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Abstract: The interplanetary medium variability has been extensively studied by means of different
approaches showing the existence of a wide variety of dynamical features, such as self-similarity,
self-organization, turbulence and intermittency, and so on. Recently, by means of Parker solar probe
measurements, it has been found that solar wind magnetic field fluctuations in the inertial range
show a clear transition near 0.4 AU, both in terms of spectral features and multifractal properties.
This breakdown of the scaling features has been interpreted as the evidence of a dynamical phase
transition. Here, by using the Klimontovich S-theorem, we investigate how the process of self-
organization is under way through the inner heliosphere, going deeper into the characterization of
this dynamical phase transition by measuring the evolution of entropic-based measures through the
inner heliosphere.

Keywords: dynamical phase transition; solar wind; MHD turbulence; S-theorem; Parker solar probe

1. Introduction

During the past fifty years, several properties of the solar wind magnetic field fluc-
tuations have been investigated, by means of both spacecraft data and numerical simula-
tions [1–4]. From earlier space missions to more recent ones, a lot of attention has been
paid to investigate the statistical properties of the different dynamical regimes in terms
of statistics of increments [5], scaling law behavior [6], turbulence and intermittency [7],
energy transfer rate [8], cascade vs. stochastic processes [9], and so on [10]. While ear-
lier space missions (e.g., Helios, Ulysses, ACE, Wind) allowed one to characterize the
physical properties at MHD scales [11–13], the more recent ones (e.g., Cluster, MMS) can
allow us to deeply investigate from sub-ion down to electron scales [14,15]. Moreover,
the recently launched Parker solar probe (PSP) can really be helpful to investigate how
the dynamical properties of the solar wind evolve through the heliosphere, allowing us
for the first time to reach the closest distances (∼0.17 AU) to the Sun [16,17]. Despite its
recent launch (i.e., August 2018), it has still completed 6 orbits around the Sun and it has
allowed us to explore a much different picture of the solar wind near the Sun with respect
to that observed near the Earth, as for example, the emergence of flips in the direction of
the magnetic field, named switchbacks [18,19], lasting anywhere from a few seconds to
several minutes, or remnants of structures have been detected near and far from the Sun,
being hurled into space and changing the topology of the solar wind plasma and magnetic
field [20]. Furthermore, thanks to its journey around the Sun, PSP allowed to characterize
the behavior of scaling regimes at different Heliocentric distances [21], also showing for
the first time the occurrence of a dynamical transition near 0.4 AU from a monofractal to
a multifractal underlying structure of the magnetic field fluctuations across the inertial
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range of scales [22]. This transition is necessarily related to something that breaks the
phase-coherency of inertial range fluctuations, leading to the breakdown of the scaling
properties of the energy transfer rate. Indeed, in the usual formalism of turbulence, the
q-th order structure function of the field Ψ(r, t), defined in terms of increments ∆Ψ` at a
scale `, follows a power-law behavior as

〈(∆Ψ`)
q〉 ∝ Ψ0 〈ε

q/D
` 〉 `q/D (1)

being D the “effective” dimension of the system, depending on the degree of freedom of
the system itself [23,24]. However, both fluids and plasmas are characterized by anoma-
lous scaling features, being the fluctuations of the energy transfer rate depending on `,
i.e., 〈εq/D

` 〉 ∝ `µ(q), usually interpreted as the evidence of intermittency [25–27], such that

〈(∆Ψ`)
q〉 ∝ Ψ0 `

ζ(q). (2)

Since ζ(q) = ζ0 q for monofractal fields then closer to the Sun there could be some
physical mechanisms, as a strong Alfvénicity and/or a reduced compressibility [21], that
are able to suppress the scaling behavior of the energy transfer rate [22], thus making
〈εµ(q)

` 〉 ∝ ε0 and then 〈(∆Ψ`)
q〉 ∝ `ζ0 q; conversely, as larger heliocentric distances (e.g.,

greater than 0.4 AU) are reached the solar wind expansion can lead to a different scaling,
leaving 〈εq/3

