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Abstract: This study presents the PM10 concentration, respiratory and cardiovascular disease hospital
admissions evolution in the Ciuc basin for a period of 9 years (2008–2016), taking into consideration
different meteorological conditions: boundary layer, lifting condensation level, temperature-humidity
index, and wind chill equivalent chart index. The PM10 and hospital admissions evolution showed
a very fluctuated hourly, weekly, monthly, yearly tendency. The PM10 concentration in winter
(34.72 µg/m3) was 82% higher than the multiannual average (19.00 µg/m3), and almost three
times higher than in summer (11.71 µg/m3). During the winter, PM10 concentration increased
by an average of 9.36 µg/m3 due to the increased household heating. Climatological parameters
have a demonstrable effect on the PM10 concentration variation. Children, the elderly and men
are more sensitive to air pollution, the calculated relative risk for men was (RR = 1.45), and for
women (RR = 1.37), respectively. A moderate correlation (0.51) was found between PM10 and
pneumonia (P), while a relatively weak correlation (0.39) was demonstrated in the case of PM10

and upper respiratory tract infections (URTI). Furthermore, except thermal humidity index (THI),
strong negative correlations were observed between the multiannual monthly mean PM10 and the
meteorological data. The PM10 followed a moderate negative correlation with the boundary layer
(−0.61). In the case of URTI and P, the highest number of hospital admissions occurred with a 5 to
7-day lag, while the 10 µg/m3 PM10 increase resulted in a 2.04% and 8.28% morbidity increase. For
lung cancer (LC) and cardiovascular diseases (AMI, IHD, CCP), a maximum delay of 5–6 months
was found. Three-month delay and an average growth of 1.51% was observed in the case of chronic
obstructive pulmonary disease (COPD). Overall, these findings revealed that PM10 was and it is
responsible for one-third of the diseases.

Keywords: PM10; health impact; specific atmospheric conditions; Carpathian Mountains

1. Introduction

Ambient air pollution plays an important role in a broad spectrum of health disorders,
emerging as a leading worldwide environmental health problem. The World Health Organi-
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zation estimates that 22% of global death and disability can be attributed to environmental
factors [1].

Epidemiological studies revealed worsening life quality and health symptoms, such
as deterioration of lung function due to elevated particle pollution levels resulting in an
increased use of medication [2–5]. Short-term symptoms from exposure to air pollution
include itchy eyes, nose and throat, wheezing, coughing, shortness of breath, chest pain,
headaches, nausea, as well as respiratory infections [6]. Long-term exposure to high concen-
trations of PM10 (particulate matter with a diameter of 10 µm or less) can result in several
health impacts and premature death like lung cancer, cardiovascular disease, chronic respi-
ratory illness, and allergies [7,8]. PM10 can reach the trachea bronchial and alveolar regions
of the respiratory tract, having a greater impact on human health. Noteworthy, specific
groups, people with cardiovascular risk factors or pre-existing cardiovascular disease
(CVD) are more vulnerable to the aforesaid harmful effects.

There is an increasing body of evidence showing air pollution as a critical risk factor
for cardio-respiratory morbidity and mortality. Numerous studies have shown that there
is a strong association between exposure to particulate matter and the increased risk of
cardiovascular and respiratory disease [9–16]. In 2004, the American Heart Association
(AHA) published a scientific statement regarding air pollution and cardiovascular disease,
concluding that particulate matter is a large contributor to cardiovascular morbidity and
mortality [12]. In 2010, the abovementioned statement was updated, providing a compre-
hensive review of new evidence linking exposure to PM with cardiovascular disease [12].

Existing statistics are based on large cohort studies conducted mostly in North Amer-
ica and Western Europe, with less information available from Eastern Europe [17–24].
According to air monitoring databases [25], people living in Eastern Europe are generally
subjected to higher levels of PM10 than those in Western Europe. The PM10 exposure on
human health shows variability, so the data cannot be extrapolated to other regions and
populations, for the reason that various specific factors such as demographic and genetic
factors, may affect the impact of PM10 on human health.

It has been shown that air particulates with a diameter of less than 10 µm (PM10)
can reach the trachea bronchial and alveolar regions of the respiratory tract, having a
substantial impact on human health [26]. Particulate matter is often divided into two main
groups based on characteristics, sources, and potential health effects: fine particles, PM2.5
(with a diameter between 0.1 and 2.5 µm) and coarse particles, PM10-2.5 (having a diameter
between 2.5–10 µm).

In Romania, only a few studies have been published in terms of respiratory health
effects of PM10 [27]. There is an unmet need for studies addressing the burden of pollution-
attributable cardio-respiratory diseases in our country.

The purpose of this study is twofold: firstly, to analyze the temporal distribution of
ambient particulate matter (PM10) in the Ciuc basin over a period of 9 years (2008–2016),
and secondly, to assess the short- and long-term effects on respiratory and cardiovascular
morbidity taking into account the meteorological conditions.

2. Materials and Methods
2.1. Studied Region

The Ciuc basin is located in the middle of the Eastern Carpathians, at an altitude of
650 m, with a population of ~150,000 (Figure 1). Due to its enclosed character, the Ciuc
basin is known for its specific microclimatic and meteorological conditions, with long
episodes of static stability and thermal inversion periods, hence favoring the accumulation
of pollutants.

