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Abstract: In this paper, we report the results obtained from one year of real-time measurement (i.e., from
December 2019 to November 2020) of atmospheric black carbon (BC) under a rural environment in
Qingdao of Northeastern China. The annual average concentration of BC was 1.92± 1.89 µg m−3.
The highest average concentration of BC was observed in winter (3.65± 2.66 µg m−3), followed by
fall (1.73 ± 1.33 µg m−3), spring (1.53 ± 1.33 µg m−3), and summer (0.83 ± 0.56 µg m−3). A clear
weekend effect was observed in winter, which was characterized by higher BC concentration
(4.60 ± 2.86 µg m−3) during the weekend rather than that (3.22 ± 2.45 µg m−3) during weekdays.
The influence of meteorological parameters, including surface horizontal wind speed, boundary layer
height (BLH), and precipitation, on BC, was investigated. In particular, such BLH influence presented
evidently seasonal dependence, while there was no significant seasonality for horizontal wind speed.
These may reflect different roles of atmospheric vertical dilution on affecting BC in different seasons.
The 4BC/4CO ratio decreased with the increase of precipitation, indicative of the influence of
below-cloud wet removal of BC, especially during summertime where rainfall events more frequently
occurred than any of other seasons. The bivariate-polar-plot analysis showed that the high BC
concentrations were mainly associated with low wind speed in all seasons, highlighting an important
BC source originated from local emissions. By using concentration-weighted trajectory analysis, it
was found that regional transports, especially from northeastern in winter, could not be negligible
for contributing to BC pollution in rural Qingdao. In the coronavirus disease 2019 (COVID−19) case
analysis, we observed an obvious increase in the BC/NO2 ratio during the COVID-19 lockdown,
supporting the significant non-traffic source sector (such as residential coal combustion) for BC in
rural Qingdao.

Keywords: black carbon; seasonal variations; meteorological effects; COVID-19; rural site; Qingdao

1. Introduction

Black carbon (BC), generated from incomplete combustion processes of biomass or
fossil fuels, is an important component of atmospheric fine particulate matter (PM2.5, aero-
dynamic equivalent diameter less than 2.5 µm) [1–3]. BC not only directly absorbs solar
radiation, generating direct radiative forcing, but it can also sever as cloud condensation
nuclei (CCN) affecting cloud processes [4] and deposit on snow and ice surfaces, reducing
their surface albedo [5], leading to indirect radiative forcing. Therefore, BC has a significant
climate effect on both regional and global scales [6], which may be the second most impor-
tant climate warmer only after carbon dioxide (CO2) [2]. Moreover, BC is an important
environmental pollutant that influences the development of pollutants and thus changes
weather conditions [7,8]. It has been proved that BC can play a key role in aerosol-planetary
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boundary layer (PBL) interactions and thereby affect air quality in high BC emission re-
gions, like eastern China [9,10]. BC can also absorb some volatile toxic substances (such as
polycyclic aromatic hydrocarbons PAHs) [11,12] and provide them with oxidation reaction
sites to form more toxic PAHs oxidation derivatives [13,14]. On the other hand, the particle
size distribution of BC generally ranges from 0.01 to 1.0 µm, which are more likely to be
deposited in the human body and cause health effects to the public [15–17]. However, there
is still unknown uncertainty obtained from climate and environment models to evaluate
those BC impacts so far. It is essential to conduct long-term measurement of BC and thereby
investigate its temporal variation characterization to improve our understanding of BC
cycles in the atmosphere and to constrain modeling studies.

As indicated by previous studies, the concentration levels and variations of ambi-
ent BC could be affected by two major factors, i.e., source emissions and mereological
conditions. The sources of BC could present significant regional dependence. For in-
stance, vehicle and industrial emissions are the major sources of BC in urban and suburban
areas [18–20], while the major source of BC in rural areas could be linked to biomass and bio-
fuel combustion [21,22]. BC pollution in China also affects the downwind regions [23–25].
Meteorological conditions also play an important role in BC variations, for instance, plane-
tary boundary layer and winds. Those meteorological can significantly affect the vertical
dispersion and horizontal transport capacity of BC [26–28]. Regional transport can also
enhance BC concentrations in urban and remote areas [29,30]. Typically BC is also subject to
a reduction in concentration due to removal by wet deposition (rainfall and snowfall) [31].
The above results indicate that the variation of BC concentrations in different regions and
the relative contribution of emission sources are influenced by geographical location, mete-
orological conditions, and source sector distributions. Thus, it is critical to understand the
sources and influence of meteorological factors on BC, to better understand the sources and
sinks of BC in the real atmosphere in different regions. To do so, the long-term and highly
time-resolved measurements are basically required to provide a sufficiently observational
dataset being used for the study in these aspects above.

As reported by emission inventory studies, BC emissions increased from 0.87 Tg in
1980 to 1.88 Tg in 2009 over China [32]. Although the relative contribution of residential
sectors to the total BC emissions (82.03% in 1980) has been declining, this BC source sector
is still the major contributor to BC in China (e.g., 42.33% in 2009) [32]. According to
the new BC emissions inventory reported by Peking University, it was pointed out that
residential coal combustion was the largest source sector of BC, followed by residential
biofuel combustion, coke production, and diesel vehicles [33]. Winter heating in northern
China generated large amounts of BC from coal combustion and biomass combustion,
especially in rural areas in the north [29,34–36]. Interestingly, various short-term emission
reduction measures can effectively reduce BC concentrations and improve air quality, such
as the 2008 Beijing Olympics [37] and the 2014 Asia-Pacific Economic Cooperation (APEC)
meeting [38]. Previous studies have shown that the reduction in vehicle emissions directly
resulted in a noticeable BC decrease in urban areas [39,40]. For example, a 44% decrease in
BC changes from 2.30 to 1.29 µg m−3 within the city of Hangzhou following the coronavirus
disease 2019 (COVID-19) lockdown stage [40]. This observation period covers the period
affected by the epidemic, which not only provides an opportunity to identify the source
and composition of BC but also provides a unique scenario to evaluate anthropogenic
emission reduction on ambient BC.