` 〉 ∝ `µ(q) far from the Sun, thus providing 〈(∆Ψ`)
q〉 ∝ `ζ(q), and suggesting

an effective dimension D = 3, as based on solar wind observations [2]. These findings can
be also described in a complex system framework, as the emergence of a dynamical phase
transition in dependence of the heliocentric distance r, then the scaling exponents ζ(q, r)
can be written as

ζ(q, r) =

{
ζ0 q, f or r < 0.4AU
f (q, r), f or r > 0.4AU

(3)

being f (q, r) a smooth nonlinear convex function of q [22].
The above findings seem to suggest that more speculations can be investigated by

means of complex system-based approaches [28], allowing us a different view of the topo-
logical properties of the solar wind magnetic field fluctuations. Indeed, the solar wind,
instead of being “only” considered a natural laboratory for plasma physics [2], is an ex-
ample of multiscale dynamical system, evolving through the heliosphere, with completely
different properties across the different dynamical regimes. As an example, the inertial
range can be interpreted as an unstable fixed point of the MHD equations [29], being
characterized by a low-dimensional attractor that can be also easily described via a dis-
crete dynamical system [30]; conversely, a more ergodic-like behavior is found for the
sub-ion/dissipative regime in terms of its phase-space topology, being characterized by
fractal dimensions mostly approaching the full dimension of the system [29]. Moreover,
both regimes are also characterized by different fractal topological structures, the inertial
range being more intermittent than the dissipative one, reflecting its multifractal nature
with respect to the monofractal behavior observed at dissipative scales [29]. These seem to
suggest to further explore the solar wind nature by means of dynamical systems approaches
and complex system-based tools [31].

In the framework of open systems, Klimontovich [32] introduced a theorem, named-
Klimontovich self-organization theorem (S-theorem), to quantify the degree of order in
open nonequilibrium stationary states. Indeed, due to the emergence of coherence, self-
organization and correlations in such nonequilibrium systems, we may assist to a reduction
of the physical chaos (uncorrelated motion of particles). The Klimontovich S-theorem
establishes a criterion to measure the relative degree of self-organization in open systems.

Here, using the solar wind magnetic field data collected during the first and second
encounter of Parker solar probe to the Sun, we investigate how the properties of fluctuations
evolve with the heliocentric distance by applying the Klimontovich S-theorem, allowing us
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a more proper characterization of self-organization through the inner heliosphere. In detail,
we investigate the occurrence of a dynamical phase transition by means of the degree of self-
organization and attempt to identify the physical quantity responsible for the emergence
of such a dynamical transition.

2. The Klimontovich S-Theorem

In the framework of open nonequilibrium dynamical systems near a stationary state,
two of the most important questions are:

• how to compare states characterized by different values of a control parameter η and
• how to compare their relative degree of chaos or provide a measure of the relative

degree of self-organization.

Indeed, when the value of the control parameter η changes, the system can recede
from the equilibrium/stationary state approaching a different state. In such a process, one
can assist the emergence of a self-organization phenomenon in which part of the energy
is spent in correlations between the constituents of the system. As a consequence of the
emergence of self-organization, the system can undergo to a transition towards another
stationary state characterized by a different entropy value, i.e., we can assist to a variation of
the amount of entropy S. Because in the framework of statistical mechanics the equilibrium
state refers to the stationary, space-invariant state characterized by the maximum value
of entropy according to the fixed external constraints, a departure from this state should
be associated with a decrease in the amount of entropy, i.e., we are in the presence of a
reduction of the entropy S′ of the new state in respect to the equilibrium state value Seq,

∆S = Seq − S′. (4)

The observed entropy variation ∆S is, generally, a consequence of the emergence of
correlations which have the effect of reducing the effective number of degrees of freedom
of the system.

According to Klimontovich [32], it is possible to derive a method to compare the degree
of self-organization between two stationary states by means of an entropic functional,
directly approaching to the problem using Boltzmann’s H-theorem.

