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Abstract: One of the central problems in large cities is air pollution, mainly caused by vehicular
emissions. Tropospheric ozone is an atmospheric oxidizing gas that forms in minimal amounts
naturally, affecting peoples’ health. This pollutant is formed by the NO2 photolysis, creating a
main peak during the day. Nighttime secondary peaks occur in several parts of the world, but their
intensity and frequency depend on the local condition. In this sense, this works aims to study the
local characteristics for tropospheric nocturnal ozone levels in the Metropolitan Area of São Paulo,
in Brazil, using the Simple Photochemical Module coupled to the Brazilian Developments on the
Regional Atmospheric Modeling System. For this, three different situations of nocturnal occurrence
were studied. The results show that the nocturnal maximum of ozone concentrations is related to
the vertical transport of this pollutant from higher levels of the atmosphere to the surface and is not
related to the synoptic condition.

Keywords: air quality modeling; BRAMS; nighttime ozone

1. Introduction

In recent years, large cities’ main problem is excessive air pollution, resulting in several
economic and public health problems [1–4]. In Latin America, urban centers are in constant
development and growth, generating numerous problems associated with the effects of
pollution [5,6]. In general, the primary source of air pollution for large cities is vehicular,
while small and medium-sized cities have industrial sources [7]. Besides the relevance of
emission sources, several studies have shown that the meteorological condition greatly
influences pollutants’ concentrations [8–13].

Tropospheric ozone (O3) is an atmospheric oxidizing gas that forms in minimal
amounts naturally. This secondary photochemical pollutant is formed in the atmosphere
by photodissociation of nitrogen dioxide (NO2) by ultra-violet light. Being an oxidant
pollutant, ground-level ozone concentration can affect people’s health (especially children,
the elderly, and people in outdoor activities), worsen pre-existent diseases and increasing
hospitalizations for respiratory diseases in risk groups [14]. Also, ozone exposure can be re-
lated to morbidity and mortality from cardiopulmonary diseases [15]. In the United States,
ozone contributes to increasing the mortality rate associated with respiratory diseases; an
increment of 10 ppb in ground-level concentrations increases by 3% death risk associated
with exposure [16]. Climatic change could be responsible for increasing ozone concentra-
tions and, consequently, for the number of hospital admissions and deaths associated with
ozone exposure [4]. Since the change in ozone concentrations is a consequence of changes
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in the atmospheric system, it is essential to know which synoptic patterns are associated
with particular conditions of ground-level ozone concentrations.

During the night, in very stable situations, especially under anticyclonic conditions,
the increase of this contaminant has been observed with a well-defined behavior [17]. In cy-
clonic conditions, NOx can have a low concentration due to increased ventilation and affect
O3 concentration [18]. The magnitude and frequency of nocturnal ozone peaks are gener-
ally observed in the summertime and associated with horizontal transport processes [19].
In China, the nocturnal O3 concentration is higher in suburban areas than that in urban ar-
eas before a nocturnal O3 increase, the contrast being reduced under vertical transport [20].
Also, in Kolkata, India, the nocturnal ozone mean concentrations increased in urban and
suburban areas, where NOx plays a critical role through O3-NO-NO2 chemistry [21]. The
reduction in NOx emissions (by road traffic control strategies) produces substantial changes
in nighttime ozone in urban areas [22,23], with higher ozone concentrations due to a lower
gas-phase titration of ozone with NO.

Given the importance and the elements that influence the magnitude and frequency
of nocturnal ozone, this work aims to study the local characteristics of the atmosphere of
the Metropolitan Area of São Paulo (MASP) in the formation of secondary ozone peaks
during the night. For this, regional numerical modeling, with a mesoscale atmospheric
model coupled with a chemical module, was used.

2. Materials and Methods
2.1. Study Area

The MASP is located in southeastern Brazil, in a region of rugged topography (Figure 1),
in which the city of São Paulo is located in the most central region coinciding with the
valleys of the Tietê and Pinheiros rivers, between Serra do Mar and Serra da Cantareira,
the latter with elevations above 1000 m. The MASP comprises 39 municipalities and con-
centrates almost half of the state’s total population (approximately 20 million inhabitants),
covering an area of 8051 km2 [24].