Qingdao is located on the Shandong Peninsula, part of the Bohai Sea Rim urban
agglomeration, and is also one of the top ten container ports in the world. In recent
years, particulate matter has been regarded as one of the main pollution problems in
Qingdao, especially in winter [41–43]. High levels of SO2 and NO2 were also observed in
Qingdao [44]. This is related to the fact that coal is the main energy source in Qingdao,
consuming 12.83 million tons per year, as well as possessing 2.8 million vehicles. Reduced
visibility and air quality are also important effects of BC [45]. The proportion of moderately
or severely polluted days (visibility ≥ 5 km; aerosol optical depth (AOD) > 0.5) ranged



Atmosphere 2021, 12, 394 3 of 19

from 10.77% to 32.79% from 2000 to 2010 [46]. Solid fuel (e.g., biomass fuel combustion) is
an important source of BC for winter heating in the north of China [36,47,48]. Although
clean heating has only been implemented in the rural areas of Qingdao, most areas have
not yet completely adopted clean heating. In the present study, long-term observation
of BC in the Qingdao area to identify its pollution sources and potential pollution areas
will help formulate effective policies to control the quality of control while providing an
effective basis for evaluating the effectiveness of clean heating policies and measures in
rural areas. The objectives of this study are to (1) quantify the temporal characteristics
and mass concentrations of BC; (2) investigate the influence of potential sources and
meteorological conditions on BC; (3) assess feedbacks of BC variations on the COVID-19
lockdown measures.

2. Experiments
2.1. Sampling Sites and Instrumentation

The observation site is located in the northeastern coastal region of China, and the
sampling equipment is deployed on the roof of Qingdao Blue Valley Venture Center
(36.35◦ N, 120.68◦ E) (about 40 m in height, as shown in Figure S1). This observation site is
surrounded by a large number of villages with farmland scattered around. Two busy and
stable traffic-loaded highways are distributed to the west (900 m) and north (1200 m) of
the sampling site. There are a few light industries located in the northwestern part of the
site. One kilometer to the south of the site is AoShan Bay, where the Yellow Sea borders
the mainland. Three kilometers west of the site is a scenic area, such as the Heshan scenic
area. The sampling site represents a typical rural environment with multiple anthropogenic
sources (such as residential, traffic, and industrial sources) in eastern China.

The sampling period was from 30 November 2019 to 30 November 2020. The mass
concentration of BC in the size range of PM2.5 was measured using a multi-angle absorption
photometer (MAAP) (model 5012, Thermo Scientific, USA) with a time resolution of
5 min [49]. Briefly, the basic principle of the instrument is to calculate the real-time
BC aerosol concentration obtained by measuring the extinction of aerosols attached to
the quartz filter. The sampling system was equipped with a PM2.5 cyclone cutter to
remove coarse particles. Aerosols in ambient air enter the instrument system with a
flow rate of 16.7 L min−1 and are deposited on the quartz fiber filter strip. A laser beam
at 670 nm wavelength continuously irradiates the quartz filter strip of the deposited
particles, and then the transmitted and refracted light signals are detected by optical
detectors [50,51]. Compared to conventional BC instruments (e.g., aethalometer) that can
only detect transmitted light, MAAP can detect both scattered and transmitted light from
multiple angles [49] for monitoring BC aerosol concentration with less uncertainty. As
quantification of the MAAP BC mass concentration is converted from light absorption
coefficient measured by filter-based optical methods, we, therefore, note that the BC
concentration in the present study was defined as equivalent BC mass concentration. This
is consistent with the same consideration by previous studies using similar filter-based
optical methods [52]. The instrument was maintained during the sampling period in
strict accordance with the instrument operating instructions. Flow rate, temperature, and
atmospheric pressure were calibrated monthly, cleaning of the cutting head was performed
every two months, timely processing of data for backup, and timely replacement of the
filter tape before it was running out. The flow rate was calibrated via the flow rate
calibration submenu on the instrument panel in conjunction with the standard flow meter.
The difference between the measured flow rate of the standard flow meter and the value
measured by MAAP was within 10%. The difference between the measured value of the
temperature sensor (air pressure sensor) for MAAP and the standard instrument value
was within ± 2 ◦C (± 10 mm Hg). We are missing data from 11 February to 19 March 2020
and 3 June to 19 June 2020 due to instrument failure, COVID-19 pandemic effects, and
equipment maintenance during the sampling period.
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Hourly concentration data of other air pollutants, including carbon monoxide (CO),
nitrogen dioxide (NO2), sulfur dioxide (SO2), and PM2.5, were accessed from the air quality
monitoring site. Meteorological data, such as temperature (T), relative humidity (RH), wind
speed (WS), wind direction (WD), visibility, and precipitation, were downloaded from
the nearby National Meteorological Information Center (http://www.nmic.cn/, accessed
on 18 March 2021). Boundary layer height data with 3 h resolution were obtained from
NOAA’s reanalysis data processing (ftp://arlftp.arlhq.noaa.gov, accessed on 18 March
2021). Pronounced seasonal variations were observed for most meteorological parameters
and general air pollutants.

2.2. Air Mass Back-Trajectory Analysis

To explore the potential geographic origins of BC at the receptor site, the hybrid
single-particle Lagrangian integrated trajectory HYSPLIT model (version 4.9) was applied.
Air mass trajectory data were obtained from the global data assimilation system (GDAS)
with a horizontal resolution of 1◦ × 1◦ (ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1/,
accessed on 18 March 2021). The 48 h backward trajectories at hourly intervals were plotted
at an altitude of 50 m throughout the observation period. The concentration-weighted
trajectory (CWT) analysis method is based on the identification of potential sources of
BC and the weighted average of trajectories of relevant concentrations to identify the
contribution of potential source regions to BC [53,54]. CWT was calculated with ZeFir,
a programming plug-in based on Igor Pro (Wavemetrics, USA). The potential source
regions around the receptor are divided into ijth grid arrays. CWT is a function of the BC
concentration and time the trajectory corresponds to in the ijth grid, defined as follows:

Cij =
1

∑M
l=1 τijl

M

∑
l=1

Clτijl

where Cij is the average weight concentration in ijth grid, l indicates the trajectory, M is the
total number of trajectories, Cl is the concentration corresponding to trajectory l, and τijl is
the elapsed time of trajectory l in ijth grid.

