramolecular H-bonding of 2,5-dihydroxybenzaldehyde.

Isovanillin can be directly compared to vanillin and 3-hydroxybenzaldehdye and
appears to be another outlier. Isovanillin possesses both a lower Psat

L and a lower partial
charge of the phenolic carbon than both vanillin and 3-hydroxybenzaldehdye.

4.2.2. Non H-Bonding Compounds

Next, looking at the compounds that are not capable of H-bonding Figure 6 shows a
plot of Psat

L vs. αm. In general, as αm increases Psat
L decreases.
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Figure 6. Psat
L vs. αm for the compounds not capable of forming H-bonds. Error bars are ±75%.

Terephthalaldehyde can be directly compared to 4-dimethylaminobenzaldehyde
and 4-diethylaminobenzaldehyde. For these three compounds as αm increases Psat

L de-
creases as expected. 2,3,4-trimethoxybenzaldehyde can be directly compared to 2,4-
dimethoxy-3-methylbenzaldehyde and 3,4-dimethoxybenzaldehyde. Going from 2,3,4-
trimethoxybenzaldehyde to 2,4-dimethoxy-3-methylbenzaldehyde reduces αm and in-
creases Psat

L as expected. 3,4-dimethoxybenzaldehyde can be directly compared to 3-ethoxy-
4-methoxybenzaldehyde and the trend goes as expected with an increase in αm and a
decrease in Psat

L . Methyl 4-formylbenzoate appears to be an outlier with a Psat
L that is
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much greater than expected given its αm. This is difficult to explain and requires further
investigation. 2,6-dimethoxybenzaldehyde appears to be another outlier as it has a Psat

L
that is lower than would be expected given its αm.

4.2.3. Comparisons between H-Bonding and non H-Bonding Compounds

Where direct comparisons between the Psat
L of the H-bonding compounds and non

H-bonding compounds are possible the Psat
L of the H-bonding compounds are always

lower, as would be expected, with the exception of 3-ethoxy-4-hydroxybenzaldehyde and
3-ethoxy-4-methoxybenzaldehyde. The high Psat

L of 3-ethoxy-4-hydroxybenzaldehyde,
relative to the other H-bonding compounds in this study, has already been discussed
and the same explanation can be applied in this instance where the free rotation of the
ethoxy group sterically hindering the formation of H bonds. This leads to the higher
Psat

L .Comparing the Psat
L with Psat

S the absolute ordering of the measured Psat changes for
some of the compounds. Only two of these changes in order affect the previous discussion.
These are 3-ethoxy-4-hydroxybenzaldehyde and 3-ethoxy-4-methoxybenzaldehyde, and
3-hydroxybenzaldehyde and 2,5-dihydroxybenzaldehyde. When accounting the quoted
errors Psat (±75% for sub-cooled liquid and ±40% for solid state [25]) neither of these
changes are significant.

4.3. Comparisons with Estimations from GCMs

In Figure 7 the experimentally determined Psat
L of the benzaldehydes are compared to

the predicted values of several GCMs. The values used in Figure 7 are included in Table
S1. These GCMs are SIMPOL [8], the Nannoolal et al. method [6], and the Myrdal and
Yalkowsky method [7]. The Nannoolal et al. method [6] and the Myrdal and Yalkowsky
method [7] are both combined methods which require a boiling point to function. For
most SOAs the experimental Tb is unknown, therefore a boiling point GCM is required
to estimate Tb. In this work the Nannoolal et al. method [36] and the Stein and Brown
method [38] are used to estimate Tb. Table 5 shows the mean difference in orders of
magnitude between the experimental Psat

L and the predicted Psat
L .
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Table 5. Table showing the average difference between the experimental Psat
L and the predicted Psat

L . N_VP is the Nannoolal
et al. method [6], MY_VP is the Myrdal and Yalkowsky method [7], N_Tb is the Nannoolal et al. method [36], SB_Tb is the
Stein and Brown method [38].

N_VP_N_Tb N_VP_SB_Tb MY_VP_N_Tb MY_VP_SB_Tb SIMPOL

Average difference
(orders of magnitude) 0.60 0.82 0.77 0.98 −0.20

Overall SIMPOL [9] shows the best agreement between the experimental and esti-
mated Psat

L . with a mean difference of −0.20 orders of magnitude with a standard error
of 0.203. Eleven of the 17 compounds investigated had estimations within one order of
magnitude of the experimental values with the exceptions being methyl 4-formyl ben-
zoate, o-vanillin, 2,3,4-trimethoxybenzaldehyde, 3-ethoxy-4-hydroxybenzaldehyde, 2,5-
dihydroxybenzaldehyde and 4-hydroxybenzaldehyde. There appears to be no particular
pattern as to which compounds are estimated within one order of magnitude and which are
not, as compounds with relatively high, middling, and low Psat

L , as well as both compounds
that can, and cannot, be H-bonds are present in this list. All compounds were estimated
within two orders of magnitude. SIMPOL [9] has a tendency to underestimate the Psat

L
when applied to the benzaldehydes in this study.

Of the two Tb methods used, the Nannoolal et al. method [36] performed better
than the Stein and Brown method [38] when used in conjunction with both the Nannoolal
et al. method [6] and the Myrdal and Yalkowsky method [7]. This is the reverse of
what was observed in the work by Shelley et al. [14] looking at nitroaromatics, including
nitrobenzaldehydes, where the Stein and Brown method [38] outperformed the Nanoolal
et al. method [36]. This suggests that the Stein and Brown method performs better
for compounds containing nitro compounds than the Nannoolal et al. method, but the
Nannoolal et al. method is better for benzaldehydes.