Given the proximity to the sea and the surface extension of the built-up area, the
Urban Heat Island (UHI) effect significantly influences the flow patterns [25] in dispersing
pollutants. The passage of the sea breeze creates a favorable condition for the dispersion of
pollutants in this urban region, while days with extreme UHI events generate a more stable
condition in the MASP, which may favor the accumulation of pollutants [12]. In winter
and early spring, there is a greater frequency of days with the high-pressure systems that
hinder the passage of cold fronts, favoring the formation of a high-intensity UHI, which
generates more appropriate conditions for the occurrence of high pollutant concentration
events [26].
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Figure 1. (a) Location, (b) cities and (c) topography map (scale bar in meters). Cities of the Metro-
politan Area of São Paulo (MASP) are in the solid black line. Topography data set from United 
States Geological Survey (USGS). 
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space. Numerical instability is minimized by using smaller time steps in solving equations 
in higher resolution grids. Atmospheric physical processes are considered by several param-
eterizations. The model has a multiple grid scheme that allows the simultaneous solution of 
the equations. The interaction processes between the surface and atmosphere are carried out 
in BRAMS using the LEAF-3 model (Land Ecosystem-Atmosphere Feedback model version 
3, [29]) for vegetated areas and using TEB (Town Energy Budget, [30]) for urban areas. 

Figure 2 presents the nesting grids used in the simulations centered at the MASP 
(−23.60°, −46.65°). The horizontal grid spacing of both domains are 16 and 4 km, from 
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temperature, weekly mean values corresponding to the simulated periods were used as 
input data, without considering the update of these files during the integration. As a me-
teorological initial condition, the Global Forecasting System (GFS) global model’s outputs 
with a horizontal grid spacing of 1° were used. For all analysis of the results, the simula-
tions were run one day before the nocturnal event, and we rejected the first 24 h to avoid 
the spin-up effect [31] of the meteorological part of the model and also to allow the model 
to accumulate more realistic amounts of pollutants in the atmosphere. The first level of 
the model output considered was 33.4 m above the surface. The model physics and land-
use parameterization configuration are the same as in Morais et al. [32]. 

Figure 1. (a) Location, (b) cities and (c) topography map (scale bar in meters). Cities of the Metropoli-
tan Area of São Paulo (MASP) are in the solid black line. Topography data set from United States
Geological Survey (USGS).

2.2. SPM-BRAMS

Version 3.2 of the BRAMS model (Brazilian Development on Regional Atmospheric
Modeling System, [27]) was used in this work. This model is based on the Regional Atmo-
spheric Modeling System (RAMS, [28]), which simulates several spatial scales, integrating
the microscale with the larger scales. The equations system that governs the atmospheric
state is solved using second-order finite difference schemes, both in time and space. Nu-
merical instability is minimized by using smaller time steps in solving equations in higher
resolution grids. Atmospheric physical processes are considered by several parameteriza-
tions. The model has a multiple grid scheme that allows the simultaneous solution of the
equations. The interaction processes between the surface and atmosphere are carried out in
BRAMS using the LEAF-3 model (Land Ecosystem-Atmosphere Feedback model version
3, [29]) for vegetated areas and using TEB (Town Energy Budget, [30]) for urban areas.

Figure 2 presents the nesting grids used in the simulations centered at the MASP
(−23.60◦, −46.65◦). The horizontal grid spacing of both domains are 16 and 4 km, from
lower to the higher resolution. The topography is based on the United States Geologi-
cal Survey (USGS) data set with 1 km of the horizontal spacing grid. For the seawater
surface temperature, weekly mean values corresponding to the simulated periods were
used as input data, without considering the update of these files during the integration.
As a meteorological initial condition, the Global Forecasting System (GFS) global model’s
outputs with a horizontal grid spacing of 1◦ were used. For all analysis of the results, the
simulations were run one day before the nocturnal event, and we rejected the first 24 h
to avoid the spin-up effect [31] of the meteorological part of the model and also to allow
the model to accumulate more realistic amounts of pollutants in the atmosphere. The first
level of the model output considered was 33.4 m above the surface. The model physics and
land-use parameterization configuration are the same as in Morais et al. [32].