2.2. Air Pollution, Medical and Meteorological Data

The PM10 concentration data were obtained from the HR01 regional monitoring station
located near the municipality of Miercurea Ciuc, the “Cold Pole” of Romania [28,29],
at 46.33◦ N, 25.81◦ E, at an elevation of 697 m a.s.l. PM10 data were sampled with an
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automated analyzer type LSPM10; for further analysis, the daily gravimetric and hourly
values (µg/m3) were used.
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The daily respiratory and cardiovascular hospital admission data from 1 January 2008
to 31 December 2016 (3288 days) were obtained from the Regional Emergency Hospital
of Miercurea Ciuc, which is the single regional hospital in the studied region. During
the studied period, 18,286 hospital admissions were registered [27]. The selection was
made according to the International Classification of Disease, 10th Revision (ICD-10) by
the World Health Organization. Seven different types of diseases were studied: lung
cancer -LC (ICD-10 code C33–C34); acute myocardial infarction -AMI (ICD-10 code I21);
ischemic heart diseases-IHD (ICD-10 code I20-I25 except I21); chronic cardiopulmonary
disease-CCP (ICD-10 code I27.9); upper respiratory tract infections-URTI (ICD-10 code J00-
J06); pneumonia-P (ICD-10 code J12–J18); chronic obstructive pulmonary diseases-COPD
(ICD-10 code J44). Hospital admissions were examined based on sex and age groups [0–5],
(5–14], (14–40], (40–60] and 60+ years, respectively. The number of patients coming from
outside the basin was negligible.

Climatological parameters such as daily temperature, precipitation amount and the
relative humidity index were provided by the National Meteorological Administration (Me-
teo Romania). Regarding the lifting condensation level (LCL) it was calculated according
to Equation (1):

LCL = 20 +
T
5
(100− RH) (1)

where: LCL—lifting condensation level, T—air temperature (◦C), RH—relative humidity (%).
Furthermore, the temperature-humidity index (THI) and the wind chill equivalent

chart index (WCT) were also calculated, LCL and THI, being strongly related to the PM10
concentration evolution, while WCT is a dimensionless human comfort index. Lastly, the
daily value of the boundary layer was extracted from ERA5 reanalysis using the mean
value of all the pixels covering the Ciuc basin region [30,31].

2.3. Statistical Analysis

In order to determine the monthly, seasonal and yearly PM10 concentrations, the
daily gravimetric measurements were used, while the diurnal and weekly variations were
estimated by using the hourly PM10 concentrations. The relationship between the daily
hospital admissions, meteorological conditions, and PM10 concentration, was determined
using different statistical indices: mean, standard deviation, coefficient of variation, min-
imum, median, maximum, 25th and 75th percentile values, and confidence interval. To
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assess the impact of PM10 contribution to respiratory and cardiovascular morbidity, dif-
ferent methods were used, such as the Pearson correlation, the Fourier transform, the
Aunan’s calculation procedures, relative risk, as well as the morbidity increase caused by
a 10 µg/m3 rise in PM10. The Pearson correlation coefficient was considered statistically
significant (p-level < 0.05), if the r value was greater than 0.203 or below −0.203.

On the other hand, the PM10 values resulted during the household heating with
wood (HPM10) were estimated using Equation (2), hence the residential heating contri-
bution to outdoor PM10 was determined by considering the average winter and summer
concentrations as well as the average boundary layer (BL) height ratio:

HPM10 = CPM10w − (
BLs
BLw

× CPM10s) (2)

where: HPM10—the average PM10 increase during winter caused by heating (µg/m3),
CPM10w—the average PM10 in winter period (µg/m3), CPM10s—the average PM10 in sum-
mer period (µg/m3), BLs—the average boundary layer in summer (m), BLw—the average
boundary layer in winter (m).

In order to estimate the health effects of cold and heat extremes, according to Dobri-
nescu et al. [32], five discomfort classes can be established: severe danger from cold (WCT
≤ −35 ◦C), extremely cold (−35 ◦C > W ≤ −20 ◦C), uncomfortably cold (−20 ◦C > THI ≤
0 ◦C), uncomfortably hot (66 ≤ THI < 80), severe danger from heat THI ≥ 80, respectively:

THI = (1.8TA + 32)−
(

0.55− 0.55RH
100

)
(1.8TA − 26) (3)

where: TA is the air temperature (◦C) measured at a standard level (2 m).
The critical threshold above which the human body feels strong discomfort is 80 units.

THI is expressed in dimensionless form.
In the winter season, the severe danger from cold, extremely cold and uncomfortably

cold was estimated, using WCT:

WCT = 13.12 + 0.6215TA − 11037FF0.16
10 + 0.3965TAFF0.16

10 (4)

where: FF10 is the wind speed (km/h) measured at 10 m a.g.l.
Usually, WCT only expresses a human sensation and it is linked to the way the human

skin perceives the temperature on a calm day.
Regarding the PM10 concentration data, four classes were established: low < 25 µg/m3,

moderate between 25 µg/m3 and 37.5 µg/m3, high ranging from 37.5 µg/m3 to 50 µg/m3,
and very high concentrations > 50 µg/m3, respectively.