Let f0(X) be the probability distribution of the equilibrium state and let f1(X, t) be the
one for a nonequilibrium state (which, by definition, depends upon time) in the case of an
isolated/closed system. Then, we know that if f1(X, t)→ f0(X) when t→ ∞, according to
the H-theorem, the functional H must satisfy:

H =
∫

ΩX

f1(X, t) log
f1(X, t)
f0(X)

dX ≥ 0, (5)

being ΩX the support over which the distributions are defined. Mathematically speaking,
the functional H is the Kullback–Leibler divergence, i.e., the distance in probability between
f1(X, t) and f0(X) which is a measure of the error in describing the dynamical process X
by means of f0(X) when the real distribution is f1(X, t). In other words, the above quantity
provides a measure of the distance from the equilibrium state in terms of a variation
of entropy.

The above considerations were extended by Ref. [32] and Klimontovich [33] to com-
pare the degree of self-organization between different stationary states depending on a
control parameter η in the case of open nonequilibrium systems. This is formulated in
what is known as Klimontovich S-theorem.

Because the change of a control parameter from a certain value η0 to a different one η1,
i.e., η0 → η1 = η0 + δη in the case of open systems does not ensure that energy is conserved,
the direct comparison between the entropy values of two states characterized by a different
values of the control parameter η to estimate the degree of self-organization is not feasible.
Klimontovich S-theorem [32,33] solves this problem by constraining the distributions to
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have the same energy (information content) in order to be compared. In order to do this,
we introduce the effective Hamiltonian He f f , defined by

He f f (X) = − log f0(X, η0), (6)

where f0(X, η0) is the distribution function associated with the state with control parameter
η0, which is taken as the reference state. Then, if f1(X, η1) is the distribution function
associate with the new state characterized by a control parameter η1, the S-theorem requires
to renormalize the reference state distribution function, so that 〈He f f 〉 f̃0

= 〈He f f 〉 f1 , i.e.

∫
ΩX

f̃0(X, η0) log f0(X, η0)dX =
∫

ΩX

f1(X, η1) log f0(X, η0)dX, (7)

where f̃0 is the renormalized reference state f0(X), which is defined as

f̃0(X, η0) =
f

1/Te f f
0 (X, η0)∫

ΩX
f

1/Te f f
0 (X, η0)dX

, (8)

where Te f f is an effective temperature that is obtained by solving the Equation (7). This
effective temperature Te f f is expected to be Te f f > 1 if the reference state is the one of
maximum chaos (i.e., the more entropic one), otherwise Te f f < 1. In this framework, the ef-
fective temperature is the quantity appointed to estimate the degree of self-organization,
providing an estimate of the fraction of energy spent in correlations, i.e., is a measure of the
energy/heat to add to the reference state f0 to change it into the more organized state f1.

Now, in this framework, the function in Equation (5) is replaced by the relative entropy
∆S given by

∆S =
∫

ΩX

f1(X, η1) log
f1(X, η1)

f̃0(X, η0)
dX ≥ 0. (9)

We emphasize that the relative entropy given above can be regarded as the relative
entropy in terms of difference between two-states entropies if

S1 = −
∫

ΩX

f1(X, η1) log f1(X, η1)dX (10)

S̃0 = −
∫

ΩX

f1(X, η1) log f̃0(X, η0)dX. (11)

In other words, the entropy of the equilibrium state is given by the mean effective
energy computed over the nonequilibrium stationary distribution [34]. Thus, we can argue
that the Equation (9) becomes

∆S = S̃0 − S1. (12)

It is important to remark that if the result of the Equation (7) returns a value Te f f < 1,
then it means that the state of maximum chaos is not the state “0”, but the state “1”, so that
for a correct evaluation of the entropy, variation is necessary to exchange the two states.

3. Data Description and Methods
3.1. Data

In this work, we use magnetic field measurements collected by the FIELDS instrument
onboard the Parker solar probe (PSP) at 4 sample-per-cycle cadence [16,35]. In particular,
we focus on two already investigated time intervals [21,22], when the PSP approached the
inner heliosphere. These two time intervals refer to the first and the second encounters,
from 15 October 2018 to 14 December 2018 (first encounter), and from 16 March 2019 to 10
April 2019 (second encounter), respectively. During these time intervals, PSP explored the
inner heliosphere in the range between 0.17 AU and 0.66 AU near the heliospheric equator.
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A detailed discussion of the physical conditions of the two selected time intervals can be
found in Alberti et al. [22] and Chen et al. [21].

