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Abstract: This work provides an assessment of the two most intense seasonal droughts that occurred
over the Balsas River Basin (BRB) in the period 1980–2017. The detection of the drought events was
performed using the 6 month scale standardized precipitation–evapotranspiration index (SPEI-6)
and the 6 month standardized precipitation index (SPI-6) in October. Both indices were quite
similar during the studied period, highlighting the larger contribution of precipitation deficits vs.
temperature excess to the drought occurrence in the basin. The origin of the atmospheric water
arriving to the BRB (1 May 1980–31 October 2017) was investigated by using a Lagrangian diagnosis
method. The BRB receives moisture from the Caribbean Sea and the rest of the tropical Atlantic, the
Gulf of Mexico, the eastern north Pacific and from three terrestrial evaporative sources: the region
north of BRB, the south of BRB and the BRB itself. The terrestrial evaporative source of the BRB itself
is by far the main moisture source. The two most intense drought events that occurred in the studied
period were selected for further analysis. During the severe drought of 2005, the summertime sea
surface temperature (SST) soared over the Caribbean Sea, extending eastward into a large swathe
of tropical North Atlantic, which was accompanied by the record to date of hurricane activity. This
heating generated a Rossby wave response with westward propagating anticyclonic/cyclonic gyres
in the upper/lower troposphere. A cyclonic low-level circulation developed over the Gulf of Mexico
and prevented the moisture from arriving to the BRB, with a consequent deficit in precipitation.
Additionally, subsidence also prevented convection in most of the months of this drought period.
During the extreme drought event of 1982, the Inter Tropical Convergence Zone (ITCZ) remained
southern and stronger than the climatological mean over the eastern tropical Pacific, producing an
intense regional Hadley circulation. The descent branch of this cell inhibited the development of
convection over the BRB, although the moisture sources increased their contributions; however, these
were bounded to the lower levels by a strong trade wind inversion.

Keywords: drought; SPEI; SPI; moisture transport; FLEXPART; trade wind inversion

1. Introduction

Numerous severe drought events have been witnessed around the world during the
last decades [1], such as the 2007–2009 drought in the Fertile Crescent [2], the 2010 Amazon
drought [3], the long drought of the first decade of the current century in Australia [4] or the
2011 record-setting Texas drought [5]. In the case of Mexico, the frequency and extension of
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drought conditions have been evaluated during the period 1950–1999 by using the Palmer
Drought Severity Index (PDSI) [6], with more frequent episodes found in north-western
Mexico [7]. However, it is important to mention that the time scale was not defined in PDSI,
and this method was replaced by others that better detect the start and end of a drought
event [8]. Regarding future drought conditions, the climate model outputs archived in the
Coupled Model Intercomparison Project phase 5 (CMIP5) revealed increased drought in a
few regions around the world, with one of them being Central America and Mexico [9].
Droughts would affect forestry and hydropower sectors in Mexico, but the biggest impacts
are projected to occur in agriculture [10]. In fact, in the Special Report on Managing the
Risks of Extreme Events and Disasters to Advance Climate Change Adaptation by the
Intergovernmental Panel on Climate Change (IPCC) [11], the Central America/Mexico
region is one of the key regions projected to be more strongly affected by droughts.

Overall, there is a lack of scientific studies about the severity, propagation and socio-
economic impacts of droughts in Mexico [12]. Furthermore, the attention given to drought
events is focused on the response to these events but not their risk management, which
makes certain locations very vulnerable to droughts. Information about the origin of
droughts is of the utmost importance in order to be able to manage the risks and assess
the potential impacts and in general terms for proper decision-making in relation to
droughts [13].

The Hydrological Region “Balsas”—hereafter referred to as Balsas River Basin (BRB)—
is one of the 13 so-called Hydrological Administrative Regions into which Mexico is
divided [14]. The BRB region (Figure 1a) comprises eight states partially or totally (Jalisco,
Michoacán, Tlaxcala, Morelos, Puebla, Guerrero, Estado de México and Oaxaca). The
BRB in general gets around 95% of its annual precipitation between May and October
(Figure 1b) [15], but due to the orography, the basin has a variety of climatic character-
istics [16]. The BRB has an extension of 116,436 km2 [17], and it is the most important
Pacific slope river in the country, supplying water to big conurbation areas such as Puebla,
Tlaxcala and Cuernavaca-Cuautla, among others. Additionally, the hydroelectric installed
capacity in Mexico, which contributes 48% of the annual clean energy generation, is mainly
concentrated in the Balsas, Lerma Santiago and Grijalva basins, with the former being the
most vulnerable to suffer a lack of water availability [18].