Since there is a latency period between exposure and appearance of disease the Fourier
transform method was used to decipher the relation. The Fourier transform is a mathe-
matical technique that transforms a signal from the time domain to the frequency domain,
showing that any wave form can be rewritten as the sum of sinusoidal functions [33], the
method has been applied to the air pollution, medical and meteorological time series as
well. The Fourier transform gives us a point of view in order to better understand the
association between exposure to PM10 and the influence of climate on hospital admissions.

It is formed by a set Wn(t) = eint, n = 0.1 . . . orthogonal functions, of period 2π:

F(ω) =
∫ ∞

−∞
f (t)e−iωt∂t (5)

ω = 2π f (6)

where: | f (ω)| is the amplitude of each component ω of the signal [34].
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To assess the total damage of PM10 to human health in the Ciuc basin Aunan’s
calculations procedures were used, briefly, the annual number of symptom-days was
calculated from the daily mean PM10 concentration variation [35].

The odds ratio (OR) was estimated from the regression coefficient β and the increase
of concentration level from baseline to Ci:

ORi = eβ∗∆Ci (7)

Pab s = (OR − 1) × 100 (8)

The hypothetical zero-concentration prevalence is given by:

p0 =
pabs (Ci)

ORi −ORi × pabs (Ci) + pabs (Ci)
(9)

The health effects of exposure-response functions generally are derived from the
relation between daily mean concentrations, Ci, and the daily prevalence of the effects, p(Ci):

Ssum =
365

∑
i = 1

(p(Ci) × N =
365

∑
i = 1

p0 × exp(β× Ci)N (10)

According to the literature the annual number of symptom days (Ssum) in a population
(N) ideally can be estimated by calculating the daily number of affected persons in the
respective population and sum over the year (Equation (10)).

Starting from daily hospital admission and PM10 concentration databases, we analyzed
the evolution of respiratory diseases from a 1 to 10 days delay. In the case of CVD, a time
delay of 1 to 10 months was used. As boundary condition was set, that only positive values
will be followed, in the case of PM10 only the changes larger than 5 µg/m3 were evaluated,
and the baseline was set to 10 µg/m3. The two variables had to meet the set conditions
at the same time: if ∆PM10 > 5 µg/m3 and Morbidity > 0. In addition, we considered
the percentage increase of cases concerning the PM10 change of 10 µg/m3, comparing the
average increase to the number of days tested. To determine the time delay, the day/month
corresponding to the maximum value obtained with the time difference tested was taken.

3. Results

The results show that the multiannual PM10 concentration is 19.00 µg/m3 and on an
average day 6 respiratory and cardiovascular diseases have been recorded (Table 1). The
coefficient of variation (CV) for PM10 and WCT was 0.61, and 0.93, respectively. The lowest
coefficient variation was found in the case of P and COPD with a value of 0.37.

3.1. Ambient PM10 Trend

Multiannual average concentrations of PM10 were used to detect hourly, daily, and
weekly changes. The hourly mean concentration of PM10 ranged between 17.0 and
30.1 µg/m3. Daily PM10 values show the bimodal daily pattern, the first peak is in the
morning correlated to the rush hours of road traffic (8–11 a.m.) and the second peak occurs
at midnight (Figure 2).

The lowest concentration values were found on Sundays (20.8 µg/m3) and Mondays
(19.8 µg/m3), known as the “holiday and after holiday effect”, because of lower emissions
from vehicle traffic and other sources [36]. At the beginning of the week, the daily PM10
concentrations are starting to increase, and reach the maximum on Wednesdays 25.9 µg/m3

and Thursdays 25.5 µg/m3. The monthly PM10 concentrations show significant fluctuations
over the year (Figure 3). The lowest PM10 value was measured in June: 10.36 µg/m3, when
the boundary layer level is three-time higher than in winter.



Atmosphere 2021, 12, 289 6 of 21

Table 1. Summary statistics of daily hospital admission numbers, meteorological conditions and PM10 concentration. –LC:
lung cancer; AMI: acute myocardial infarction; IHD: ischemic heart diseases; CCP: chronic cardiopulmonary disease; URTI:
upper respiratory tract infections; P: pneumonia; COPD: chronic obstructive pulmonary diseases; GT: global trends; Prec.:
precipitation; LCL: lifting condensation level; BL: boundary layer; THI: thermal humidity index; WCT: wind chill equivalent
chart index.