3. Results and Discussion
3.1. Concentration Variations of BC
3.1.1. Overview of BC Concentrations

Figure 1 shows the time series of meteorological parameters and air pollutants (includ-
ing BC). Meteorological elements include WS, BLH, RH, and precipitation, of which annual
average (±1σ) values were 2.4 (±1.5) m s−1, 451 (±325) m, 70 ± 23% and 2.2 ± 4.6 mm, re-
spectively. During the entire observation period, the average concentration (concentration
range) of gaseous pollutants CO, SO2 and NO2 were 0.5 ± 0.3 mg m−3 (0.1–3.1 mg m−3),
5.8 ± 3.3 µg m−3 (1.0–50.0 µg m−3), and 15.7 ± 10.5 µg m−3 (2.0–94.0 µg m−3), respectively
(Figure 1c,d). The mean concentration of PM2.5 was 30.4 (±27.6) µg m−3, where the mini-
mum and maximum values are 278 µg m−3 and 3 µg m−3, respectively. During the entire
observation period, the hourly mass concentration (mean ± 1σ) of BC varies from 0.02 to
12.08 µg m−3, with an annual average of 1.92 ± 1.89 µg m−3. The frequency diagram of
the 5-min BC concentration distribution followed a typical lognormal distribution pattern
(Figure S2a). The concentration (0.55 µg m−3) with the highest frequency can be regarded
as the most representative under the atmospheric condition in the region [55]. These
results indicated that the level of BC concentration in rural areas of Qingdao was at the
middle level.

As shown in Figure 2, we summarized the results of long-term BC measurements
from some previous studies at other locations in East Asia. Compared with other ru-
ral areas, the average BC concentrations in rural Qingdao were much lower than those
in Beijing of China [34] and Delhi of India [27] and slightly higher than those in Maha-
baleshwar of India [18] and Byeongcheon of Korea [56]. BC concentrations in both urban
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areas [18,19,26,36,57–62] and suburban areas [47,55] were higher than those in rural Qing-
dao areas. The BC concentrations in the remote background areas [24,63,64] were much
lower than those in the rural areas of Qingdao. Those comparisons may indicate that
ambient BC presents distinct regional characteristics, which would be due to different BC
emission intensity and some influence by different meteorological conditions.

1 
 

 Figure 1. Time series of (a) wind direction (WD) colored by wind speed (WS), boundary layer height
(BLH), (b) relative humidity (RH) and precipitation; mass concentrations of (c) SO2, NO2, (d) CO,
PM2.5, and (e) atmospheric black carbon (BC) during the whole observation in Qingdao. Three trans-
parent colors represent the three periods regarding the COVID-19 epidemic for further discussion.
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Figure 2. A summary of annual mean values of BC (µg m−3) obtained from the present study and
previous long-term measurements in East Asia. The colors of the solid circles represent different
types of sampling sites, including urban, suburban, rural, and remove, and the size of the data points
refers to the mass concentration of BC. More descriptions of those observations are given in Table S1.

3.1.2. Seasonal Variations

Figure 3 shows clear seasonal variations of BC in rural Qingdao. The highest aver-
age concentration of BC was observed in winter (3.65 ± 2.66 µg m−3) and followed by
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fall (1.72 ± 1.33 µg m−3), spring (1.53 ± 1.33 µg m−3), and summer (0.83 ± 0.56 µg m−3).
Such a seasonal variation pattern is similar to the seasonal pattern observed in other sam-
pling sites in different regions, such as Hefei [58], Nanjing [55], and Indian Delhi [27].
Although the observation sites in rural Qingdao and urban Shanghai are both coastal
cities (both belong to the monsoon region), the seasonal pattern of BC in Shanghai [19]
(winter > summer > spring > fall) is different from that in rural Qingdao. BC concentra-
tions observed in rural Beijing and urban Spain both showed a seasonal variation of
fall > winter > spring > summer, which was not the same as in rural Qingdao, most likely
due to increased biomass burning during the harvest season [65]. As reported by previous
studies, the seasonal variation of atmospheric BC could be driven by both emissions [32,33]
and meteorological conditions [26,31]. These results indicate that the contribution of the
sources of BC in rural Qingdao was uniquely seasonal, while the magnitude of the influ-
ence of meteorological factors (WS, WD, BLH, and precipitation) on BC varied between
seasons. The ratios of the mean BC concentrations in winter to the mean concentrations in
other seasons (spring, summer, and fall) were 2.4, 4.4, and 2.1, respectively. This extreme
seasonal difference is consistent with that observed in rural sites in Spain [66]. The BC
concentrations corresponding to the maximum frequencies in different seasons were winter
(1.29 µg m−3), spring (0.61 µg m−3), summer (0.43 µg m−3), and fall (0.76 µg m−3), as
shown in Figure S2b. The peak and trough of the monthly variation of BC concentrations
occurred in January (3.88 µg m−3) and August (0.76 µg m−3), respectively (In Figure 3b).
The pattern of monthly BC concentration has not exhibited a clear U-shaped distribution.
The lowest temperatures in January led to an increase in residential coal and biomass burn-
ing (the highest concentration of SO2 and CO) and an increase in vehicle traffic emissions
near the Spring Festival (the higher level of NO2), resulting in the highest concentrations in
January. The concentrations of gaseous pollutants (CO, SO2, and NO2) and meteorological
factors (WS and BLH) were not the lowest in August, but the concentrations of BC and
PM2.5 were both the lowest in August (in Figure 1). This may be the reason for the highest
total precipitation and the highest frequency of precipitation in August (in Figure 1b) and
the significant effect of wet deposition on BC scavenging, which is consistent with the
findings in rural Beijing [34]. CO, a gaseous pollutant from incomplete combustion, showed
the same monthly variation as BC, and PM2.5 and BC show the same peak and trough
in the monthly pattern, which indicated that BC and combustion-generated atmospheric
pollutants have common sources from Qingdao and its surrounding areas. These results in-
dicate that the increase in local and regional anthropogenic primary emissions and adverse
meteorological conditions lead to serious pollution of BC in winter [19,36,62], combined
with the seasonal distribution pattern meteorological parameters and gas pollution.
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Figure 3. Box plots for the BC mass concentration in different seasons (a) and month (b). In each
symbol, the whiskers above and below box mark the 90% and 10% percentiles, respectively; the
upper and lower edge of the boxes represent the 75% and 25% percentiles, respectively; and the lines
and circles inside the boxes denote median and mean values, respectively.