The BRB is a drought-prone region [19]. For example, during 2015, a strong drought
caused losses of up to 80% in the sowing of jamaica, sesame, sorghum and corn [20].
According to the climate change vulnerability index [21], the Balsas region presents a
high degree of hydric vulnerability. Heavy erosion processes caused by the combination
of heavy rainfall and deforestation have also had an impact on the local hydrological
cycle [22]. For example, in the state of Morelos, which belongs completely to the BRB, close
to 60% of the original vegetation (seasonally dry tropical forests) has been lost [23].

On the other hand, rainfall is generally more directly related to moisture supply in
the tropics, whereas in the extratropics, the role of stability and dynamical forcing mech-
anisms normally gain relative importance [24,25]. To investigate the relative importance
of moistening in the BRB, we take advantage of the use of the Lagrangian dispersion
model FLEXPART (flexible particle dispersion model) [26,27]. This Lagrangian approach
allows us to determine large-scale water vapor advection by tracking evaporation minus
precipitation (E–P) from a region forwards or backwards in time, thereby facilitating the
determination of the source–receptor relationships of water.

The main goal of this work is to analyze the origin of severe drought events over the
BRB since 1980. For this purpose, this study has three specific objectives: first, to rank the
hydrological droughts that occurred over the BRB during the period 1980–2017; second, to
implement a dynamical analysis of moisture transport over the BRB for the selected severe
or extreme droughts; and finally, to assess the role played by the sea surface temperature
(SST) and atmospheric stability in these droughts.
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2. Data and Methods
2.1. Drought Indices

The standardized precipitation index (SPI) relies on the difference of precipitation
from the mean for a specified time period divided by the standard deviation [28]. This
method takes into account the fact that the time period from the arrival of precipitation
until water is available in each useable form (soil moisture, ground water, snowpack,
streamflow and reservoir storage) differs greatly [28]. The SPI can be calculated over
different precipitation accumulation periods, and the averaging period (1, 3, 6, 12, 24
or 48 months) is selected depending on the type of drought in which user is interested
(i.e., meteorological, agricultural, hydrological or ecological). A disadvantage of this
simple method is that precipitation is typically not normally distributed for accumulation
periods of 12 months or less, but this is overcome by applying a transformation to the
distribution [28,29]. Many studies using the SPI have been undertaken, as the SPI provides
information on precipitation deficit, average percentage and probability. However, in
recent years, some shortcomings in the index have become apparent due to the fact that
it does not take into account variables such as evapotranspiration or temperature [30,31],
which can be crucial in order to assess the occurrence of droughts.

The standardized precipitation–evapotranspiration index (SPEI) takes into account
the potential evapotranspiration (PET), besides the precipitation, in order to determine
the occurrence of droughts [32]. The SPEI is able to capture the impact of temperature
on the atmospheric evaporative demand of water [33]. The method used to compute the
SPEI is similar to that for the SPI. However, while the SPI adjusts precipitation to a certain
distribution, in the case of the SPEI, it is the difference between precipitation and PET that
is adjusted. The SPEI can also be calculated over different time-scales for the estimation of
the diverse potential impacts of water deficit accumulation occurring over time periods of
different lengths.

The response of the hydrological system to precipitation is time-lagged and not
known a priori [34], but in general the SPEI and SPI average accumulation periods (e.g., 3 to
12 months) can be used as an indicator for reduced stream flow and reservoir storage [35,36].
We computed 6 month scale indices in October (SPI-6 and SPEI-6) to analyze the seasonal
scale droughts. The 6 month indices at the end of October provide a very good indication
of the amount of precipitation that has fallen during the wet season for the BRB. In this
way, we can even take into account the impact in the early stages on water reservoirs. In
this work, 1 month indices (SPEI-1 and SPI-1) were also used to determine the months
within the drought period with the most severe meteorological drought.
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Monthly rainfall data from the University of East Anglia Climate Research Unit (CRU)
database [15] were used to generate the SPEI and SPI for a 38 year period (1980–2017)
with a 0.5◦ resolution in longitude and latitude. The PET from the CRU database, which
employs the FAO (Food and Agricultural Organization) Penman–Monteith formula [15],
was also used to compute SPEI.

