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Abstract: The chemical and optical properties and sources of atmospheric PM2.5 humic-like sub-
stances (HULIS) were investigated from October to December 2016 in both industrial and suburban
areas in Changzhou, China, during polluted and fair days. The average PM2.5 concentration in the
industrial region was 113.06 (±64.3) µg m−3, higher than 85.27 (±41.56) µg m−3 at the suburban
site. The frequency of polluted days was significantly higher in the industrial region. In contrast,
the chemical compositions of PM2.5 at the two sampling sites exhibited no statistically significant
differences. Rapidly increased secondary inorganic ions (SNA = NH4

+ + SO4
2− + NO3

−) concen-
trations suggested secondary formation played an important role in haze formation. The daily
mean concentration of humic-like substance (HULIS) was 1.8–1.9 times that of HULIS-C (the carbon
content of HULIS). Our results showed that HULIS accounted for a considerable fraction of PM2.5

(industrial region: 6.3% vs. suburban region: 9.4%). There were no large differences in the mass
ratios of HULIS-C/WSOC at the two sites (46% in the industrial region and 52% in the suburban
region). On average, suburban HULIS-C constituted 35.1% of organic carbon (OC), higher than that
(21.1%) in the industrial region. Based on different MAE (mass absorption efficiency) values under
different pollution levels, we can infer that the optical properties of HULIS varied with PM levels.
Moreover, our results showed no distinct difference in E2/E3 (the ratio of light absorbance at 250 nm
to that at 365 nm) and AAE300–400 (Absorption Angstrom Exponent at 300–400 nm) for HULIS and
WSOC. the MAE365 (MAE at 365 nm) value of HULIS-C was different under three PM2.5 levels (low:
PM2.5 < 75 µg m−3, moderate: PM2.5 = 75–150 µg m−3, high: PM2.5 > 150 µg m−3), with the highest
MAE365 value on polluted days in the industrial region. Strong correlations between HULIS-C and
SNA revealed that HULIS might be contributed from secondary formation at both sites. In addition,
good correlations between HULIS-C with K+ in the industrial region implied the importance of
biomass burning to PM2.5-bound HULIS. Three common sources of HULIS-C (i.e., vehicle emissions,
biomass burning, and secondary aerosols) were identified by positive matrix factorization (PMF) for
both sites, but the contributions were different, with the largest contribution from biomass burning
in the industrial region and secondary sources in the suburban region, respectively. The findings
presented here are important in understanding PM2.5 HULIS chemistry and are valuable for future
air pollution control measures.

Keywords: fine particle; HULIS; industrial region; light-absorbing characteristics; positive matrix
factorization (PMF)
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1. Introduction

Brown carbon (BrC), a class of organic matter in aerosols, has strong light absorption
in the UV–vis region (300–700 nm). Humic-like substances (HULIS), a complex group of
organics, account for an important fraction of BrC [1]. HULIS has strong light-absorbing
ability in the near-UV range of 200–400 nm, thus playing a significant role in atmospheric
radiative forcing and climate change. Specific absorbance can also be considered as an
effective indicator of the origin of HULIS in ambient particulate matter (PM) [2]. HULIS
might also threaten human health owing to the production of reactive oxygen species (ROS)
or via complexation with transition metals (e.g., Fe, Mn, Cu) [3–5]. Recently, many studies
have focused on the ROS-generation potential of HULIS in PM2.5 [6,7]. HULIS may also act
as photosensitizers to participate in atmospheric photochemical reactions. HULIS has not
been studied thoroughly, and knowledge of HULIS optical properties, chemical structural
characteristics, and sources is limited but important in assessing its effects on air quality,
climate, and human health [8].