Data are released in the heliocentric radial-tangential-normal (RTN) reference system
and freely retrieved from the Space Physics Data Facility (SPDF) Coordinated Data Analysis
Web (CDAWeb) interface at https://cdaweb.gsfc.nasa.gov/index.html/ (accessed on 8
February 2021). Here, we consider the magnetic field normal component (BN) and intensity
resampled at a resolution of 1 s. This choice is related to the fact that the normal component
is typically the best one to be analyzed in the framework of turbulence and self-organization,
being less affected by the large scale interplanetary magnetic field (IMF) structure (i.e.,
the Parker spiral structure) and velocity field changes [36].

Figure 1 shows the behavior of the magnetic field intensity, |B|, and its normal compo-
nent, BN , for the two selected time intervals separately. According to the Parker theory [37],
the magnetic field intensity depends on the distance from the Sun on ∝ R−2 as shown in
Figure 2, where we report the behavior of the magnetic field intensity (averaged using data
from both the encounters) as a function of the radial distance R.
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Figure 1. The magnetic field intensity (|B|) and the normal component (BN) for the two selected time
intervals relative to the first (upper plots) and second (lower plots), respectively.

Since we will focus our analysis on the inertial range dynamics, the magnetic field
normal component has been filtered to remove the long time trend using a high-pass filter
with a frequency cut-off fcut ' 4× 10−4 Hz. Figure 3 shows the power spectral density
(PSD) of the original time series for the first encounter together with those corresponding
to the filtered time series below and above the frequency cut-off fcut, while Figure 4 shows
the filtered time series, B f t

N (t), for both time intervals.

https://cdaweb.gsfc.nasa.gov/index.html/
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Figure 2. The average magnetic field intensity (|B|) as a function of the radial distance, R. The solid
line is a power-law fit according to expected scaling with the distance, i.e., |B| ∼ R−2.
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Figure 3. The power spectral density (PSD) of the original time series of the normal component
together with those corresponding to the filtered time series below and above the frequency cut-off
fcut. The PSD of the normal component has been scaled by a factor 10 for visual purposes.
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Figure 4. The filtered time series B f t
N (t) for both the first and the second encounter.

3.2. Methods

As discussed in Section 2, the most important quantity to be evaluated using the
Klimontovich S-theorem is the effective temperature Te f f , being the quantity necessary to
evaluate the entropy reduction/variation ∆S. This can be done by numerically solving the
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integral equation (7), which can be recast in a root finding problem for the function G(T)
defined by

G(T) = I1(T)− I0, (13)

where I1(T) and I0 are, respectively, the left-hand side and the right-hand side of Equa-
tion (7), i.e.,

I1(T) =
∫

ΩX

f̃0(X, η0) log f0(X, η0)dX =
∫

ΩX

f 1/T
0 (X, η0)∫

Ω′X
f 1/T
0 (X′, η0)dX′

log f0(X, η0)dX (14)

and
I0 =

∫
ΩX

f1(X, η1) log f0(X, η0)dX. (15)

Thus, the effective temperature is that for which G(T)
∣∣
T=Te f f

= 0.

In our analysis, Equation (13) is solved using the Newton–Raphson method (also
known as tangent method) with a tolerance value |G(Topt)| ≤ 0.0001.

The effective temperature Te f f provides a quantitative measure of the relative order
between two selected states: if Te f f > 1, the state “0” is more disordered than the state
“1”; otherwise, the state “1” is more disordered than the state “0”. This means that, when
comparing more than two signals, we firstly need to identify the reference state, i.e., the
state of maximum physical chaos. To this purpose, it is useful to introduce a matrix D,
which we call disorder matrix, whose elements are defined by following the meaning of
effective temperature:

Dij =

{
1 if Tij < Tji

0 if Tij > Tji
, (16)

where Tij is the effective temperature found by imposing the renormalization to fi(X, ri)
distribution and by fixing the f j(X, rj) distribution. In this framework, the more disordered
state i can be defined as the one satisfying the condition

n

∑
j=1
j 6=i

Dij = 0. (17)