2.2. E–P Backward Tracking

FLEXPART v9 (flexible particle dispersion model) was used here to identify the large-
scale water vapor advection toward the region of study. Although the model was originally
created to determine pollutant dispersion, it was adapted also to diagnose any change
of different variables along the trajectories. Over the last decades, the model has largely
been used to determinate moisture transport that generates precipitation over continents
based on the methodology by Stohl and James [37,38]. FLEXPART is supported by a large
number of peer-reviewed publications [39] and has been validated for the atmospheric
branch of the water cycle of major river catchments [38]. The model has also been used
to study water vapor transport variability toward several hydrologic basins, such as the
Amazon [40], Niger River basin [41] or the Danube river basin [42], among others.

FLEXPART generates the trajectories of a large number of particles (2 million) into
which the atmosphere is divided; each particle moves by using a three-dimensional wind
field with a constant mass. FLEXPART uses meteorological data from the European Centre
for Medium-Range Weather Forecasts (ECMWF) [43] every 6 h with a 1◦ × 1◦ resolution
on 60 vertical levels to calculate the grid-scale advection. To determine moisture sources
and sinks, the position of each particle is tracked backward or forward, respectively, in
combination with the particle loss of specific humidity by precipitation (p) or gain by
evaporation (e). The (E–P) differences of all particles in a column are amassed, and then
the total (E–P) field is obtained, where (E) is the evaporation rate and (P) the precipitation
rate per unit area. This method therefore diagnoses E–P, but not E or P individually [37].

In this work, the trajectories were followed in backward mode, which means that we
were interested in determining the origin of the humidity over the BRB. By integrating the
changes of all particles aimed towards the BRB region, we found the areas where those
particles had either gained (E–P > 0) or lost moisture (E–P < 0) along their path. We limited
the transport to 10 days as this is the optimal particle travel time for the BRB region during
our study period using the database by Nieto and Gimeno [44]. Then, a general view of
the moisture sources was attained by adding the net freshwater flux from day −1 to day
−10, ((E–P)1–10 from now on). When a long enough period is analyzed, the mean moisture
sources for the region can be described from a climatological perspective.

2.3. Climatic Fields Data

The COBE (Centennial in situ Observation-Based Estimates) SST v2 monthly dataset
was used from 1980 to 2017 [45,46] at 1◦ latitude × 1◦ longitude spatial resolution. COBE
incorporates ICOADS (International Comprehensive Ocean-Atmosphere Data Set) data [47]
and includes some additional observational datasets mainly for recent periods.

ERA-Interim reanalysis monthly means of horizontal wind, vertically integrated
moisture flux, geopotential height and vertical velocity (omega) at several tropospheric
levels [43] were used for the period 1980 to 2017 at a 1◦ resolution in longitude and latitude.
In addition, temperature and relative humidity were obtained from the same reanalysis
database. These variables were employed to compute the equivalent potential temperature
(θE) according to Equation (38) in [48], allowing us to assess the moisture content and
thermal properties of the air column.

Seasonal anomalies were computed with respect to the climatology of May 1981–
October 2010, referred to hereafter as 1981–2010 climatology.
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3. Results
3.1. Drought Characteristics during the Period of 1980–2017