Types of Diseases Mean + SD CV Min P(25) P(50) P(75) Max CI95− CI95+

LC 0.48 ± 0.34 0.70 0.03 0.21 0.39 0.68 1.39 0.42 0.54
AMI 0.13 ± 0.08 0.62 0.00 0.07 0.13 0.19 0.35 0.12 0.15
IHD 0.38 ± 0.33 0.88 0.00 0.13 0.23 0.55 1.35 0.31 0.44
CCP 0.39 ± 0.26 0.66 0.00 0.17 0.39 0.55 1.32 0.34 0.44
URTI 0.77 ± 0.45 0.58 0.10 0.45 0.69 1.03 2.39 0.69 0.86

P 2.71 ± 1.13 0.37 1.13 1.90 2.57 3.45 5.82 2.52 2.90
COPD 0.70 ± 0.26 0.37 0.19 0.51 0.68 0.84 1.65 0.66 0.75

GT 5.57 ± 1.65 0.30 2.74 4.30 5.41 6.32 11.82 5.26 5.88
Meteo. conditions

Prec ** 49.31 ± 34.41 0.70 0.20 24.05 38.50 70.63 177.30 42.82 55.80

LCL * 462.23 ±
208.50 0.45 1.43 289.59 497.90 600.38 1000.63 422.91 501.56

BL * 428.87
±156.49 0.36 135.78 278.89 467.57 549.40 748.20 399.35 458.38

THI * 32.33 ± 11.53 0.36 −2.80 25.83 35.13 40.25 54.17 30.16 34.51
WCT * 4.95 ± 4.63 0.93 −7.41 2.04 5.34 7.90 15.32 4.08 5.82
PM10 19.00 ± 11.59 0.61 4.39 11.61 14.51 21.50 57.71 16.82 21.19

* monthly average values ** monthly summaries values.
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Figure 3. Box-plot analysis of monthly PM10 concentrations (multiannual means). The lower (grey)
and upper (yellow) limits represent the first (25P) and third (75P) quartiles, and the ends of the
whiskers represent the minimum and the maximum values.
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Annual evolution shows that in the first three studied years (2008–2010) a constant
increase was detected, with an average of 10.08%. The PM10 concentration was higher than
the annual WHO Air Quality admissible level (20 µg/m3) in 2009 (22.39 µg/m3), and in
2010 (23.00 µg/m3), respectively. This rise was followed by a longer fluctuating period
(2011–2015) with an average decrease of 3.23%, and a significant 30.56% drop in the year of
2016, when was recorded the minimum concentration level (13.08 µg/m3) (Figure 4a). This
decreasing trend could be explained by the implementation of environmental regulations
imposed by the EU.
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Figure 4. Annual (a) and seasonal (b) mean PM10 concentration. 4.b Box-plot analysis of seasonal PM10 concentrations
The lower (grey) and upper (yellow) limits represent the first (25P) and third (75P) quartiles, and the ends of the whiskers
represent the minimum and the maximum values.

The average seasonal PM10 concentration varies considerably throughout the year
(Figure 4b); in winter (34.72 µg/m3), they are 82% higher than the multiannual average
(19.00 µg/m3), and almost three times higher than in summer (11.71 µg/m3). The highest
seasonal concentration was measured during the winter of 2009–2010 (47.62 µg/m3), close
to the WHO’s daily acceptable limit of 50 µg/m3 [37].

According to the calculations, the increased PM10 concentration depends on the high
changes in the winter and summer boundary layer and from the increased emission from
heating in the winter period. During the winter, PM10 concentration increased by an
average of 9.36 µg/m3 due to the heating season.

According to the PM10 classification (low, moderate, high and very high concentration),
the PM10 concentration was higher than 50 µg/m3 in 177 cases; 88% of them were in winter,
8.5% occurred in spring, and 2.8% in autumn (Figure 5). The number of days with very high
pollution and high pollution were 3.815.42%7.01 and 3.714.43%5.16 of the total, respectively.

Thus, taking into consideration the annual PM10 evolution categories the number
of exceedances represents 5.42%, on the other hand, significant changes were observed
between seasons. The highest 18.95% was found in winter, due to the main reasons stated
out earlier, while in autumn and spring the value was only 1.81% and 0.61%, respectively,
meanwhile, there were no exceedances during summer.

3.2. Relationship between PM10 Concentration and Meteorological Variables

Climatological parameters have a demonstrable effect on the PM10 concentration
variation. Except for THI, the multiannual monthly mean of PM10 and the meteorological
data show strong negative correlations (Figure 6).
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Figure 5. Annual and seasonal PM10 categories evolution during the studied period ((a)—total days,
(b)—winter days, (c)—spring days, (d)—summer days, (e)—autumn days).
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Figure 6. Monthly PM10 concentrations and meteorological parameters: (a): Prec., BL, LCL, (b): WCT, THI.
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Two classes of human discomfort were detected (Figure 6b): uncomfortably cold and
uncomfortably hot. Uncomfortably cold represented 40.96% of the total winter days, 3.22%
resulting from the spring days, and 2.59% from the autumn days, while uncomfortably
hot occurred during the summer, exhibiting 16.23% of the total summer days, respectively.
For the entire studied period, 28.59% of the total days were uncomfortable. Precipitation
has a positive effect, by reducing through wet scavenging the PM10 concentration. This
effect is more significant during summer, when the quantity of precipitation is the highest
(avg. 81.44 mm). The monthly PM10 evaluation shows a reverse trend with the boundary
layer and lifting condensation level. There are two categories of accumulation conditions
if the values of boundary layer and air pressure are high, strong anticyclonic systems are
formed, leading to the Brunt Vaisala effect that often produces thermal inversions, favoring
pollutant accumulation. The second accumulation condition occurs when the cloud base is
low and the relative humidity is high, leading to fog formation.