The Simple Photochemical Module (SPM, [33]) was inserted in the BRAMS model
to generate operational forecasts of ozone concentrations and other constituents for the
MASP with a reduced number of chemical reactions. Ozone formation was represented
without considering hydrocarbon speciation. The relevant reactions were selected from
the chemical mechanism SAPRC-99, which in turn was used in the CIT photochemical
model (Caltech Institute of Technology, [34]). Volatile organic compounds were considered
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in a single category to simplify the numerical scheme and reduce the integration time.
The emissions module consisted of an Eulerian dispersion model integrating the mass
conservation equation, which distributed the emission. For the vehicular contribution,
the emissions were distributed in space and time within the grid following a daily cycle
based on a double Gaussian distribution to represent the periods with the highest vehicular
flow. The module also made an adjustment to consider variations in emissions during the
weekdays and on weekends.
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2.3. Model Evaluation

Two statistical indices were used to assess the proximity of the result generated by the
model with the observed values of O3 in the MASP. Bias measures the model’s tendency
to underestimate or overestimate the value of a variable with its observed value and is
defined by the expression

BIAS =
1
N

N

∑
i=1

(Si − Oi), (1)

where Si corresponds to the i-th value of the simulated variable, and Oi for the same
observed variable. N is the total number of data.

The Root Mean Square Error (RMSE) was used to express the accuracy of the numerical
results and is given by the following equation

RMSE =
1
N

N

∑
i=1

√
(Si − Oi)

2, (2)

where Si corresponds to the i-th value of the simulated variable, and Oi for the same
observed variable. N is the number of data.

Air quality stations from the Companhia Ambiental do Estado de São Paulo (CETESB)
were chosen to assess the model’s performance in representing the concentration levels
close to the surface (Figure 3). For meteorological variables, the model was extensively
validated by Morais et al. [32,35]. The period of model evaluation started at 21:00 Local
Time on 26 August 2010, with 72 h of simulation that corresponded to a high-level of ozone
concentration event resulting from an extensive drought period without rain events [36].
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Figure 3. Location of CETESB’s monitoring network stations in the Metropolitan Region of São Paulo
(in gray) used for this study, where CAE corresponds to São Caetano do Sul station, DIA to Diadema
station, IBIR to Parque do Ibirapuera station, MAU to Mauá station, SNT to Santana station, PDP to
Parque Dom Pedro II station and PIN to Pinheiros station.

2.4. Experimental Design

Three different periods were considered to study the local meteorological factors that
influence the increase in nocturnal ozone concentration. The first one corresponded to
the condition where the nighttime ozone increase was recorded in all stations (case 7E),
which occurred on 25 December 2010. The second was a period where no nocturnal ozone
was recorded in any selected stations (case 0E), which was on 22 January 2005. The third
simulation (named here as case GP) represented a case with three high-level events in
the São Caetano do Sul (CAET), Diadema (DIAD), and Mauá (MAUA) stations, which
occurred on 12 October 2001.

Figure 4 shows the synoptic patterns for 0E and 7E at 00:00 and 06:00 UTC. These data
were obtained from the NCEP/NCAR reanalysis [37]. The synoptical pattern analyzed in
both times did not change, and only a displacement from the high pressure, at both levels,
to the ocean was observed. When analyzing the reduced pressure at sea level (Figure 5),
the South Atlantic Subtropical Anticyclone (SASA) was observed to be more intense and
closer to the coast of southeastern Brazil than in the case where nightly ozone increase was
recorded. In both cases, SASA shift to the east was observed at the immediately higher
levels of the atmosphere.
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The discussion is done by analyzing the O3 evolution for each station and by an
average nocturnal concentration map. After, a vertical profile of the ozone is analyzed,
considering the latitude of MASP.

3. Results
3.1. Model Evaluation

Figure 6 shows the RMSE and bias scatter plot of the ozone concentration for all
available air quality stations in the MASP. Based on the bias, it appears that the model
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tended to underestimate the values of O3. The absolute value of these indices is related to
the order of magnitude of the variable. However, it appears that the values were like those
obtained by other authors [9,38]. Besides, it is noted that the Ibirapuera park station had
the worst rates, which may be related to the intense presence of green areas in the place,
needing to improve this type of representation in the model [35].
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3.2. Nocturnal Ozone Experiments
3.2.1. No Increase in Ozone Concentration (0E)

Figure 7 shows the concentrations simulated by the model for air quality stations in
cases where no increase in ozone concentration was observed during the night (0E, left
column). In the 0E case, the model represented the behavior of nocturnal concentrations
relatively well, with the diurnal peak being underestimated, especially on the second
day. The mean ozone field and reduced pressure at mean sea level (Figure 8) showed an
anticyclone located southeast of the simulation domain, which concentrated the core of
maximum ozone concentration values. Values below 36 µg m−3 were observed in almost
the entire continental part. The pressure field tended to be homogeneous over the MASP
and the average wind in this period was weak.