The temporal variation of SPI-6 and SPEI-6 in October for the period 1980–2017 is
depicted in Figure 2. Both indices are very similar, with the Pearson correlation coefficient
between them being ρ = 0.99, and both match the same dry periods. This indicates that
the contribution of precipitation deficits to the drought severity in the BRB prevails over
the temperature excess, unlike other regions, such as the Mediterranean region, where the
increase in the atmospheric evaporative demand driven by increasing temperatures in the
last decades has enhanced droughts, independently of the precipitation evolution in the
region [49,50]. In fact, the link between droughts and heat waves is widely known: high
temperatures accelerate soil drying and dry soils in turn warm the atmosphere by retaining
less water for evapotranspiration [51]. Studies examining the coupling between the land
surface and extreme temperature have shown that the soil moisture/temperature rela-
tionship is geographically widespread [52]. This area of research has held a predominant
European focus [51]. For example, it is known that the intensity of the 2003 heatwave was
increased by dry conditions by up to 40% [53,54], while the record-breaking drought that
affected Europe in 2016/2017 has been found to have been caused by decreased precipita-
tion and increased sunshine duration in the northern part, whereas the main contributors
to the drought in the south were thermodynamic processes, mostly associated with high
temperatures [55].
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standardized precipitation index (SPI-6) averaged over the BRB during 1980–2017.

According to [28], the intensity of a drought event is arbitrarily defined for values
of the SPI with the following categories: mild drought if 0 ≤ SPI ≤ −0.99, moderate
drought if −1.00 ≤ SPI ≤ −1.49, severe drought if 1.50 ≤ SPI ≤ −1.99 and extreme drought
for SPI ≤ −2. Recent studies—e.g., [42,56–59]—classified drought events with identical
thresholds for SPEI and SPI. Therefore, we identified seven moderate to extreme events in
the years 1982, 1986, 1987, 1994, 1997, 2005 and 2009.

Table 1 summarizes the main characteristics of these drought events, including the
year and average intensity, based on SPEI-6 and the number of months with meteorological
drought and the driest months based on SPEI-1 (in bold letter). As mentioned before, SPI
values are very similar and they are not shown. The year 1982 is identified as the year with
the most intense drought episode for the study period. All episodes had meteorological
droughts with a duration of roughly 4 months. June was the peak month for 2005 and July
was the peak month for 1986, 1994 and 2009. The droughts of 1982 and 1997 peaked in
August, and that of 1987 peaked in October. It is interesting to mention that five of these
top-seven drought events occurred during El Niño - Southern Oscillation (ENSO) warm
phases (1982, 1987, 1994, 1997, 2009) being three of them during strong El Niño years (1982,
1987, 1997). The other two drought events developed under ENSO neutral conditions (1986,
2005). It is widely accepted that dry conditions prevail in the southern part of Mexico
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during El Niño summers, and wetter conditions dominate during La Niña throughout the
American tropical regions including southern parts of Mexico [60–62].

Severe and extreme drought events that occurred in the period 1980–2017 were se-
lected for analysis in this study, corresponding to events in 1982 and 2005. The spatial
representations of SPEI-6 values in October for these two episodes show different patterns
(Figure 3). During 1982 (Figure 3a), drought conditions covered an extensive area over
central Mexico, and wet conditions remained confined over Baja California and a portion of
the Yucatan Peninsula. By contrast, in 2005 (Figure 3b), the eastern coast of central Mexico
and the north–central part of the country also showed wet conditions. Both episodes were
particularly severe over the BRB.

Table 1. Drought seasonal episodes observed over the BRB for the period 1980–2017.

Year SPEI-6 Drought
Intensity

SPEI-1
May

SPEI-1
June

SPEI-1
July

SPEI-1
August

SPEI-1
September

SPEI-1
October

1982 −2.15 Extreme 0.90 −1.39 −1.35 −1.96 −1.95 0.32

1986 −1.36 Moderate 0.51 0.36 −1.45 −0.85 −1.40 −0.20

1987 −1.41 Moderate −0.93 −0.55 1.02 −1.03 −0.15 −1.86

1994 −1.11 Moderate −0.43 −0.86 −1.71 0.40 −0.93 1.02

1997 −1.40 Moderate 0.03 −0.65 −0.76 −1.41 −0.92 0.79

2005 −1.61 Severe −1.04 −1.89 0.38 0.29 −1.84 −0.17

2009 −1.30 Moderate −0.16 −0.50 −1.86 −1.36 0.44 1.05
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3.2. Water Vapor Transport toward the Balsas River Basin