3.3. Hospital Admission Evaluation

Admissions in Ciuc Emergency Hospital due to respiratory and cardiovascular causes
were analyzed in detail. The incidence of the disease was examined in five different age
groups: [0–5], (5–14], (14–40], (40–60], 60+. In 2010, 2012 and 2014, the number of days
with high and very high pollution was higher in comparison with other years, resulting in
the surge of hospital admissions. Diseases were found to be most common in the elderly
age group 60+ representing 41.3%. The second large number of patients were children;
below 5 years old, with 28.9% followed by the patients between (40–60], accounting for
up to 20.4%. A lower rate was found in the case of children (5–14] years with 3.4% and
young people (14–40] years with 6.0%, respectively. Furthermore, hospital admissions also
show a weekly, and monthly cycle. The maximum hospital admission is on Monday and
Friday and the minimum on Sunday. The average number of monthly hospital admissions
shows a maximum in March (n = 230) and a minimum in August (n = 122). Most hospital
admissions were for P in the children’s age group [0–5] years with 19.5% and in the case of
elderly people 60+ years with 14.9% proportion (Figure 7).
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Figure 7. Diseases occurrence in different age groups.

In addition, the URTI was also common with 13.55%, in this case, the most affected
age category was children [0–5] with a weight of 9.12%. The next most frequent disease was
COPD with 12.5%, followed by LC 9.01%, CCP 6.99, IHD 6.73%, and AMI 2.5%, respectively.

3.4. Fourier Transformation

The PM10 concentration and climatological data (LCL, BL, THI, WCT) impact on the
seven different types of diseases, during all seasons, and based on the five age group cate-
gory was calculated (Table 2). From the total 459 Fourier transform significant correlation
was found, using Pearson’s correlation coefficient approach, in the case of 255, representing
55.56%. After the transformation, the Pearson correlation was applied to ten samples,
knowing that in that case if n is between 0.01 and 0.02 the correlation should be 0.745.
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Table 2. Significant Pearson correlation coefficients between PM10, climatological data, and disease occurrence after the
Fourier transforms.

PM10

Age
Categories [0–5] (5–14] (14–40] (40–60] >60

W Sp Su A W Sp Su A W Sp Su A W Sp Su A W Sp Su A
1. LC * * * * * * * *
2. AMI * * * * * *
3. IHD * * * * * * *
4.CCP * * * * * * *
5. URTI * * * * * * * * * *
6. P * * * * * * * * * * * * * * *
7. COPD * * * * * * * *

BL

Age
categories [0–5] (5–14] (14–40] (40–60] >60

W Sp Su A W Sp Su A W Sp Su A W Sp Su A W Sp Su A
1. LC * * * * * *
2. AMI * * * * * * *
3. IHD * * * * *
4.CCP * * * * * *
5. URTI * * * * * * * * *
6. P * * * * * * * * * * * * * * * * * * * *
7. COPD * * * * * * * *

WCT

Age
categories [0–5] (5–14] (14–40] (40–60] >60

W Sp Su A W Sp Su A W Sp Su A W Sp Su A W Sp Su A
1. LC * * * *
2. AMI * * *
3. IHD * *
4.CCP *
5. URTI * * *
6. P * * * * * * *
7. COPD * * *

(Where: W = winter, Sp = spring, Su = summer, A = autumn,). *- climatological effects; gray background: PM10 effects.

Predominantly the PM10 effects were accountable in all age groups in case of URTI
and Pneumonia, and all types of diseases occurred at ages higher than 40 years old. The
PM10 effects were linked with the WCT and BL, marked with gray backgrounds, based on
the numerous assimilations identified during analysis (Table 2). Examining the overlap
between the PM10 and studied meteorological parameters, it was observed that on average
68.9% had the same effect. The highest association was between the PM10-BL with 86.9%
similarity. A significant effect was found in the case of WCT’s which was reflected in
increased IHD in the winter period. The results showed that the climatological parameters
(BL, WCT) had additional effects on morbidity, which are marked with red dots (Table 2).
On the other hand, BL had additional effects on P and URTI diseases in autumn for all age
categories. In winter the WCT shows a strong positive correlation.

3.5. Gender Distribution of Morbidity and Relative Risk Calculation

A significant gender difference was found between men and women. According to
the statistics, 60.7% of the total number of hospitalized patients were men (Figure 8). With
the exception of IHD, where men showed significantly higher susceptibility.
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Figure 8. Disease frequency in different age categories and gender distribution.

The relative risk is the ratio of the probability of an outcome in an exposed group to
the probability of an outcome in an unexposed group.

RR =
EER
CER

=
A/(A + B)
C/(C + D)

(11)

where: EER is the experimental event rate and CER is the control event rate.
The PM10 concentration level in summer was the lowest (10 µg/m3), hence August

was selected as a control month. The lowest PM10 concentration and morbidity rate was
taken as a reference value.

Relative risk calculation was carried out in different age and gender groups. There
was substantial variation in risk between male and female and different age categories.
The mean value of RR was 1.37 for women and 1.45 for men. The most significant effect
was seen in the case of PM10 and P and URTI (Figure 9).
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Figure 9. Box-plot analysis of relative risk evaluation in different gender groups: (a) men; (b)-women. The lower (grey) and
upper (yellow) limits represent the first (25P) and third (75P) quartiles, and the ends of the whiskers represent the minimum
and the maximum values.