As a class of highly complex macromolecular compounds in ambient PM, HULIS
consists of poly-conjugated structural elements with carboxyl, hydroxyl, and carbonyl
polar groups. HULIS can originate from biomass burning (BB) and secondary formation
processes such as atmospheric photochemical reactions or aqueous-phase oxidation [9–12].
Emission sources and secondary formation of HULIS in the atmospheric environment
are influenced by seasons [10,13], usually intense BB emissions in winter and significant
secondary processes in summer. Furthermore, the chemical and optical characteristics
of HULIS might vary in different locations owing to different emission scenarios [14].
To date, studies on the quantitation of HULIS sources are still limited, and comparison of
fine particle (PM2.5) properties between suburban and industrial regions is also relatively
scarce [15], especially due to technical difficulties of sample collection in highly-polluted
industrial regions. The individual as well as combined influences of various factors on
the formation of HULIS in different regions needs further investigation since assessment
of health effects associated with HULIS should address their chemical composition and
optical properties instead of only focusing on the mass concentration. So far, there are
few HULIS reports in industrial regions. Therefore, the present study aims to study the
characteristics of HULIS in both suburban and industrial environments.

In this work, PM2.5 samples were collected at two sites (located in industrial and
suburban regions) in Changzhou, a neighborhood city of Shanghai in the Yangtze River
Delta (YRD) region, China. A very recent report showed that Changzhou suffers from
severe air pollution [16]. Details of the sampling sites are presented in Figure S1 in the
Supplementary Materials. The industrial site is located in the northern part of Changzhou,
where numerous industrial plants can emit a large amount of gaseous pollutants and
other particulate carbonaceous species. The sampler was set on the roof of a private
house, about 15 m above the ground. The suburban site was located in the southern part,
a representative area with mixed residential, educational, and traffic activities. The chemical
and optical properties of PM2.5 HULIS at the two sites were measured by using a suite
of instruments, including a TOC analyzer, UV–vis spectrometer, and high performance
liquid chromatography (HPLC). The purposes of this study are (1) to compare the mass
levels of HULIS at the two sites, (2) to systematically investigate the regional variations
and influences of weather conditions on the mass and optical properties of HULIS, and
(3) to identify the sources of HULIS. The results of this study would provide valuable
information for environmental policy makers for sustainable control policies and strategies
that could help to abate air pollution and thereby reduce its associated human health risks.

2. Experimental Section
2.1. Sample Collection

A total of 60 22-h PM2.5 samples from the suburban site and 74 samples from the
industrial site were synchronously collected on a prebaked (at 500 ◦C) quartz fiber filter
(20.3 cm × 25.4 cm; Whatman QM-A, Whatman, Maidstone, UK) from 8 October to 28 De-
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cember in 2016. We used a high-volume air sampler (KB-1000, Qingdao Jinsida Co., Ltd.,
Qingdao, China) with an air flow rate of 1.05 m3·min−1 to collect the PM2.5 samples. After
collection, filters were wrapped with aluminum foil, sealed in a zipped bag, transported to
the laboratory in a cooler with ice packs, and immediately stored in a refrigerator at −18 ◦C
prior to analysis.

In this article, the sampling period is divided into polluted days (daily PM2.5 > 75 µg m−3)
and fair days (daily PM2.5 ≤ 75 µg m−3) based on the national daily air quality standard in
China (NAAQS) Grade II of PM2.5 (75 µg m−3), as suggested by Liu et al [17].

2.2. Chemical Analyses
2.2.1. WSOC, HULIS-C, and HULIS

One quarter of each filter was dissolved in MilliQ water (50 mL) to obtain water
extracts of PM2.5 (20 mL for water-soluble organic carbon (WSOC) and 30 mL for HULIS).
The details of the pretreatment procedures were previously described [18,19]. WSOC was
determined using a total organic carbon (TOC) analyzer (TOC–VCPH, Shimadzu, Japan)
based on a combustion–oxidation, nondispersive infrared absorption method. The 30 mL
water extract was evenly divided into two portions for HULIS and HULIS-C analyses.
A solid-phase extraction (SPE) cartridge (CNW Poly-Sery HLB, 60 mg/cartridge) was used
to isolate HULIS from the water extracts. The original SPE cartridge was first rinsed with
1 mL MilliQ water and 3 mL methanol. The water extracts were acidified to pH = 2 using
1 mL of 0.01 M HCl and loaded on the cartridge, followed by washing with 1 mL MilliQ
water. The HULIS sample was eluted with 3 mL methanol containing 2% ammonia (w/w).
The resulting eluate was evaporated to dryness with ultrapure N2 and re-dissolved in
2 mL MilliQ water for the quantification of HULIS mass and in 30 mL MilliQ water for
determination of the HULIS-C fraction using the TOC analyzer. For HULIS quantification,
an aliquot of 20 µL of the aqueous solution was injected into an HPLC system coupled to
an evaporative light-scattering (ELSD3000) detector.