Another important issue in solving Equation (7) is the correct evaluation of the distribu-
tion functions f (X). In this work, we use a uniform-binning method to evaluate distributions.
Furthermore, in order to compare the distributions for different values of the selected con-
trol parameter (here the radial distance R), we must define a common grid over which fi
and f j are computed. The grid ωX (or support) is a uni-dimensional vector whose sup and
inf correspond to the maximum and minimum value of the concatenated signal amplitudes,
respectively. In other words, let si and sj be the signals corresponding to control parameters
Ri and Rj, respectively, then the concatenated signal is given by s_i sj (for all i and j, if more
than two signals have to be compared). Thus, if si = (1, 2, 3, 4) and sj = (5, 6, 7, 8), then
s_i sj = (1, 2, 3, 4, 5, 6, 7, 8).

Since the estimation of Te f f is done by solving an integral equation, and since the
integration step dx is the distance between two near grid-points, clearly the precision of
the algorithm is a function of the number of bins chosen to estimate fi and f j. In detail,
the numerical approximation is better the smaller the integration step is, and thus, the
number of bins has to be sufficiently large. On the other hand, if the number of bins is
too large, each bin will not contain enough information for an estimation of fi and f j to be
accurate. Hence, the number of bins is typically chosen to be equal to the square root of the
number N of data points.
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4. Results

The main aim of this work is to study how self-organization takes place within the
heliosphere and, especially, its relation with the radial distance R. This is for providing
a deeper investigation of the radial dependence of spectral and scaling properties, as
recently pointed out in Refs. [21,22]. Thus, we set as control parameter the radial distance
R of PSP from the Sun, organising magnetic field measurements for the two encounters
into NR = 50 distance intervals, each of width 0.01 AU, from 0.17 AU to 0.66 AU. This
choice is reasonable since we are interested in depicting the radial behavior of magnetic
field amplitude fluctuations without taking into account the radial velocity dependence
that are not fully available for the two considered encounters. Clearly, from a physical
point of view, the distance is not the physical quantity that is expected to control the
changes of the properties of the magnetic field fluctuations. However, this is the most
direct and reasonable choice to start the investigation on the occurrence of a dynamical
phase transition with the radial distance from the Sun. Furthermore, we assume that in
each selected interval of 0.01 AU, the fluctuation field is in a quasi-stationary state (i.e.,
the observed distributions are stationary).

As a first step, we evaluate the Shannon entropy S(R) of the high frequency part of
the normal component B f t

N of the magnetic field, i.e., we compute

S(R) = −
∫

Ω(B f t
N )

f (B f t
N ; R) log f (B f t

N ; R)dB f t
N (18)

as a function of the radial distance R from the Sun.
Figure 5 shows that the entropy decreases with the radial distance so that we could

conclude that the magnetic field fluctuations are more entropic near the Sun. However, this
conclusion could be misleading due to the fact that entropy is an additive and extensive
quantity which is also a function of the total energy content of the system. Consequently,
to be more entropic does not assure that the system is more or less organized, being this
also a function of the total energy content [32].

6

5

4

3

2

1

0

S(
R

) (
na
ts

)

0.70.60.50.40.30.2

R  (AU)

Figure 5. Behavior of the Shannon entropy S(R) of the filtered normal component of the magnetic
field as a function of the radial distance R from the Sun.

Indeed, since the magnetic field magnitude is decreasing with the distance also the
magnetic energy should be a decreasing function of R. However, by evaluating the behavior
of the Shannon entropy S(R) as a function of 〈(B f t

N )2〉 (see Figure 6), we clearly note a
logarithmic dependence between the Shannon entropy S(R) and the mean squared value
of the filtered normal component, i.e., S(R) = a + b log10〈(B f t

N )2〉.
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Figure 6. The Shannon entropy S(R) of the filtered normal component of the magnetic field versus
the mean squared value of the filtered normal component.

As a consequence of the previous considerations in order to evaluate the real evolution
of the entropy and the relative degree of self-organization (degree of order) as a function of
the radial distance R, we need to apply the Klimontovich S-theorem. First of all, we have
to choose the reference state by a pairwise comparison between states using Equation (17).
Figure 7 shows the disorder matrix D computed as described in Section 3.2 using the
distribution functions, fi(Ri) and f j(Rj), for each couple of different distributions.