3.6. Correlation Analysis

The Pearson correlation coefficient was used to determine the correlation between the
multiannual monthly PM10 concentration and morbidity. Except the AMI for each disease,
the Person correlation coefficient was significant: URTI (0.61), P (0.68), IHD (0.56), LC
(0.53), CCP (−0.44), and COPD (0.47), respectively. The median multiannual monthly PM10
concentration is marked with the blue line, and the other hand the morbidity monthly
evaluation is marked with the green line (Figure 10).
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Figure 10. Box-plot analysis of daily mean hospital admissions. The lower (grey) and upper (yellow)
limits represent the first (25P) and third (75P) quartiles, and the ends of the whiskers represent the
minimum and the maximum values.

The Pearson correlation between monthly means of PM10, hospital admissions and
meteorological parameters over the entire period 2008–2016 has been studied. Pearson’s
correlation in many cases shows a significant correlation (r =±0.23) (Figure 11). A moderate
correlation was found between PM10 and P (0.51) and URTI (0.39), respectively. Further-
more, the PM10 followed a moderate negative correlation with the boundary layer (−0.61).
As the THI index shows in summer has an additional effect on disease evolution, hence
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moderate correlation was found between the LC (0.63), IHD (0.52), CCP (0.45), and a weak
correlation with the COPS (0.31). In winter the WCT showed moderate correlation with
the LC (0.54), IHD (0.48), and CCP (0.41).
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Figure 11. Pearson’s rank correlation coefficients between PM10, health effect and meteorological
data.

3.7. Morbidity Increase Due to a 10 µg/m3 Rise in PM10

The daily morbidity increase associated with a 10 µg/m3 change in PM10 was calcu-
lated (Equation (12)).

% Morbidityinc10µg/m3 =
1
n
∗

n

∑
1
(

10 ∗% Morbidityincrease1−n
∆CPM10

) (12)

where: % Morbidityinc10µg/m3 —10 µg/m3 PM10 disease caused by average growth;
%Morbidityincrease(1− n)—individual current disease growth in percent; ∆CPM10—PM10
concentration change compared to the previous one (1–10 days); n—the number of
days tested.

The most significant increase caused by 10 µg/m3 increase in PM10 concentration was
found for P, with 6.848.28%8.95 after five days (Figure 12).

In the case of URTI and P, the highest number of hospital admissions occurred be-
tween the 5th to 7th day, while the 10 µg/m3 PM10 increase resulted in a 2.04% and 8.28%
morbidity increase. For lung cancer (LC) and CVD (AMI, IHD, CCD), a maximum de-
lay of 5–6 months was found. Except for AMI (<0.1%), an increase of 0.5% was found.
Three months of time offset was observed in the case of COPD, identifying an average of
1.51% growth.

3.8. Theoretical Calculation of Hospital Admissions

The ratio between the theoretical and practical disease evaluation was analyzed
(Figure 13). The PM10 contribution to the hospital admissions on average was 0.34 from
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the total number of hospitalizations. The minimum value of 0.27 was obtained in 2012 for
AMI while the highest PM10 contribution was observed in 2011—0.49 in the case of IHD.
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Figure 12. Box-plot analysis of percent increase of hospitalizations for each 10 µg/m3 increment of
PM10.The lower (grey) and upper (yellow) limits represent the first (25P) and third (75P) quartiles,
and the ends of the whiskers represent the minimum and the maximum values.
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Figure 13. Health endpoint attributable to short- and long-term exposure to PM10.

The orange line represents the total number of cases per year and the blue one marks
the PM10 contribution to the disease morbidity. In the studied region, ambient PM10
concentration had a yearly contribution of 500,552,603 cases to the total morbidity. Taken
into consideration the different types of disease frequency the contribution ratio is between
0.88–17.11% (Figure 14).
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Figure 14. Box-plot analysis of PM10 contribution to the annual mean disease frequency. The lower
(grey) and upper (yellow) limits represent the first (25P) and third (75P) quartiles, and the ends of the
whiskers represent the minimum and the maximum values.

The annual mean disease evaluation caused by the PM10 is 1.852.71%3.58 for LC,
1.212.11%3.02 for AMI and IHD, 1.622.29%2.96 CCP. URTI represented by 3.684.72%5.76 P
and COPD were the most frequent, with 13.4617.13%20.8 and 3.994.21%4.42, respectively.

4. Discussion

The study provides comprehensive information on the combined effect of PM10 and
climate parameters on human health. Our results are consistent with previous studies
showing an increased number of hospital admissions due to cardio-respiratory diseases
after increased PM10-2.5 particulate concentration [38–41]. A meta-analysis of 23 mortality
and 10 hospital admissions studies confirmed increased morbidity and mortality as a result
of higher short-term PM10-2.5 concentrations, with more robust correlations for respiratory
than cardiovascular endpoints [42].