2.2.2. OC and EC

The concentrations of organic carbon (OC) and elemental carbon (EC) were analyzed
by a thermal/optical carbon analyzer (Model 2001A, Desert Research Institute, Reno,
Nevada, USA) following a thermal/optical reflectance (TOR) protocol. Briefly, a 1.45 cm2

punch of each filter was heated stepwise at temperatures of 140 ◦C (OC1), 280 ◦C (OC2),
480 ◦C (OC3), and 580 ◦C (OC4) in a non-oxidizing helium atmosphere and at 580 ◦C (EC1),
740 ◦C (EC2), and 840 ◦C (EC3) in a 2% oxygen/98% helium gas atmosphere. OC was
calculated as OC1 + OC2 + OC3 + OC4 + OP and EC as EC1 + EC2 + EC3 − OP, where OP
is the optical pyrolyzed OC. By subtracting the blank value from the sample concentration,
the measured OC and EC concentrations could be corrected.

2.2.3. Water-Soluble Ions

A water extract of PM2.5 for water-soluble inorganic ions (WSIIs) was obtained follow-
ing the same method as the WSOC pretreatment. The concentrations of three anions (Cl−,
NO3

−, and SO4
2−) and five cations (Na+, NH4

+, K+, Mg2+, and Ca2+) were measured by
ion chromatography (IC) (Thermo Scientific Dionex Aquion IC, Shanghai, China). An anion
column (4 mm × 250 mm, Dionex AS23, Thermo Fisher Scientific Inc., Waltham, MA, USA)
was used to separate anions from the filtrate through the eluent (4.5 mmol·L−1 Na2CO3
and 0.8 mmol·L−1 NaHCO3) at 0.8 mL·min−1. A cation column (4 mm × 250 mm, Dionex
CS12, Thermo Fisher Scientific Inc., Waltham, MA, USA) was used to separate the cations
in the filtrate through the mobile phase (18 mmol·L−1 methanesulfonic acid). The flow rate
was 0.8 mL·min−1 at 25 ◦C. In addition, oxalate and formate could also be quantified in the
same anion run with a Dionex AS23 column replaced by a Dionex AS11 column.
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2.2.4. Heavy Metals

In this procedure, 1/16 of each filter was placed into a Teflon digestion vessel. Then,
a 10 mL mixture of HNO3 and HCl (1:1, v:v) was added, and the Teflon vessel was placed in
a microwave digestor (XT-9900A, Shanghai Xintuo Co., Shanghai, China) for dissolution [20].
Finally, the mixture was heated to 130 ◦C until it was completely dried and was then diluted
to 25 mL with ultrapure water. The concentrations of 14 heavy metals (Pb, Fe, Al, Zn, Ag,
As, Cd, Co, Cr, Cu, Mn, Ni, Se, and V) were analyzed by an inductively coupled plasma
optical emission spectrometer (ICP–OES) as described in our previous work [19,21].

2.2.5. Water-Soluble Organic Matter (WSOM)

We also used an Aerodyne soot particle aerosol mass spectrometer (SP–AMS) to ana-
lyze the chemical composition of WSOM [22]. Note SP–AMS is an advanced instrument
that is often deployed for online and real-time measurement of fine particle composi-
tion [23,24]; recently, we successfully developed the technique by using this instrument for
offline analysis of filter extracts [25,26]. The SP–AMS can provide the mass spectrum of
WSOM in the form of 70 ev electron impact (EI)-ionized fragments of the organics. Here,
concentrations of some SP–AMS tracer ions indicative of specific sources were used for
correlation analysis with HULIS-C (see Section 3.4.3).