Figure S3 shows the correlation between PM2.5 and BC was strong (r = 0.71), BC
was scattered in winter. Moreover, the seasonal and monthly variation trends of BC and
PM2.5 are consistent. These results indicated that BC and PM2.5 have common sources,
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but the contribution of the sources may be slightly different in four seasons. Therefore,
to further investigate the distribution pattern of BC under different PM2.5 concentrations
in the four seasons, the PM2.5 concentrations were divided into five bins (0–35 µg m−3,
35–75 µg m−3, 75–115 µg m−3, 115,150 µg m−3, >150 µg m−3). Figure 4 shows the box
plot of BC concentration and mass ratio of BC/PM2.5 in five bins. As the concentration
of PM2.5 increased (the data bins were based on the limits of different air pollution levels
in China), the average BC concentration gradually increased from 2.07 to 8.3 µg m−3 in
winter, from 1.14 to 3.3 µg m−3 in spring, from 0.77 to 1.53 µg m−3 in summer, and from
1.45 to 3.58 µg m−3 in fall. However, the mean ratio of BC/PM2.5 gradually decreased from
10.2% to 4.7% in winter, from 6.0% to 4.1% in spring, from 7.7% to 3.3% in summer, and
from 11.6% to 4.0% in fall. It is well known that PM2.5 was a complex mixture of primary
and secondary species, and BC aerosol was a typical primary pollutant. The decreasing
proportion of BC in PM2.5 may be indicated that chemically generated secondary species
play a more important role in the heavier pollution of PM2.5. This conclusion was consistent
with the results found in the Nanjing area, but further verification is needed through the
physical and chemical properties of PM2.5.
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3.1.3. Diurnal Variation

As shown in Figure S4a, the diurnal variation of BC was similar for all four sea-
sons except for summer, which showed a clear double peak with peaks at 7:00–8:00 and
18:00–19:00, respectively. The increasing BC concentrations in the morning and evening
were mainly attributed to the increase of traffic emissions and solid fuel combustion
(peaked in NO2, CO, and SO2 during the corresponding periods, as shown in Figure S4b,d),
and meteorological factors (BLH and WS were the lowest values, as shown in Figure S5).
After sunrise, with enhanced convective activity, BLH and WS rose rapidly (e.g., Figure S5),
and better diffusion conditions caused BC concentrations to decrease gradually, reaching a
minimum at 14:00–15:00. There was no obvious peak in summer, and BC only had a small
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high value at 6:00, consistent with that in an urban-rural fringe area of Beijing [34], and the
diurnal pattern of BC was much stable in summer compared to the rest of the season. This
was not similar to the daily variation in summer in some areas [19,36,57,58]. Moreover,
the summer BC did not show the same morning and evening peaks as NO2 and was not
quite the same as the daily variation of CO and SO2. However, the daily variation patterns
of WS and BLH were similar throughout the four seasons (Figure S5b,c). The reason
for this unique daily variation in summer may be due to the higher frequency and total
amount of precipitation in summer, which had a significant wet deposition removal effect.
Compared to other seasons, the daily variation of BC in winter was most similar to that of
gaseous pollutants (Figure S4b,d), while horizontal and vertical dispersion conditions were
moderate. However, the difference between daily maximum and minimum concentrations
was greatest in winter (2.75 µg m−3), followed by fall (1.41 µg m−3), spring (1.20 µg m−3),
and summer (0.41 µg m−3). The diurnal variation of BC in rural areas of Qingdao had
certain seasonal differences, which may be due to the differences in emission intensity and
meteorological conditions of the sources associated with BC in each season.

3.1.4. Weekend Effect

Figure 5a describes the differences in BC concentrations between weekdays and week-
ends in the four seasons. The BC concentrations on weekends were significantly higher
than that on weekdays in winter, while the weekend and weekday BC concentrations were
essentially comparable for the rest of the seasons. Similarly, the weekday and weekend
BC/CO and BC/NO2 showed similar patterns in different seasons (Figure 5b,c). The
diurnal variation of BC on weekends and weekdays in winter was similar, while the BC
concentration on weekends was overall higher than that on weekdays (Figure S6). This
was contrary to the result shown for urban areas [55,66,67], which was that the BC concen-
trations were higher on weekdays than that on weekends, implying unique anthropogenic
emission regulation of BC in winter. There were two possible reasons to explain such a
phenomenon. First, anthropogenic emissions (e.g., coal and biomass burning) increased
during wintertime heating weekends in rural areas nearby the sampling site. This could be
supported by the evidently higher concentrations of a biomass burning tracer, i.e., C2H4O2,
on weekend winter than that on weekdays (Figure S7). In addition, the PM2.5 source appor-
tionment analysis in Qingdao showed that coal and biomass combustion could contribute
41.53% to the total PM2.5 during the wintertime [43], supporting a significant contribution
from these solid fuels combustion sources to ambient BC in Qingdao. Second, the area near
the sampling site is a new type of tourist area (Heshan Scenic Area to the west) with hot
springs and farmhouses. The short weekend trip leads to both increase in traffic emissions
(20.52% contribution from traffic in Qingdao PM2.5 winter source analysis [43]) and a
certain extent in solid fuel consumption. Those results could suggest the importance of
such weekend effect on ambient BC concentrations due to distinct residential coal and/or
biomass burning emissions between weekends and weekdays.
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3.2. Influence of Meteorological Parameters on BC
3.2.1. Influence of Wind Speed and Boundary Layer Height