0.6

0.5

0.4

0.3

0.2

R j
 (A
U

)

0.60.50.40.30.2
Ri (AU)

Figure 7. The disorder matrix D. Here, black color refers to Dij = 0 and white color to Dij = 1.

According to the disorder matrix D, the state associated with the maximum disorder
is the one corresponding to the maximum distance explored by PSP, being ∑j Di,j = 0.
Thus, in analysing the degree of self-organization using the Klimontovich S-theorem, we
have set as reference state “0” the one at the maximal distance, i.e., the one at R = 0.66 AU.

Figure 8 shows the results of the Klimontovich S-theorem analysis in terms of effective
temperature Te f f as a function of the radial distance R from the Sun. The Te f f shows a
decrease with the distance from the Sun, indicating that the fluctuations of the normal
component BN in the inertial range show an increase of the degree of self-organization
moving towards the Sun. In other words, we should expect that there is an increase of the
entropic character of the fluctuations with the radial distance R. In particular, all the states
associated with a radial distance less than the reference state show an effective temperature
Te f f > 1, supporting the hypothesis that the fluctuations at lower distances from the Sun
are characterized by a higher degree of self-organization according to S-theorem.
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Figure 8. The effective temperature Te f f as a function of the radial distance R from the Sun. Solid
line is an eye-guide. The horizontal dashed line refers to the critical value Te f f = 1.

Figure 9 reports the behavior of the entropy reduction/variation ∆S(R) as a function
of the radial distance R. Entropy reduction/variation decreases with the radial distance,
indicating that, in spite of the higher absolute value of the entropy observed in Figure 5
closer to the Sun, the fluctuations at inner distances are less entropic once the entropy is
renormalized to take into account the total energy of the system. Furthermore, the behavior
of the ∆S(R) seems to follow a sigmoid shape (Hill function), suggesting the existence of a
transition region approximately at R = [0.420± 0.045] AU.

1.0

0.8

0.6

0.4

0.2

0.0

Δ
S

=
S 0
−
S(
R

) (
na
ts

)

0.70.60.50.40.30.2

R  (AU)

Figure 9. The behavior of the entropy reduction/variation ∆S(R) as a function of the radial distance
R. Solid line is best fit using the Hill function. The vertical solid and dashed lines refer to the
transition region R = [0.420± 0.045] AU.

Looking to the trend of ∆S(R), we can observe how there is a clear difference between
inner heliospheric regions (R < 0.4 AU) and outer ones, where the inner region fluctuations
show a less entropic and more self-organized character. The observed change in the
entropic nature of fluctuations suggests the occurrence of a dynamical phase transition in
the fluctuation field with the radial distance.

We notice how the observed transition region is well in agreement with previous find-
ings by Chen et al. [21] and Alberti et al. [22] that have observed changes in several physical
quantities (normalized cross-helicity, Alfvénicity, spectral features, scaling exponents and
multifractal spectral widths ∆α(R)) in the same distance interval.

5. Discussions

Here, we have investigated the dependence of the degree of self-organization by
means of Klimontovich S-theorem using, as a control parameter, the radial distance R from
the Sun. As already mentioned above, R is clearly not the relevant physical quantity in
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forcing self-organization, being, indeed, a simple parameter that can be used to study the
fluctuation field evolution. Thus, in what follows, we attempt to correlate the observed
dynamical evolution with some physical quantities. Among the different physical quanti-
ties investigated in the recent literature [21,22], one of the most promising quantities that
could be responsible for the order-disorder transition observed as a function of the radial
distance, is the magnetic field intensity. Indeed, as well as reported in the literature [38],
a strong magnetic field in a specific direction, could inhibit fluctuations in that direction.
Thus, we can expect that the features of fluctuation field could strongly depend on the
magnetic field intensity.