3.2.2. Increase in Ozone Concentration in All Station (7E)

In the 7E case (Figure 9), the model represented the nocturnal increase in ozone,
although in most seasons, an underestimation occurred (difference of almost 30 µg m−3).
At DIAD and Parque Dom Pedro II (PDP2) stations, although the nocturnal increase in
ozone was represented, there was a lag in the model’s concentration and that obtained in
such stations. Regarding daytime maximums, there was an overestimation for both days at
all points analyzed. The average ozone field for this simulation (Figure 10) showed values
below 24 µg m−3 in the continental part and a core of maximum values southwest of the
domain, where the wind tends to have a higher average intensity when compared to the
rest of the study area. The ozone increase in all air quality stations was associated with
the summer period in the south hemisphere, which provides higher temperatures and
higher incidence of solar radiation during daytime [39]. For the MASP, Carvalho et al. [40]
associated the increase in nocturnal ozone with possible horizontal and vertical transport
from other regions and the trapped pollutant in higher levels in the atmosphere.
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3.2.3. Increase in Ozone Concentration in Some Stations (GP)

Although in the GP case (Figure 11) the model simulated concentrations closer to
the values observed in the stations, the behavior of ozone at night was not accurately
represented. At DIAD and MAUA stations, the model simulated the night peak, but
its maximum value was out of step with the observed value. At the CAET station, the
model could not reproduce the nocturnal ozone increase. In Figure 12, low concentration
values were observed in the central and northwest region of the MASP, coinciding with
the location of the CAET, PDP2, Pinheiros (PINH), and Ibirapuera Park (IBIR) stations.
The minimal ozone concentration in this area is associated with the depletion by other
pollutant emissions in the MASP [38,41]. Slightly higher values (but below 24 µg m−3) in
the periphery, as in case 7E, may be associated with a localized increase due to the mostly
vertical transport of this pollutant [40].
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Figure 12. Average ozone concentration (color bar, in µg m−3), reduced pressure at average sea level
(hPa), and average wind (m s−1) for the corresponding period between 22:00 HL and 10:00 HL (local
time) at the first output level of the model. Simulation for GP case.

3.2.4. Ozone Vertical Profile

In case 0E (Figure 13), the wind remained weak throughout the period, with a minimal
vertical component. The atmosphere under the MASP was clean for all hours of the night.
When an increase in the ozone concentration was observed in all stations in the MASP (case
7E, Figure 14), the sub-wind component was more intense than when this phenomenon
was observed in only a few stations (case GP, Figure 15). In this case (Figure 15), ozone
was concentrated in the residual layer, with higher concentration values between 500 to
1000 m and further away to the west of the urban area. A subsidence component of the
wind was observed at levels close to the surface, although weak, in the city’s eastern region,
contributing to the transport of ozone from the upper layers. This result shows that, in the
cases of the nocturnal peak, the vertical transport of ozone present in the residual layer
has an essential contribution in the generation of increased concentration at levels close to
the surface.
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4. Conclusions and Remarks

To study the local characteristics that contribute to an increase in ozone concentrations
at nighttime in the MASP, three cases were simulated: when no increase was observed (0E),
when the increase was observed in some stations (GP), and when the secondary peak was
observed in all air quality stations (7E). In general, the model represented the nocturnal
evolution of ozone concentrations close to the surface at stations located in the MASP. For
daytime concentrations, the model overestimated the simulated maximum values. The
atmospheric condition resulting from the simulations for the MASP was similar for the
three simulations, confirming that the formation of nightly ozone peaks is not linked to the
synoptic situation in this study region. In this case, the most significant influence resides
in the amount of ozone trapped in the residual layer and the intensity of the subsiding
currents over the urban area, as seen in the vertical sections for all cases.
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