Figure 6 shows the relationships between BC and WS and BLH in the four seasons,
respectively. The average BC concentration gradually decreased with the increase of
WS from 4.56 to 1.67 µg m−3 in winter, from 1.90 to 0.54 µg m−3 in spring, from 1.0 to
0.41 µg m−3 in summer, and from 1.84 to 0.67µg m−3 in fall, respectively. Similarly, the
BC concentration gradually decreased with the increase of BLH from 5.54 to 1.55 µg m−3

in winter, from 1.86 to 0.79 µg m−3 in spring, from 0.99 to 0.60 µg m−3 in summer, and
from 2.46 to 0.67 µg m−3 in fall, respectively. These results could support the important
influence of these two meteorological factors, i.e., WS and BLH, on BC concentrations
in the atmosphere. To further explore the relationship between the relative change rates
of BC with WS and BLH, the BC was normalized by dividing the value of each WS or
BLH-dependent bin by the average BC concentration observed in the first bin. As shown
in Figure 6, the relative change rate of BC presented decreasing trends as the increase of
WS in all seasons. These trends were highly consistent with each other in each season,
suggesting insignificant seasonality of such the horizontal WS influence. Figure 6d shows
the relative change rate of BC against BLH, which, however, was characterized by strong
seasonal differences for their corresponding trends in different seasons. Indeed, the most
rapid decrease in the relative change rate of BC was observed in winter among the four
seasons, suggesting a more effective effect of vertical dilution and diffusion on BC in winter
rather than in each of any other seasons. The results above imply that the seasonality
of atmospheric diffusion and dilution effect on surface BC might be derived by the BLH
variation in rural Qingdao.
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Figure 6. Mass concentration and normalized BC values as a function of (a,c) WS range and (b,d) BLH, respectively.

3.2.2. Influence of Precipitation

BC and CO are both mainly generated from the incomplete combustion of liquid fossil
fuels or solid biomass and have source homology in intense anthropogenic regions. Because
the atmospheric lifetime of BC (about one week) is shorter than that of CO (1 month),
wet removal can remove BC, but not CO. Therefore, the 4BC/4CO ratio, minimize
influence atmospheric dilution, has been often used to investigate the influence of wet
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scavenging on surface BC [24,68,69]. The delta symbol (4) represents the difference
between observed and background concentrations. The background concentration of
BC was deemed to be zero, and the background concentration of CO was determined
as 1.25th percentile of the CO concentrations for each month, which is consistent with
the definition adopted in previous studies [25,70,71]. The background concentrations
of CO for each month were 0.3 (December), 0.3 (January), 0.2 (February), 0.1 (March),
0.2 (April), 0.3 (May), 0.2 (June), 0.1 (July), 0.1 (August), 0.2 (September), 0.2 (October), and
0.3 (November) mg m−3, respectively.

The overall mean of the observed4BC/4CO ratio in the presence of precipitation
(0.0041 ± 0.0036) was lower than that in the absence of precipitation (0.0071 ± 0.0057).
As it could be assumed that CO was not affected by precipitation, this result could overall
indicate that BC was lost through the below-cloud wet deposition. Such a result is consistent
with some previous findings [24]. From the red fitting line in Figure 7, it can be seen that
4BC/4CO decreases gradually with increasing precipitation. The 4BC/4CO ratio
decreases rapidly when precipitation is in the range of 0–5 mm, with a decrease of 43.5%
compared to the average value of the first interval (the first black circle represents the
value 0.0023 in Figure 7). The average 4BC/4CO ratio was close to 0.0011 when the
precipitation is larger than 10 mm, reflecting a flat trend for the relationship of4BC/4CO
ratio against precipitation. Compared to the average value of the starting interval, the
4BC/4CO ratio decreased by 52%. The results highlight the importance of the below-
cloud wet removal effect on surface BC. The 4BC/4CO ratio had the highest number
of data points in summer (52.4%), followed by spring (19.6%), winter (16.0%), and fall
(11.8%), respectively. Combined with the seasonal distribution pattern of BC concentration
(in Section 3.1.2), it was found that wet deposition in summer had a significant removal
effect on the BC concentration in rural Qingdao.
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3.3. Source Analysis of BC