To better understand the origin of the precipitation deficits, we analyzed the anomalies
of moisture transport toward the BRB during the drought events. Figure 4 shows the sum
of (E–P)n > 0 up to 10 days (n = 1, . . . , 10) before an air mass that moved towards the
BRB reached the area ((E–P)1–10 > 0 from now on) from May to October for the study
period 1980–2017. Figure 4 also depicts the vertically integrated moisture flux (VIMF) and
geopotential height isolines at 925 hPa for the same study period and the same months.
In May, positive water vapor values were found in the northern and north-western BRB
along the Pacific coast (Figure 4a), linked to the circulation of the North Pacific Subtropical
High (NPSH). A smaller amount of moisture arrived following the Caribbean Low-Level
Jet (CLLJ) region. From June to September (JJAS) the distribution of water vapor fluxes
during each month was fairly similar; therefore, the 4 month average is shown in Figure 4b.
The NPSH system moved northwestward, the influence of the North Atlantic Subtropical
High (NASH) on the Caribbean was stronger and the trade winds intensified along its
southern flank. Particles transporting moisture spread from the Yucatan Peninsula to the
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Caribbean Sea, extending to the tropical North Atlantic Ocean. Our results confirm that the
CLLJ core south of the Greater Antilles [63,64] is an important moisture source for the BRB
during boreal summer (Figure 4b), as pointed out by other previous research works [62,65].
During October, the NASH migrates north-eastward, and its western flank causes more
water vapour to arrive to the BRB from the north of the Gulf of Mexico (Figure 4c). From
May to October (Figure 4a–c), evaporation clearly dominates over precipitation in the air
masses located over the basin itself and the surrounding areas.
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(a) May, (b) June–September (JJAS) and (c) October. Study period: 1980–2017.

To quantify water vapor contributions, it is necessary to define the moisture source
regions independently. The threshold of the 95th percentile of the (E–P)1–10 > 0 values
averaged from May to October during the study period (1980–2017) was used to delimit the
source regions in which the water vapor recharge was most intense. Seven main moisture
sources that were potentially important for precipitation development over BRB were
defined (Figure 5a), comprising four oceanic and three terrestrial sources. The moisture
arriving from the ocean was divided into four regions: the Caribbean Sea (CAR), the
Gulf of Mexico (GOM), the rest of the tropical Atlantic (ATL) and the Pacific (PAC) from
the west. The terrestrial evaporative moisture source regions were classified into three
categories: north of the BRB (NORTH), the southern BRB region including the Yucatan
Peninsula (SOUTH), and finally the BRB itself (BRB). The monthly evolution of (E–P)1–10 > 0
integrated over these seven areas is shown in Figure 5b. As expected, the evaporative
source of BRB itself is highly significant, representing by far the main atmospheric moisture
source during the wet season (note that the y-axis of Figure 6b is in a logarithmic scale).
NORTH is the second moisture source during the beginning (May) and the end (October)
of the wet season. However, from June to September, the contributions of SOUTH and
CAR are slightly higher.

According to these results, the importance of the available moisture in the atmosphere
of the BRB itself must be decisive compared with the rest of the moisture sources. For
simplicity, we limited the analysis to the source regions delineated by the 99.5th percentile
of the (E–P)1–10 > 0 values (black contours in Figure 5a). Three moisture sources were
obtained: the terrestrial evaporative source of the BRB, the Yucatan Peninsula inner SOUTH
and the central area of CAR.
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Figure 6. Monthly accumulated anomalies of (E–P)1−10 > 0 for the three moisture sources contoured
by black solid lines in the Figure 5a (colored bars, left black y-axis) and omega anomalies (blue lines;
right, blue y-axis) during the drought episodes of (a) 1982 and (b) 2005.

The above moisture sources show interannual variability. The bars in Figure 6 rep-
resent the accumulated monthly anomalies of the water vapor supplied by these three
moisture sources (BRB: blue, SOUTH: pink and CAR: red; black solid lines in Figure 5a)
for the severe and the extreme drought events that occurred in the period 1980–2017. In
1982 (Figure 6a), unexpected positive anomalies of moisture supplies were found for the
three sources during the 6 months, including the month of August, when the peak value
of SPEI-1 occurred (see Table 1). In contrast, during 2005 (Figure 6b), all source regions
showed lower contributions compared with the climatological mean; therefore, the lack
of water vapor was associated with precipitation deficits. It is worth pointing out that
the large-scale circulation variability in local BRB conditions was far more important than
the moisture transport variability from the other two top-contributing external sources,
SOUTH and CAR. To explain the drought signal in 1982 despite the positive anomalies
found in moisture transport, we also analyzed the evolution of omega anomalies at 500-hPa
averaged over the BRB area (Figure 6a). This drought event was associated with positive
anomalies of omega from June to October, indicating a general meteorological pattern
of subsidence that inhibits the upward movement needed to generate precipitation. In
2005, besides the negative anomalies of water vapor transport found, subsidence was also
present at a 500 hPa level over the basin during most of the months.
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3.3. Climatic Fields Anomalies during the Droughts of 1982 and 2005