Symptom exacerbations and disease progression are prompted by particle-triggered
molecular and cellular mechanisms. Locally, PM10 deposited in the respiratory tract elicit
inflammation by causing oxidative stress, with bronchial hyperactivity, increased sputum
production, and injury of the alveolar cells, including alveolar macrophages [43]. These
processes lead to impaired lung function and weakened the local immune system, resulting
in an increased risk of respiratory disorders following pollutant exposure. Moreover, PM10
air pollution exerts deleterious effects on vascular endothelium, sympathetic nervous
system, and systemic inflammation, causing increased cardiovascular morbidity and mor-
tality, primarily of ischemic nature [44–46]. Noteworthy, specific groups (e.g., people with
cardiovascular risk factors or pre-existing cardiovascular disease) are more vulnerable to
the aforesaid harmful effects.

On the other hand, significant differences existed frequently in PM10 concentrations
between the weekends and weekdays. Daily mean PM10 concentration on weekdays
23.1 µg/m3 was significantly higher than those on weekends 21.8 µg/m3. According to
the results, diurnal variations and weekly cycles are a function of emission sources, and
meteorological parameters [47,48]. During winter, there are several influencing factors
responsible for the higher PM10 concentration, like thermal inversion, increased PM10 emis-
sions due to indoor heating, and stable atmospheric conditions. The uneven distribution of
precipitation reduces the efficiency of the washout mechanism by wet scavenging [49] and
the unfavorable topography conditions of the closed basin. As for summer, the evapotran-
spiration plays an important role in the mixing of air mass by wet convection.

The highest correlation between the PM10 and diseases was found in the case of P
(0.51), followed by URTI (0.39). The same finding shows that besides PM10 the meteorolog-
ical parameters also have an important contribution to the disease occurrence [50]. Winter
cold stress is associated with an increase in influenza and respiratory infections that may
affect cardiovascular disease. In addition, THI plays an important role in disease frequency,
except for the URTI disease. Furthermore, WCT has a big contribution to the LC, IHD,
CCP, COPD. The time delay between the dose-response is closely related to certain AMI
subtypes and individual characteristics [51]. Studies assessing hospital admissions due to
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COPD indicated that coarse PM has a stronger or as strong short-term effect as fine PM,
stating that PM10-2.5 are also capable to activate severe adverse reactions enough to require
hospitalization [52].

On the other hand, meteorological parameters might have an important impact on
PM10 concentration; a negative significant correlation between the PM10 and boundary
layer (−0.605), lifting condensation level (−0.46) and precipitation (−0.36) was observed.
The PM10 accumulation and this reverse ratio can be explained in light of clouds low
position and the presence of frequent fog phenomena which are very common in the Ciuc
basin [53].

Song et al. [54] conducted a systematic review and meta-analysis in China, United
States, and Europe, in order to assess the consequence of a 10 µg/m3 increase in PM10
concentration on COPD in the aforementioned countries. Their findings showed a similar
intensification of hospital admission number which increased by 1% in China and Europe,
and by 2% in the United States, respectively [54]. Despite the significance of the ambient
PM10 effect in the Ciuc basin, there is little information available in the literature on
temporal trend and long-term health effects of PM10 in this area. The high air pollution
level during the cold season in the Ciuc basin is likely the result of wood-burning, specific
topographical and meteorological conditions.

Particle pollution has been linked to a higher risk of exacerbations and respiratory
symptoms in subjects with pre-existing lung maladies, compared to the healthy ones.

In concordance with our results, the findings from the European Study of Cohorts for
Air Pollution Effects (ESCAPE) revealed a significant association for PM10 concentration
and the risk for LC (HR 1.22 [95% CI 1.03–1.45] per 10 µg/m3). The meta-analysis included
312,944 subjects from 17 cohort studies and 9 European countries, counting 2095 incident
lung cancer cases diagnosed during a mean follow-up of 12.8 years. The results were
confirmed by further studies, which also indicated that the relationship appeared to be
more manifest among men [7].

Studies assessing hospital admissions due to COPD indicated that coarse PM had a
stronger or as strong short-term effect as fine PM, which supports that PM10-2.5 are also
capable to activate severe adverse reactions enough to require hospitalization [52]. After
the increased particulate contamination, epidemiological studies have shown deterioration
in symptoms and quality of life, increased use of medication and deterioration in lung
function [2–5]. Moreover, in a recent meta-analysis of 85 studies from 12 low- and middle-
income countries (mostly East Asia and the Pacific), short-term PM10 exposure was proved
to have stronger associations with COPD morbidity [14].

In recent years, solid evidences were also gathered in relation to air pollution and the
cardiovascular system. In line with prior studies conducted in different geographical loca-
tions, our findings revealed positive associations between ambient PM10-2.5 and hospital
admissions for several cardiovascular maladies (i.e., AMI, IHD, and CCP). For example,
studies conducted in Western Europe and North America, including the ESCAPE pooled
study, detected augmented number of ischemic cardiac events due to higher PM10 expo-
sure, indicating increased risk for each 10 µg/m3 increase in PM10 concentration [55–58].
Similarly, Feng et.al. reported a significant fluctuation in emergency department admis-
sions for selective cardiovascular diseases (including IHD) in Beijing, China, following
short-term PM10 exposure [59]. As for CCP, to the best of our knowledge, there are no
existing studies that specifically addressed the PM-related disease load. According to our
observations, in the Ciuc basin, we found a linear relationship between PM10 level and
hospitalization frequency. This could be explained by the detrimental effect of PM on
the right ventricular function. Indeed, the analysis of cardiac magnetic resonance images
from 1490 participants from the Multi-Ethnic Study of Atherosclerosis evidenced robust
correlation between long-term PM10-2.5concentrations and right ventricular mass in specific
subpopulations (i.e., individuals with emphysema and current smokers) [42].