Bivariate polar plots obtained from wind analysis present the combined effect of
wind speed and direction on air pollutants at a receptor site, which could provide an
effective way to assess the possible geographic origins of these pollutants [72]. As shown in
Figure 8, the high BC concentrations are observed associated with low wind speeds (mostly
less than 2 m s−1) in all seasons, yet with different wind direction sectors in different
seasons. For example, there was no evident wind direction dependence in winter, while
the high BC concentrations were linked to winds from the south in spring, southwest in
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summer, and north in fall, respectively. Those results suggest that local-scale emissions
could be a major contributor to ambient BC concentrations under the relatively stable
atmospheric conditions (e.g., WS < 2 m s−1) observed at the sampling site. At high wind
speed conditions (>6 m s−1), relatively high BC concentration was observed in the south
in spring and summer. The mean wind speed in fall was much lower than the rest of the
season, and higher BC concentrations were observed in the north when the wind speed was
>4 m s−1. High north-northwest wind speeds (>6 m s−1) in winter were accompanied by
higher mean mass loading of BC (>2 µg m−3) than the rest of the season. The above results
suggest that regional transport is an important source of BC throughout the observation
period. It was worth mentioning that in the south of all four seasons, higher mass loading of
BC was observed at wind speeds > 4 m s−1, especially in spring and summer (WS > 6 m s−1).
However, one kilometer south of the observation site is close to the ocean, which means
that ship emissions were also an important source of BC. This result is consistent with
the fact that ship emissions were also an important contributor to the BC of Qingdao in
previous studies [73,74].
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Figure 9 shows the seasonal distribution patterns of the CWT BC concentrations
observed at this receptor site of rural Qingdao. These results were obtained from the
CWT analysis to identify possible geographic origins. It should be noted that the observed
BC data points were filtered out to minimize the possible influence of some trajectories
linking to low wind speed (e.g., WS < 2 m s−1). As shown in Figure 9a,b, the high CWT
BC concentrations were clearly distributed in central and western Shandong provinces,
southeast of Hebei provinces, western Bohai Sea (Tianjin port) during winter and fall. Those
high potential source areas to Qingdao could be mainly caused by residential and industrial
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solid fuel (e.g., coal) combustion [32,33]. Interestingly, high CWT-BC concentration from
the region of western Bohai Sea could be partly explained by considerable contribution
by the ship emissions sector [73]. This is consistent with wind analysis for BC during the
two seasons of winter and fall, which showed relatively high concentrations at high wind
speed originated from northwestern sectors (Figure 8). Overall, these results may highlight
some potential contributions of regional transport for those BC-rich emission regions to
Qingdao. As shown in Figure 9b, the high CWT-BC concentrations in spring were mainly
associated with two distinct regions, i.e., south-southwest (over northwestern Jiangsu and
central-eastern Anhui Provinces) and south (over the Shanghai region). In summer (see
Figure 9c), the high potential source region was observed linked to northeastern Jiangsu.
These results could imply that the long-range transport from the Yangtze River Delta region
could make an important contribution to BC in rural Qingdao in spring and summer.
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Figure 9. Maps of the concentration weighted trajectories of BC in the four season: (a) winter, (b) spring, (c) summer, and
(d) fall, respectively. The color bar on the right represents the CWT BC mass concentration in µg·m−3.

3.4. A Case Study of BC during the COVID-19 Pandemic

According to the timeline of the COVID-19 lockdown and prevention regulations for
epidemic control issued by the Chinese government, three stages were divided in this study
to investigate the response of ambient BC to such a unique emission reduction scenario.
A detailed description of the division rules for the three stages is shown in Table 1.

Figure 10a shows the average concentrations of BC (PM2.5) in pre-COVID, COVID-
lockdown, and COVID-recovery stages, which were 4.21 (58.5) µg m−3 and 2.88 (54.5) µg m−3,
and 1.81 (28.9) µg m−3, respectively. BC was reduced by 31.6% from the pre-COVID phase
to the COVID-lockdown phase. This is comparable to the decrease rate (38%) due to the
COVID lockdown observed in rural Hangzhou, while there is a greater gap by comparing to
some urban areas, e.g., Hangzhou city of China (44%) [40], Suzhou city of China (53%) [75],
Somerville city of the United States of America (22–46%) [76], and Delhi city of India
(59–78%) [39]. This could suggest that BC was effectively reduced by relevant control
measures in rural Qingdao, yet with a lower decrease rate compared to urban regions.
Compared to BC, the mass concentration of PM2.5 presented a much lower variation
that decreased by only 6.8% from the pre-COVID stage to the COVID-lockdown stage,
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which is consistent with recent studies in urban environments [77–79]. This may suggest
that rapid emission reduction in the transportation sector may not be efficient for control
the ambient PM2.5 burden in rural areas. As shown in Figure 10b, changes in gaseous
pollutants, including CO, SO2, and NO2, were also observed between pre-COVID and
COVID-lockdown periods. NO2 presented the largest reduction rate (46.6%) among these
gases, which could be explained by a rapid reduction in traffic emissions. However, the
reduction rate (8.6%) of CO was approximately 5 times lower than NO2, suggesting a
significant contribution of the nontraffic source to ambient CO in rural Qingdao. The
reduction rate of SO2, mainly generated from coal combustion from industrial and power
sectors in China [80], was 22.7%, reflecting a considerable influence of the COVID-lockdown
on these sectors. Interestingly, BC was correlated well (R = 0.65−0.70) with these gaseous
pollutants (CO, NO2, and SO2), supporting the possible contribution of the sources for
these gaseous pollutants on BC in rural Qingdao. As shown in Figure 10c, an enhanced
BC/NO2 ratio is clearly observed during the COVID-lockdown period. However, the
BC/CO and BC/PM2.5 ratios present opposite patterns compared to the BC/NO2 ratio.
These results could indicate that reduction in traffic emission could not be an effective
measure to reduce ambient BC in rural Qingdao. Furthermore, nontraffic sources, like
residential solid-fuel burning, could be a significant source sector for BC at the area of the
sampling site. In fact, our findings are consistent with some previous studies based on the
BC emission inventories, highlighting that the most important source sector of BC was
associated with the residential sector in China [32,80].

Table 1. Division of stages during the epidemic and relevant regulations.

Stages Dates Relevant Regulations

Pre-COVID 2019-12-31–2020-1-23
A novel coronavirus was reported on 31 December 2019. The first level emergency

response for epidemic prevention and control by Shangdong province on
23 January 2020.

COVID-lockdown 2020-1-24–2020-2-10

Strict epidemic prevention and control measures were by the Qingdao
government, and most public places, villages, communities, and government

agencies closed on 24 January 2020. Qingdao, part of the regulation enterprises,
began to resume work on 10 February 2020.

COVID-recovery 2020-3-20–2020-4-10

The various enterprises, certain public places, and major government agencies
were fully resumed work, and agricultural production will be carried out on 20
March 2020. Issued a policy that allows outsiders to enter and exit at any time

with a health code on 10 April 2020.

Notes: The above relevant regulations can be obtained from the Qingdao government website (http://www.qingdao.gov.cn/, accessed on
18 March 2021).