A more detailed examination of the underlying causes of moisture advection and
subsidence anomalies during the droughts of 1982 and 2005 could be performed through
the assessment of the atmospheric circulation and vertical motions.

3.3.1. Drought Event in 1982

Anomalies of horizontal wind at 850 hPa and SST for the drought of 1982 are shown
in Figure 7a. The SST pattern shows El Niño-like conditions over the tropical Pacific
Ocean (Figure 7a). SST anomalies over the eastern tropical Pacific and those over the
tropical North Atlantic (TNA) showed opposite signs. The SST gradients between the
tropical Pacific and the TNA favor a stronger southern branch of the CLLJ via Walker
circulation [66]. Other authors have previously shown similar results; that is, a strong
southern branch of the CLLJ occurring in conjunction with warm Pacific SST anomalies
and cold SST anomalies in the TNA [64,66–73]. This configuration favors greater moisture
transport toward the BRB, although it is important to keep in mind that CLLJ is a secondary
moisture source for the BRB, as stated in the previous section.
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Figure 7. (a) SST anomalies (◦C, contours) and horizontal wind anomalies at 850 hPa (m·s−1, arrows), (b) vertical ve-
locity anomalies (Pa·s−1, contours) at 600 hPa. Period: wet season (May-October) during 1982. Blue lines show the
seasonal mean (May–October) precipitation values in the 1981–2010 period greater than 5 mm in the ITCZ (Inter Tropical
Convergence Zone).

Negative vertical velocity (upward movement, in green) anomalies at 600 hPa (Figure 7b)
were found over the southern part of the Pacific Inter Tropical Convergence Zone (ITCZ—
the ITCZ is marked approximately by the blue line in Figure 7b). Positive anomalies
(subsidence, in pink) were present in the Atlantic ITCZ and northern South America. Over
the northern areas of the eastern Pacific ITCZ, positive anomalies were also present and
reached the BRB region, which is consistent with a southward displacement of the Pacific
ITCZ. Other authors have shown similar results for El Niño years. For example, global
ENSO-altered Walker and Hadley circulations have been shown by analyzing atmospheric
reanalysis products [74,75], with the eastern Pacific ITCZ moving closer to the equator
during El Niño summers. Intense convection in the eastern tropical Pacific around 5◦N
has been reported to produce an intense regional Hadley cell with anomalously strong
subsidence over Mexico that inhibits the development of deep convective activity [43].
Nevertheless, it is unclear how an increase of moisture and simultaneous subsidence over
the BRB can be compatible.

The Atlantic trade wind areas are sometimes dominated by extensive inversions that
form in the descending branches of the Hadley circulation, resulting from the interaction
between this large-scale subsiding air and convection-driven rising air from the lower
levels [76–79]. Trade wind inversions (TWIs) limit vertical development, confining the
humidity in the lower levels. Criteria for inversion identification have been tradition-
ally based on temperature, relative humidity and mixing ratio profiles in tropical and
subtropical areas [78]. Equivalent potential temperature (θE) profiles have been recently
used to capture the signature of TWIs in Puerto Rico [25,80]. Figure 8 depicts the 1982
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seasonal anomalies of θE, temperature and relative humidity profiles averaged over the
BRB region. The value of θE sharply decreases with height from 850 to 500 hPa due to
the strong decrease in relative humidity with height compared with the subtle increase
in temperature across the inversion. To the best of our knowledge, no previous studies
of TWIs exist in Mexico, making it difficult to assess the intensity of this seasonal mean
inversion. IN comparison with the Caribbean, where the strength of the inversions during
July ranges between 0.5 to 1.0 ◦C [76], the mean value of ∆T = 0.2 ◦C (Figure 8) seems to
be weak. Therefore, it could be possible that this TWI should allow some cloud develop-
ment to produce moderate rains that weaken rapidly by the entrainment of dry air due
to subsidence in the free troposphere [25]. Anomalies of relative humidity are positive
below 700 hPa, which is consistent with the increase in the column content of moisture
diagnosed by FLEXPART. Anomalous subsidence prevailed over the BRB in almost all
vertical levels during almost all seasons (Figure 8) except May, as also shown in Figure 6a
for the mid troposphere.
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Figure 8. Vertical profile of monthly vertical velocity anomalies from 925 hPa to 300 hPa (hPa·s−1,
contours) over the BRB during the wet season (top x-axis). Seasonal mean (May–October) anomalies
(bottom x-axis) of profiles of equivalent potential temperature (K, solid line), relative humidity (%,
dotted line) and temperature (K, dashed line).