2.3. Light Absorption Coefficients of HULIS and WSOC

Light absorption spectra of water extracts of aerosols (WSOC and HULIS) were
recorded by a Shimadzu UV-2600 spectrophotometer from 200 to 700 nm with a 1 cm
quartz cell. The absorption coefficient at wavelength λ (Absλ) [27–30] can be calculated
according to Equation (1):

Absλ = (Aλ − A700)VL ln 10/(Vair · L) (1)

where Absλ is expressed in the unit of M m−1, and Aλ refers to absorbance at wavelength
λ. A700 is the light absorbance at 700 nm, a base value to eliminate the errors caused by
baseline fluctuation. Vair corresponds to the volume of air sampled (m3), VL refers to the
volume of the extraction (mL), L is the optical path length of the lamp (0.01 m).

The mass absorption efficiency (MAEλ, m2·g−1) at wavelength λ was used to char-
acterize the optical property, calculated by dividing Absλ by the mass concentration of
WSOC, and expressed by the following equation [29,31]:

MAEλ = Absλ/C (2)

Here, C corresponds to either the WSOC or HULIS-C content in air (µg m−3).
The absorption Angstrom exponent (AAE) was then used to describe the dependence

of the light absorbption by HULIS and WSOC on wavelength, as expressed by the following
equation [29,31]:

AAE = ln(
MAEλ1

MAEλ2
)× ln(

λ2

λ1
) (3)

Since light absorbance of HULIS mainly occurs in range of 300–400 nm, AAE(300–400)
was calculated and used in this study.

2.4. PMF Analysis

Positive matrix factorization (PMF) was conducted to quantify PM2.5 and HULIS-C
sources [32]. PMF does not require the source profile prior to analysis and has no limitation
on the number of sources, so, it is an effective receptor model and has been widely used in
source apportionment of PM. EPA PMF software (version 5.0) was used in this work. The
detailed principles of PMF can be obtained elsewhere [15].

We used a total of 19 measured chemical components for PMF analysis, including
carbonaceous components (HULIS-C, HULIS, WSOC, OC, EC), ions (oxalate, Cl−, NO3

−,
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SO4
2−, NH4

+, K+, Mg2+, Ca2+), and six heavy metals (Pb, Fe, Al, As, Cu, and Zn). It is
worth noting that metal elements were added in the operation of PMF in order to analyze
HULIS sources more accurately. Since K+ has multiple emission sources, such as soil dust,
sea salt, and biomass burning [33], K+ was replaced by BB-corrected K+ (Kb = K-0.35Fe) for
PMF analysis as suggested by Pachon [34]. Sodium might have high blank values on the
quartz filter, so we did not include it in the PMF analysis.

Finally, we selected a four-factor solution for the suburban region and a five-factor so-
lution for the industrial region as the final optimal PMF results by performing 100 bootstrap
runs, with more than 90% of the runs producing the chosen solutions. Theoretical Qtrue and
Qrobust displayed a <5% difference. As stated before, the extra modeling uncertainty was
set to 5%. Scaled residuals of >95% data were in the range of −3 to 3. A good correlation
was found between model-apportioned HULIS-C (industrial: r = 0.97; suburban: r = 0.92),
OC (industrial: r = 0.90; suburban: 0.90) and WSOC (industrial: r = 0.91; suburban: r = 0.92)
with real measured concentrations.