The Nannoolal et al. method [6] when used in conjunction with the Nannoolal
et al. method [36] has the next best performance when compared to the experimental
values in this work. The mean difference is 0.60 orders of magnitude and a standard
error of 0.187. 12 of the 17 compounds investigated had estimations within one order of
magnitude. The exceptions were 4-dimethylaminobenzaldehyde, 3-hydroxybenzaldehyde,
4-diethylaminobenzladehyde, 2,6-dimethoxybenzaldehyde and 4-hydroxybenzaldehyde.
Unlike with SIMPOL [8] where there appeared to be no apparent pattern, for the Nannoolal
et al. method [6] the larger differences between experimental and predicted value occur for
the compounds with a lower experimental Psat

L . This is behaviour is common in GCMs as
the associated errors of measuring low Psat

L increases as Psat
L falls, and differences between

different techniques becomes more pronounced. The estimated Psat
L of all compounds

were estimated within 2 orders of magnitude of the experimental values. Whilst the
Nannoolal et al. method [6] predicts more of the compounds within one order of magnitude
than SIMPOL [8], it still on average, has less accurate predictions. The Nannoolal et al.
method [6] has a tendency to overestimate the Psat

L .
The Myrdal and Yalkowsky method [7] when used in conjunction with the Nannoolal

et al. method [36] has a mean difference of 0.77 orders of magnitude with a standard error
of 0.145. Only 9 of the 17 compounds investigated have Psat

L within one order of magnitude
of the experimental values. Similar to the Nannoolal et al. method. [6] the majority of
the compounds that have a difference of more than 1 order of magnitude between the
experimental and predicted Psat

L are the compounds with the lower experimental Psat
L . The

estimated Psat
L of all compounds were estimated within two orders of magnitude of the

experimental values.
When separating the compounds in this study into two groups, those that have the

potential to act as H-bond donors and those that do not, the performance of the GCMs
changes. For the non H-bonding compounds the mean difference reduces for the Nannoolal
et al. method [6] and SIMPOL [8] and increases for the Myrdal and Yalkowsky method [7].
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For the H-bonding compounds the reverse is true. These differences are not particularly
large, as shown in Table 6.

Table 6. Mean order of magnitude difference between the experimental and predicted Psat
L . N_VP is the Nannoolal et al.

method [6]. MY_VP is the Mydral and Yalkowsky method [7] N_Tb is the Nannoolal et al. method [36]. SB_Tb is the Stein
and Brown method [38].

Compounds N_VP_N_Tb N_VP_SB_Tb MY_VP_N_Tb MY_VP_SB_Tb SIMPOL

This study 0.60 0.82 0.77 0.98 −0.20
Non H-bonding—this study 0.58 0.81 0.80 1.02 −0.15

H-Bonding—this study 0.61 0.83 0.72 0.93 −0.24
Nitrobenzaldehyde from
Shelley et al. (2020) [14] 3.18 2.50 3.17 2.46 0.29

In Shelley et al. (2020) [14] the order of magnitude differences between the experimen-
tal and predicted Psat

L were looked at for a range of nitroaromatic compounds, including
nitrobenzaldehydes. With the exception of SIMPOL [8] the other GCMs struggled with
predicting Psat

L within 2.5 orders of magnitude. The nitrobenzaldehyde data from Shelley
et al. (2020) [14] is compared to the benzaldehyde data from this work in Table 6. SIMPOL
has the best agreement with the benzaldehydes in this work and the nitrobenzaldehydes
from previous work with both agreeing well within one order of magnitude (−0.20 and
0.29 orders of magnitude respectively). For the Nannoolal et al. method [6] and the Myrdal
and Yalkowsky method [7], the differences between the benzaldehydes and the nitroben-
zaldehydes are much larger going from under 1 order of magnitude to 2.4 to 3.2 orders of
magnitude, depending on the Tb estimation method used. This shows that the Nannoolal
et al. method [6] and the Myrdal and Yalkowsky method [7] especially struggle with
compounds containing nitro groups, compared to compounds that do not contain a nitro
group.

Based on differences between the experimental and predicted Psat
L from the study the

authors recommend the use of SIMPOL [8] for benzaldehydes over the other methods
investigated. However, users should still be aware that the errors for individual predictions
can be much larger than the average and SIMPOL’s tendency to underpredict Psat

L for
benzaldehydes.

Other previous studies of the Psat
L of multifunctional aromatic compounds such as

those by Bannan et al. (2017) [24] and Dang et al. (2019) [13] also showed much larger
differences between the experimental Psat

L and the predicted Psat
L . It is now important to

understand the sensitivity of modelling studies to the type of uncertainty in Psat
L that are

reported in studies of this type.

5. Conclusions

Experimental values for the Psat
S and Psat

L have been obtained using KEMS and DSC
for several atmospherically relevant benzaldehydes and other benzaldehydes of similar
functionalities.

The differences in Psat have been explained chemically, with the strength of H-bonding
being the most important factor where present, and the molecular polarisability being
the most important factor when H-bonding is not present. Whilst these are generally
the most important factors, they are not the only factors in play. Steric effects caused by
the presence of functional groups can also have a major impact as shown by 3-ethoxy-4-
hydroxybenzaldehdye. To further investigate the impacts of H-bonding, inductive and
resonance effects, and steric effects on Psat more compounds need to be investigated, with
select compounds being chosen to probe these effects.

The predictive models consistently predicted the Psat
L to within two orders of magni-

tude of the experimental Psat
L values. The predictive models predict the Psat

L of benzaldehy-
des much more accurately than those of other aromatic compounds such as, nitroaromatic
compounds [13,14,24] and dihydroxynaphthalenes [24]. The new data presented here
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should support studies trying to ascertain the role of benzaldehydes on aerosol growth
and human health impacts.
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