In summary, in 1982, despite a higher moisture contribution, convection was inhibited
further over the BRB, leading to precipitation deficits. The reason was the development of a
southern and intense ITCZ over the eastern tropical Pacific, producing an anomalous ascent
that resulted in a strengthened regional Hadley circulation to the north. The anomalous
Hadley circulation generated stronger subsidence over the BRB, inhibiting the development
of deep convection. However, a greater moisture content was trapped below an anomalous
trade wind inversion.

ENSO provides a clear connection with the position of the ITCZ in the equatorial
eastern Pacific, typically migrating southward from its northerly position during El Niño
events [74,81]. Five of the seven moderate to extreme drought events identified in the
present work took place under El Niño conditions, suggesting the ENSO index to be a
useful predictor of droughts over the BRB. However, over the past two decades, El Niño
events have weakened, and their SST anomalies have shifted westward towards the central
Pacific, impeding southward migration toward the Equator of the ITCZ [82]. In fact,
although the 2015 event was classified as canonical El Niño, this event exhibited several
features distinct from the previous strong El Niño, and the eastern Pacific ITCZ failed to
cross south of the Equator even at the El Niño peak. Despite the large magnitude of the
2015 event, the drought over the BRB did not reach the category of moderate (see Figure 2).
How ENSO phenomenon should change with anthropogenic warming is still an ongoing
research [83].

3.3.2. Drought Event in 2005

Regarding the 2005 wet season (Figure 9a) the most significant signal was that SST
anomalies over the Caribbean Sea and the TNA were high (>0.8 ◦C). Negative anomalies
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of low-level wind over the CLLJ core and a cyclonic circulation over the Gulf of Mexico
were evident, inhibiting the water transport from the CAR region, which is in agreement
with the lower moisture over BRB, SOUTH and CAR found during this drought event in
the previous section.
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High SST anomalies (Figure 9a) over the TNA increase the atmospheric water vapor
content and are critical to promote disturbances that can develop into tropical storms.
Consistently, positive vertical velocity anomalies (upward motion) over the Caribbean Sea
and the TNA are found in Figure 9b. In fact, the 2005 Atlantic hurricane season was the
most active on record until the 2020 season, which exceeded that season [84]. The year 2005
also reached the highest SST anomalies (0.9 ◦C) and the largest numbers of named storms
and hurricanes recorded [85].

Figure 9b also shows negative geopotential height anomalies at 850 hPa (red lines)
and positive anomalies at 200 hPa (blue lines) north of the convective regions (green
contours). These anomalies are consistent with Gill’s model of off-equatorial heating [86],
whose solution is a Rossby wave propagating westward from the forcing region with
negative/positive pressure anomalies at the lower/upper levels. Gill’s model also explains
the occurrence of subsidence elsewhere around the rising motion associated with the
warming region.

Finally, it is also necessary to mention that, in this case, we found inter-monthly
variations of θE profiles, with TWI-like profiles in May, June and September driven by
large-scale subsidence (Figure 6b), and these types of profiles were not observed during
July, August and October (figures not shown).

As an overview, the 2005 drought was mainly associated with a reduced moisture
supply from the main sources. A cyclonic circulation over the Gulf of Mexico resulted
from the atmospheric response to a Caribbean Sea-persistent SST heating anomaly and
prevented the moisture from reaching the BRB. Besides this water vapor scarcity, general
subsidence took place over the BRB during the majority of the months, also inhibiting
potential convection.