2.5. Quality Assurance and Quality Control (QA/QC)

All analytical methods were subjected to strict quality assurance and quality control.
Blank filters were analyzed, and the results were used for correcting sample concentrations.
Method detection limits (MDLs) were defined as three times the standard deviations of
the blank sample. The MDLs for EC and OC were 0.2 µg m−3 and 0.6 µg m−3, respectively.
The MDLs of WSIIs (Cl−, NO3

−, SO4
2−, Na+, NH4

+, K+, Mg2+, and Ca2+) were lower than
0.08 µg m−3. Instrument stability and accuracy of methods were estimated by calculating
the relative standard deviation (RSD) of one selected sample analyzed ten times. The
RSDs were all in the range of 0–10% for all species, including OC, EC, WSIIs, and heavy
metals. The correlation coefficients (r2) for linear regressions of the calibration curves
exceeded 0.995.

For the PMF analysis, the uncertainty of an individual species was calculated as√
(RSD × concentration)2 + MDLs2 according to the manual. When the concentration

was below the MDLs, it was replaced by 1/2 MDLs, and the corresponding uncertainty
was set to 5/6 MDLs.

3. Results and Discussion
3.1. Comparisons of PM2.5 and Its Constituents at the Two Sites

The average daily concentrations of PM2.5, carbonaceous species (OC, EC, WSOC,
HULIS-C, et al.), inorganic ions (such as SO4

2−, NO3
−, NH4

+, K+, et al.), and selected
mass ratios of these species during polluted and fair days are summarized in Table 1.
Among all samples, 50 (67.6%) samples showed a high PM2.5 level (>75 µg m−3) in the
industrial area, while the number was only 31 (51.7%) of 60 in the suburban area, indicating
the industrial area suffered more serious pollution. The average PM2.5 concentrations
for the collected samples were 113.06 ± 64.3 µg m−3 and 85.27 ± 41.56 µg m−3 in in-
dustrial and suburban regions, respectively. Consistent with our previous results for
Changzhou [19], carbonaceous species and secondary inorganic ions (herein denoted as
SNA, SNA = NH4

+ + SO4
2− + NO3

−) were the major components. Although PM2.5 and its
chemical constituents were slightly higher in the industrial area than those in the suburban
area, the relative mass fractions of HULIS-C in WSOC (industrial: 46.0%; suburban: 52.5%)
were very similar at the two sites throughout the entire sampling period, similar to results
for Hong Kong (53.4%) [7] and urban Shanghai (50%) [35]. A previous study [10] showed
that the HULIS–C/WSOC ratio was generally within the range of 24–72%. On the contrary,
the HULIS/PM2.5 (8.7%) and HULIS-C/OC (35.1%) ratios at the suburban site were sig-
nificantly higher than those (6.3% and 21.1%) in the industrial region. The HULIS-C/OC
ratio was comparable to or higher than that observed in Guangzhou (17%) [36] and Xi’an
(34.5%) [37], highlighting the significant contribution of HULIS-C to organic aerosol mass
in our study. The linear regression line of HULIS vs. HULIS-C is plotted in Figure S2,
showing the HULIS/HULIS-C ratios of 1.92 (industrial) and 1.84 (suburban), consistent
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with values in South China [36] and within the range reported before (1.8–2.3) [10,38]. The
excellent correlation between HULIS-C (results from the TOC analyzer) and HULIS (results
from HPLC–ELSD) reveals a good comparative performance of both methods.

Table 1. Mean concentration of PM2.5 and its constituents (in µg m−3) with one standard deviation (Std) and mass ratios
and fractions of selected species at the two sites during polluted and fair days.

Constitutents

Industrial Region Suburban Region

Fair
(n = 24)

Polluted
(n = 50)

All
(n = 74)

Fair
(n = 29)

Polluted
(n = 31)

All
(n = 60)

Average ± Std Average ± Std Average ± Std Average ± Std Average ± Std Average ± Std

PM2.5 and its carbonaceous contents (µg m−3)

PM2.5 52.07 ± 12.46 142.33 ± 58.33 113.06 ± 64.3 51.82 ± 12.90 116.57 ± 34.06 85.27 ± 41.56
OC 8.55 ± 3.15 21.75 ± 9.54 17.47 ± 10.14 7.27 ± 2.66 20.20 ± 7.90 13.95 ± 8.80
EC 2.28 ± 1.14 5.33 ± 3.05 4.34 ± 2.96 2.22 ± 0.83 4.19 ± 2.86 3.24 ± 2.35