Figure 11 shows the very different pole diagrams of BC in the three stages. During
the pre-COVID stage, the high BC concentrations were distributed over the northwest and
northern sectors. In addition, high concentrations (>5 µg m−3) of BC were also observed at
low wind speeds (<2 m s−1). This may suggest that more intense BC emissions could be
from larger scales during the pre-COVID period. The wind dependence of BC showed a
large difference between the pre-COVID and COVID-lockdown. The high concentrations of
BC were mainly associated with low wind speed during the COVID-lockdown, suggesting
a major contribution of local sources to ambient BC. Such wind-dependent variation of
BC during the COVID-lockdown was also different from the COVID-recovery stage that
was characterized by the high BC concentrations linked to local and northwest winds.
The distinct change in wind dependence of BC during these three stages could imply a
significant influence of the COVID-lockdown on the potential geographic origins of BC.

http://www.qingdao.gov.cn/
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4. Conclusions

In this work, we conducted one-year real-time monitoring of BC in rural Qingdao
using the MAAP from December 2019 to November 2020. The highest concentration of
BC in winter, followed by fall, spring, and summer, respectively. Together, BC showed
a distinct monthly trend characterized by higher concentrations during cold months but
lower concentrations during warm months, indicative of a significant seasonality. The
mass fraction of BC in PM2.5 gradually decreased with increasing concentration of PM2.5
in all seasons, suggesting that enhanced formation of secondary aerosol particles might
be a key source factor to promote air pollution induced by PM2.5 in rural environments in
Qingdao. The BC concentrations and BC/NO2 ratios on the weekend (4.60 ± 2.86 µg m−3

and 0.20 ± 0.12) were evidently higher than those on weekdays (3.22 ± 2.45 µg m−3 and
0.16 ± 0.09), respectively during cold seasons, while there was no clear difference for
both of them between weekend (0.81 ± 0.58 µg m−3 and 0.10 ± 0.05) and weekdays
(0.83 ± 0.56 µg m−3 and 0.10 ± 0.06) in summer, indicating the weekend effect that might
be attributed to increased biomass burning emissions during the weekend. Analysis of the
influence of surface horizontal WS and BLH on ambient BC concentrations suggest that the
vertical dilution effect would have seasonal dependence with the highest efficiency during
winter under high BLH conditions (i.e., BLH > 900 m). Together, we observed obvious
evidence of an important role of below-cloud wet removal in influencing ambient BC,
which would be one of the major reasons to explain the low BC concentration levels during
summer with highly frequent rainfall events in such a coastal region of Qingdao. Through
the bivariate polar plots, the high concentrations in the Qingdao area mainly occurred under
relatively stable atmospheric conditions (e.g., WS < 2 m s−1) and were highly associated
with prevailing wind directions. According to the concentration weighted trajectory
analysis, regional transport could have considerable influence on BC pollution in this rural
area of Qingdao, for instance, when air masses were linked to the regions with high ship
emissions in the Yellow Sea and the Bohai Sea. Based on the comprehensive analysis of
the unique COVID−19 case, it was found that nontraffic sources (e.g., coal combustion)
from the residential sector could be a major source of BC in winter in rural Qingdao. Thus,
it could be very interesting to further investigate the quantitative contribution of such
nontraffic sources to BC in future work.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-443
3/12/3/394/s1, Figure S1: Sampling site location and its surroundings; Figure S2: The distribution
of BC concentrations in the whole year (a) (the green bar is the number of BC concentrations within
an interval of 0.05 µg m−3, the black line is the fitted curve following a lognormal function), and
four seasons (b); Figure S3: Scatter plot of BC vs. PM2.5, the red line in the graph is the fitted line
and the scatter color represents the date; Figure S4. Diurnal pattern of BC (a), CO (b), NO2 (c), and
SO2 (d) in four seasons over the whole campaign period; Figure S5: Diurnal patterns of average
PM2.5 concentration (a), wind speed (WS) (b), boundary layer height (BLH) (c), relative humidity
(RH) (d), visibility (e), and temperature (T) (f) in four seasons;; Figure S6: Diurnal patterns of average
BC concentrations during weekdays and weekends in four seasons; Figure S7: Diurnal patterns of
average C2H4O2 concentrations during weekdays and weekends. The tracer C2H4O2 for biomass
combustion is derived from organic fragments measured by Aerodyne soot particle aerosol mass
spectrometer (SPAMS), which is installed at the same location as MAAP from 25 November 2019 to
7 January 2020. Table S1: Results of some long-term measurements of BC concentrations (µg m−3) in
East Asia

Author Contributions: Conceptualization, S.C., Y.Z., X.G.; data curation, S.C., L.Z., J.X., F.S., B.D.;
formal analysis, S.C., L.Z., J.X., B.D.; investigation, S.C.; methodology, S.C., L.Z., Y.Z.; project
administration, X.G.; supervision, X.G.; writing—original draft, S.C.; writing—review and editing,
Y.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC),
grant number 21777073.

https://www.mdpi.com/2073-4433/12/3/394/s1
https://www.mdpi.com/2073-4433/12/3/394/s1


Atmosphere 2021, 12, 394 16 of 19

Data Availability Statement: The data used in this study can be made available upon request
(yjzhang@nuist.edu.cn).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chow, J.C.; Watson, J.G.; Lowenthal, D.H.; Chen, L.-W.A.; Motallebi, N. PM2.5 source profiles for black and organic carbon

emission inventories. Atmos. Environ. 2011, 45, 5407–5414. [CrossRef]
2. Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kaercher, B.;

Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos.
2013, 118, 5380–5552. [CrossRef]

3. Petzold, A.; Ogren, J.A.; Fiebig, M.; Laj, P.; Li, S.-M.; Baltensperger, U.; Holzer-Popp, T.; Kinne, S.; Pappalardo, G.; Sugimoto, N.;
et al. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys. 2013, 13, 8365–8379. [CrossRef]