Figure 10 shows the behavior of the effective temperature Te f f in comparison with
the average magnetic field intensity 〈|B|〉. Both the quantities show a similar trend, i.e., a
decreasing with the radial distance, suggesting that there could be a relationship between
the two quantities. This relation is clear by plotting Te f f versus log10〈|B|〉 (see Figure 11).
In fact, the degree of self-organization as measured by the effective temperature linearly
scales with the logarithm of the magnetic field intensity (Pearson’s r2 ' 0.95). This
clear relationship between Te f f and log10〈|B|〉 supports the hypothesis that magnetic field
intensity plays a relevant role in increasing the degree of order of fluctuations of the
magnetic field. The log10〈|B|〉 plays the role of a control parameter.
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Figure 10. The trend behavior of the effective temperature Te f f (bottom panel) in comparison with
the average magnetic field intensity 〈|B|〉 (up panel).
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Figure 11. The effective temperature Te f f versus log10〈|B|〉. The solid line is a linear fit.

To verify the above hypothesis, we plot the entropy reduction/variation ∆S vs. log10〈|B|〉
in Figure 12. A clear continuous dependence of the entropy reduction/variation ∆S as a
function of the log10〈|B|〉 is found, supporting that the last quantity plays the role of the
control parameter. Furthermore, the observed trend of ∆S as a function of the log10〈|B|〉 is
the signature of the occurrence of a phase transition. This transition resembles the typical
behavior of a continuous phase transition where the log10〈|B|〉 is the control parameter.
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Figure 12. The entropy reduction/variation ∆S versus log10〈|B|〉. The dashed curve is a sigmoid fit
of the data.

Resuming our findings, the observed (dynamical) phase transition seems to occur in
correspondence of a value of the magnetic field intensity of the order of B ' 20 nT, which
corresponds to a radial distance R ' 0.4 AU from the Sun. This distance agrees with both
the previous findings and the results by recent works on different quantities [21,22].

6. Summary and Conclusions

In this work, we have investigated the occurrence of a nonequilibrium phase transition
in the inertial range fluctuation field of IMF as a function of the radial distance from the
Sun. The motivation for this work can be found in the previous analyses by Chen et al. [21]
and Alberti et al. [22], which provided an indication for the occurrence of a dynamical
change of several physical quantities and properties of the fluctuations in the inertial range.
In particular, Chen et al. [21] evidenced how at a distance between 0.3 AU and 0.4 AU,
there is a significant reduction of the Alfvénic character of fluctuations, a decrease of the
cross-helicity σc, and a continuous steepening of the magnetic field spectral index with the
radial distance from the Sun. Furthermore, Alberti et al. [22] observed a breakdown of the
multifractal character of magnetic field fluctuations in the inertial range moving towards
the Sun at a distance near 0.4 AU. All these previous features suggest that near 0.4 AU, the
solar wind turbulent features can undergo a dynamical phase transition.

Here, we provided evidence of this dynamical phase transition by means of the
Klimontovich S-theorem, which allows one to quantify and compute the degree of self-
organization between two nonequilibrium stationary states in open systems. Our results
suggest that the degree of self-organization, as quantified by the effective temperature Te f f ,
decreases with the radial distance from the Sun. This reduction of the self-organization
and relative ordering of the solar wind turbulent fluctuation field with the radial distance
was already found in a previous paper by Consolini and de Michelis [39], where a decrease
in the degree of order between solar wind turbulence at 1A and 5 AU was observed. This
decrease was interpreted as an evidence of decaying turbulence. Conversely, to these
results Consolini and de Michelis [39], the observed changes of the degree of order seem to
be of a different nature. Indeed, this is accompanied by a continuous change of the entropy
reduction ∆S, which resembles the typical shape of a continuous transition between two
different states. Furthermore, we have found that the magnetic field intensity |B| (or
more precisely, log10 |B|) can play the role of a control parameter. This seems a reasonable
quantity which can inhibit some degree of freedom in the system, freezing fluctuations
along the magnetic field direction. Apart from the previous considerations and results on
the dependence of various quantities on the radial distance [21,22], a possible origin of the
observed transition could be a change from a forced turbulence to decaying turbulence,
as also observed in simulations of Alfvénic turbulence by Chen et al. [40].

In conclusion, in this work, we have demonstrated the occurrence of a dynamical
nonequilibrium phase transition in the solar wind magnetic field fluctuations in the in-
ner heliosphere, suggesting some possible mechanisms that could be responsible for the
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observed dynamical changes. More work is necessary to better identify the mechanisms
responsible for the observed transition.
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