HULIS 3.90 ± 1.14 7.46 ± 2.78 6.30 ± 2.90 5.33 ± 0.90 9.29 ± 2.29 7.38 ± 2.65
HULIS-C 2.03 ± 0.70 3.92 ± 1.46 3.31 ± 1.54 2.91 ± 0.49 5.02 ± 1.19 4.00 ± 1.40

WSOC 4.39 ± 0.98 8.78 ± 3.34 7.35 ± 3.47 5.50 ± 0.94 9.77 ± 2.71 7.70 ± 2.96

Water-soluble ions (µg m−3)

Na+ 0.47 ± 0.22 0.79 ± 0.98 0.68 ± 0.83 1.55 ± 0.69 1.70 ± 0.51 1.63 ± 0.61
Cl− 1.17 ± 0.64 2.48 ± 1.56 2.05 ± 1.47 2.28 ± 1.04 5.11 ± 3.52 3.74 ± 2.99
K+ 0.25 ± 0.08 0.51 ± 0.21 0.42 ± 0.21 0.46 ± 0.42 0.86 ± 0.89 0.67 ± 0.73

NO3
− 4.99 ± 1.85 19.49 ± 11.35 14.79 ± 11.58 6.19 ± 2.65 20.46 ± 11.38 13.56 ± 11.00

SO4
2− 6.58 ± 1.63 13.77 ± 6.32 11.44 ± 6.26 8.19 ± 2.90 14.86 ± 5.17 11.64 ± 5.38

NH4
+ 4.81 ± 1.32 9.30 ± 2.99 7.85 ± 3.32 4.67 ± 1.54 9.86 ± 2.82 7.35 ± 3.46

formate 0.19 ± 0.10 0.45 ± 0.20 0.36 ± 0.21 0.60 ± 0.96 0.63 ± 0.59 0.61 ± 0.79
oxalate 0.20 ± 0.13 0.37 ± 0.21 0.32 ± 0.20 0.39 ± 0.99 0.42 ± 0.19 0.41 ± 0.70

Contributions

HULIS/HULIS-C 1.95 ± 0.15 1.91 ± 0.13 1.92 ± 0.14 1.83 ± 0.06 1.85 ± 0.10 1.84 ± 0.08
HULIS-C/WSOC (%) 45.8 ± 8.5 46.1 ± 9.8 46.0 ± 9.4 53.0 ± 2.3 52.0 ± 4.4 52.5 ± 3.5

HULIS-C/OC (%) 24.5 ± 5.2 19.4 ± 6.1 21.1 ± 6.3 .43.9 ± 13.3 27.0 ± 7.4 35.1 ± 13.6
HULIS/PM2.5 (%) 7.6 ± 1.8 5.6 ± 1.9 6.3 ± 2.1 10.7 ± 2.0 8.2 ± 1.4 9.4 ± 2.1

OC/EC 4.47 ± 2.06 5.06 ± 3.03 4.87 ± 2.77 3.57 ± 1.51 6.28 ± 3.23 4.97 ± 2.89

In the industrial region, the average PM2.5 mass concentration was 142.33 µg m−3

on polluted days, which was much higher (2.8 times) than that (52.07 µg m−3) on fair
days, and 1.9 times the NAAQS Grade II. Further, concentrations of SNA (NO3

−, SO4
2−,

and NH4
+) increased rapidly on polluted days with a factor of about 4~5, indicating the

importance of secondary processes on haze formation. Relatively synchronous increases
were found for other PM2.5 species during polluted days, such as WSOC, OC, and their
fractions in PM2.5. At the suburban site, the OC/EC ratio (6.28) on polluted days was
significantly higher than the value (3.57) on fair days, while in the industrial area, the
difference was not that large (5.06 vs. 4.47).