Data from observations and model simulations suggest that there is little historical
precedent for the 2005 SST event [87]. The contribution of natural climate variability
and anthropogenic forcing to this key event has been evaluated. The interaction of three
independent climate teleconnections has been related to this anomalously high SST in the
southern Caribbean [88], tropical North Atlantic (TNA), Atlantic multidecadal oscillation
(AMO) and Atlantic meridional mode (AMM) climate indices. Donner et al. [88] found that
thermal stress reaching the 2005 level would be extremely rare without any anthropogenic
forcing. In this case, in contrast with the mechanism promoting the 1982 drought, the
influence of global warming provides a background level that increases the risk of future
drought events similar to that in 2005.
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4. Summary and Conclusions

In this paper, the 6 month standardized precipitation–evapotranspiration index (SPEI-6)
in October and the 6 month standardized precipitation index (SPI-6) in the same month
were used to identify and rank drought episodes over the Balsas River Basin (BRB) from
1980 to 2017. According to the classification of McKee et al. [28], drought events were
classified into mild, moderate, severe and extreme, and the most intense events (severe and
extreme) were selected for study. The anomalies in moisture supply during the selected
drought periods were evaluated by using a Lagrangian approach. Finally, climatic fields
at several levels were analyzed in order to investigate the physical mechanisms of severe
drought occurrence. The main conclusions of this study are summarized as follows:

1. The evolution of SPEI-6 and SPI-6 averaged over the BRB are quite similar during
the studied period, suggesting a larger contribution of precipitation deficit than
temperature excess to the drought occurrence.

2. Two major drought events—one severe (2005) and another of extreme intensity (1982)—
were found in the period 1980–2017. The differences between the spatial patterns
obtained by both indices (SPEI-6 and SPI-6) were much reduced, confirming the
important role of precipitation in these two events vs. atmospheric evaporative
demand driven by temperature increase in the Mexican territory.

3. The main moisture sources during the wet season (May–October) for the BRB were
identified. The terrestrial evaporative source of BRB itself was shown to be by far the
main moisture source during the entire wet season, followed by the southern BRB
terrestrial region and the Caribbean Low-Level Jet (CLLJ) core region, which are more
active from June to September.

4. During the drought event of 2005, an anomalously warm SST emerged over the
Caribbean Sea. A persistent elevated SST over the Atlantic warm pool favored
hurricane activity during this year. As a response to this heating, lower-level negative
pressure anomalies and upper tropospheric positive pressure anomalies developed
to the northwest, consistent with Gill’s model. As a consequence of the lower level
cyclonic circulation over the Gulf of Mexico, negative anomalies of the CLLJ winds
arose, and the BRB itself, CLLJ and SOUTH provided a decreased water vapor
contribution. Additionally, this drought event was associated with subsidence that
also prevented convection over the BRB in four of the six months.

5. The mechanisms associated with the the top drought event, which occurred in 1982,
were also determined. An intense and southward-shifted Inter Tropical Convergence
Zone (ITCZ) over the eastern tropical Pacific produced an intense regional Hadley
circulation that generated anomalously strong subsidence over the BRB. This descent
branch of the Hadley cell inhibited the development of deep convection, although this
drought episode was concurrent with an increase in the moisture supply. A strong
trade wind inversion (TWI) driven by this large-scale subsiding air from the upper
troposphere confined the moisture content in the lower layers.

A better understanding of drought causes is clearly of major scientific and social
value. This work identifies the underlying physical mechanisms behind severe droughts
in the BRB and generates an understanding that may help to address the major chal-
lenge of their prediction. Seasonal forecasts of severe droughts would give an advance
warning to manage the detrimental impacts on crops, livestock farming and household
food insecurity associated with a decline in production. An additional knowledge of the
water-hydroelectric supply nexus in combination with seasonal forecasts of droughts in
the BRB would also give the opportunity to manage drought impacts in the energy sector
early. Finally, Mexico’s vulnerability to drought by climate change has been highlighted
in the literature. This work presents a starting point to study the evolution of physical
mechanisms causing droughts in a changing environment.
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