In our study, subjects ≥ 60 years old (41.3%) and males (60.7%) were the most sus-
ceptible to respiratory illnesses owing to the increased level of PM10-2.5. These findings
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are consistent with literature data and offer a broader view of the demographic-specific
associations between air pollution, respiratory and cardiovascular diseases. Indeed, a
recent study conducted on a large sample size of 56,221 cardiovascular and 92,464 respi-
ratory emergency admissions in 10 general hospitals from Beijing, reported that males
and people aged ≥ 65 years were more vulnerable to air pollution [59]. The relation-
ship between pollution exposure and increased morbidity and mortality in the elderly
is well-recognized [60,61]. Due to co-morbidities, reduced lung function and weaker
immune systems, in case of elder people are prone to exacerbations of chronic diseases
(such as COPD) or to respiratory tract infections (particularly pneumonia) [62]. Existing
evidence acknowledges gender as a modifier of air pollution effects on human health,
but the current findings are inconsistent regarding which gender is more vulnerable. As
for male gender, available data indicates that men who smoke respond more intensely to
ambient pollution [59]. There is a number of possible explanations for why men are more
susceptible to develop pollution-related conditions. Several gendered behaviors (such as
alcohol consumption and smoking) have been linked to increased susceptibility to adverse
immune-related health effects, including respiratory infections [63]. Gender differences in
terms of work-related exposure may also be responsible, men generally spending signifi-
cantly more time outdoors than women (16.1 h/week versus 9.2 h/week) [64]. Last but not
least, sex-linked physiological dissimilarities (e.g., hormonal status, lung maturation and
size, airway and vascular responsiveness) are also considered as key factors [63,65].

Our data revealed that children under the age of 5 were more affected by air pollu-
tion, with increased hospitalizations for P and URTI. Previous studies have established
that outdoor pollution amplifies the burden of severe acute respiratory infections, with
increased hospital admissions and mortality, particularly in young children (under 5 years
old) [66–68].

Furthermore, the association between exposure to PM and childhood P has been
confirmed by data from 10 European birth cohorts within the ESCAPE Project [69]. The
main reasons why children face greater risks from air pollution have been comprehensively
discussed in previous papers [70,71]. First, their lungs, as well as their immune system, are
still developing, hence the susceptibility to inflammation is higher. Secondly, they usually
breathe faster than adults, inhaling more pollutants relative to their body size. Thirdly,
they spend more time out and are more active outdoors than adults, which also result in
higher doses of inhaled pollutant.

Epidemiological evidence suggests that the affinity to disease occurrence increases
with age and it is higher after 40 years [72]. The prevalence of the disease is highly depen-
dent on age since the human organism is more sensitive to increased PM10 concentration in
early childhood and elderly age. In the case of the young generation, the weaker developing
immune system is responsible for the frequent illness [73].

5. Study Limitations

Our study was subject to some limitations. First, our survey did not comprise infor-
mation on documented potential confounders such as occupational/educational/marital
status, body mass index, smoking, and alcohol consumption. Second, we were not able
to discriminate re-admission frequencies. It is possible for a few patients to have been re-
hospitalized within the analyzed timeframe, resulting in underestimation of PM10-related
risk variance.

6. Conclusions

We analyzed the influence of meteorological data and PM10 concentration, on health
in the Ciuc basin, Romania, from 2008 to 2016. Our results indicate that increasing PM10-
concentration is associated with increased hospital admissions for cardio-respiratory dis-
eases. In general, the highest PM10 concentration was observed in winter, especially in
January, due to the high atmospheric stability in winter period, thermal inversions, the
higher atmospheric pressure and the increased emission from the biomass burning. The
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damaging effects of air pollution can occur from 5–7 days in the case of respiratory diseases
and to 3–6 months for pulmonary and cardiovascular diseases. Children under 5 years,
men and the elderly up to 60 years are the most likely to suffer from respiratory disease
than other age groups, due to air pollution. According to the calculation, one-third of the
affected people could be attributed to PM10. The short-term exposure to outdoor air pollu-
tant PM10 was positively associated with respiratory admissions. Regarding the long-term
exposure, it can be concluded that PM10 had negative effect on cardiovascular disease,
however, there was a significant delay in dose-response. Furthermore, the PM10 and the
climate indexes (WCT, THI) have an important role in the increase of disease frequency.

The present study contributed to the limited information about the effects of air
pollution in Romania/Eastern Europe and emphasizes the need for additional research on
this topic.

Particulate matter (PM) air pollution is an important and modifiable risk factor for
adverse health outcomes including cardiovascular disease. Reduction in air pollution
exposures is essential to attaining global targets, such as the American Heart Association
and World Heart Federation goal of reducing premature CVD mortality by 25% by 2025 [74].
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