4. Henning, S.; Wex, H.; Hennig, T.; Kiselev, A.; Snider, J.R.; Rose, D.; Dusek, U.; Frank, G.P.; Pöschl, U.; Kristensson, A.; et al. Soluble
mass, hygroscopic growth, and droplet activation of coated soot particles during LACIS Experiment in November (LExNo).
J. Geophys. Res. Atmos. 2010, 115. [CrossRef]

5. Jacobi, H.-W.; Lim, S.; Ménégoz, M.; Ginot, P.; Laj, P.; Bonasoni, P.; Stocchi, P.; Marinoni, A.; Arnaud, Y. Black carbon in snow in
the upper Himalayan Khumbu Valley, Nepal: Observations and modeling of the impact on snow albedo, melting, and radiative
forcing. Cryosphere 2015, 9, 1685–1699. [CrossRef]

6. Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [CrossRef]
7. Miao, Y.; Li, J.; Miao, S.; Che, H.; Wang, Y.; Zhang, X.; Zhu, R.; Liu, S. Interaction between planetary boundary layer and PM2.5

pollution in megacities in China: A review. Curr. Pollut. Rep. 2019, 5, 261–271. [CrossRef]
8. Ding, A.J.; Fu, C.B.; Yang, X.Q.; Sun, J.N.; Petäjä, T.; Kerminen, V.-M.; Wang, T.; Xie, Y.; Herrmann, E.; Zheng, L.F.; et al. Intense

atmospheric pollution modifies weather: A case of mixed biomass burning with fossil fuel combustion pollution in eastern China.
Atmos. Chem. Phys. 2013, 13, 10545–10554. [CrossRef]

9. Ding, A.J.; Huang, X.; Nie, W.; Sun, J.N.; Kerminen, V.; Petäjä, T.; Su, H.; Cheng, Y.F.; Yang, X.; Wang, M.H.; et al. Enhanced haze
pollution by black carbon in megacities in China. Geophys. Res. Lett. 2016, 43, 2873–2879. [CrossRef]

10. Huang, X.; Ding, A.; Wang, Z.; Ding, K.; Gao, J.; Chai, F.; Fu, C. Amplified transboundary transport of haze by aerosol–boundary
layer interaction in China. Nat. Geosci. 2020, 13, 428–434. [CrossRef]

11. Yang, T.-T.; Hsu, C.-Y.; Chen, Y.-C.; Young, L.-H.; Huang, C.-H.; Ku, C.-H. Characteristics, sources, and health risks of atmospheric
PM2.5-bound polycyclic aromatic hydrocarbons in Hsinchu, Taiwan. Aerosol Air Qual. Res. 2016, 17, 563–573. [CrossRef]

12. Cui, S.; Lei, R.; Wu, Y.; Huang, D.; Shen, F.; Wang, J.; Qiao, L.; Zhou, M.; Zhu, S.; Ma, Y.; et al. Characteristics of black
carbon particle-bound polycyclic aromatic hydrocarbons in two sites of Nanjing and Shanghai, China. Atmosphere 2020, 11, 202.
[CrossRef]

13. Garrido, A.; Jiménez-Guerrero, P.; Ratola, N. Levels, trends and health concerns of atmospheric PAHs in Europe. Atmos. Environ.
2014, 99, 474–484. [CrossRef]

14. Niu, X.; Ho, S.S.H.; Ho, K.F.; Huang, Y.; Sun, J.; Wang, Q.; Zhou, Y.; Zhao, Z.; Cao, J. Atmospheric levels and cytotoxicity of
polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM2.5 in the Beijing-Tianjin-Hebei region. Environ. Pollut. 2017, 231,
1075–1084. [CrossRef] [PubMed]

15. Janssen, N.A.; Hoek, G.; Simic-Lawson, M.; Fischer, P.; Van Bree, L.; ten Brink, H.; Keuken, M.; Atkinson, R.W.; Anderson, H.R.;
Brunekreef, B.; et al. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with
PM10and PM2. Environ. Health Perspect. 2011, 119, 1691–1699. [CrossRef]

16. Cao, J.; Xu, H.; Xu, Q.; Chen, B.; Kan, H. Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted
Chinese city. Environ. Health Perspect. 2012, 120, 373–378. [CrossRef]

17. Liu, X.; Kong, S.; Yan, Q.; Liu, H.; Wang, W.; Chen, K.; Yin, Y.; Zheng, H.; Wu, J.; Qin, S.; et al. Size-segregated carbonaceous
aerosols emission from typical vehicles and potential depositions in the human respiratory system. Environ. Pollut. 2020,
264, 114705. [CrossRef]

18. Meena, G.S.; Mukherjee, S.; Buchunde, P.; Safai, P.D.; Singla, V.; Aslam, M.Y.; Sonbawne, S.M.; Made, R.; Anand, V.;
Dani, K.K.; et al. Seasonal variability and source apportionment of black carbon over a rural high-altitude and an urban site in
western India. Atmos. Pollut. Res. 2021, 12, 32–45. [CrossRef]

19. Wei, C.; Wang, M.H.; Fu, Q.Y.; Dai, C.; Huang, R.; Bao, Q. Temporal characteristics and potential sources of black carbon in
megacity Shanghai, China. J. Geophys. Res. Atmos. 2020, 125, 125. [CrossRef]

20. Duc, H.N.; Shingles, K.; White, S.; Salter, D.; Chang, L.T.-C.; Gunashanhar, G.; Riley, M.; Trieu, T.; Dutt, U.; Azzi, M.; et al.
Spatial-temporal pattern of black carbon (BC) emission from biomass burning and anthropogenic sources in New South Wales
and the greater metropolitan region of Sydney, Australia. Atmosphere 2020, 11, 570. [CrossRef]

21. Zotter, P.; Herich, H.; Gysel, M.; El-Haddad, I.; Zhang, Y.; Močnik, G.; Hüglin, C.; Baltensperger, U.; Szidat, S.; Prévôt, A.S.H.
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