The HULIS concentrations exhibited daily mean levels of 3.90 µg m−3 (fair) and
7.46 µg m−3 (polluted) in the industrial area, lower than those at the suburban area
(fair: 5.33 µg m−3, polluted: 9.29 µg m−3). The average HULIS concentration (suburban:
7.38 and industrial: 6.30 µg m−3) was comparable with results for other urban cities
(for example, 7.24 µg m−3 in Lanzhou) [10]. Both oxalate and formate exhibited slightly
higher concentrations at the suburban site than those observed in the industrial area. It is
known [39] that both formate and oxalate could come from secondary sources. Thus, we
conclude that secondary sources likely contributed to HULIS more significantly in the
suburban area than in the industrial region.
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3.2. Temporal Variations of PM, HULIS, and Other Related Parameters

To obtain more detailed information, we examined the temporal variations of some
species (Figure 1). Daily PM2.5 concentrations ranged from 30 to 307.52 µg m−3 in the indus-
trial region and from 35 to 245 µg m−3 in the suburban area during the sampling period. The
peak PM2.5 concentration (307.52 µg m−3) occurred on 12 December 2016, in the industrial
region. During the entire sampling period, severely polluted days (PM2.5 > 150 µg m−3)
accounted for 12.5% of total sampling days in the industrial area. The daily average concen-
trations of PM2.5 in the industrial area frequently exceeded 150 µg m−3 and even reached
300 µg m−3, which could tentatively be explained by the very complex processes that
may take place during severely polluted episodes. For example, the mixing layer height
decreases, and poor diffusion conditions or unfavorable conditions (such as high humidity
or temperature, etc.) cause heavy pollution due to the accumulation of pollutants. More
polluted days in the industrial region indicated that the PM2.5 pollution was still very
serious despite the implementation of stricter control measures in the industrial region.
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Figure 1. Temporal variation of PM2.5 and its constituents (i.e., HULIS-C, HULIS, OC, EC, WSOC, SNA, oxalate, and formate),
as well as optical properties (E2/E3, MAE280, MAE365) of HULIS at the two sites. (a) suburban region, (b) industrial region.

As presented in Figure 1, in this study, except for a small number of samples, the
majority of collected samples exhibited an OC/EC ratio >2.0, implying the importance of
secondary organic aerosols across all fall–winter periods in Changzhou. SNA concentra-
tions fluctuated more obviously than other species on severely polluted days, suggesting
SNA plays important roles in the formation of haze [40]. Moreover, HULIS, HULIS-C, and
WSOC concentrations varied in the range of 3.96–16.21, 2.19–8.64, and 4.02–19.22 µg m−3

in the suburban region and of 2.26–15.32, 1.14–7.72, and 2.52–17.17 µg m−3 in the industrial
region. MAE280 and MAE365 of HULIS (defined as MAE280,HULIS and MAE365,HULIS) were
in the range of 0.39–4.61 and 0.13–1.27 m2 g−1, with average values of 1.93 m2 g−1 and
0.52 m2 g−1 in the industrial region. Formate and oxalate concentrations varied little in
the industrial region, but two peak formate concentrations appeared on 10 October and
21 December in the suburban region.
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3.3. Light-Absorbing Characteristics of HULIS
3.3.1. UV–Vis Spectra of HULIS

Figure 2 shows the UV–vis spectra (expressed by Abs) determined for WSOC and
HULIS in the wavelength range of 250–550 nm in the industrial region. We selected three dif-
ferent pollution levels of PM2.5 (low: PM2.5 < 75 µg m−3, moderate: PM2.5 = 75–150 µg m−3,
high: PM2.5 > 150 µg m−3) to illustrate its behavior. As can be seen, the overall wavelength
dependences were similar, i.e., the Abs for both WSOC and HULIS (expressed by AbsWSOC
and AbsHULIS) generally decreased as the wavelength increased. The HULIS had similar
absorption patterns as WSOC, but they also exhibited distinct features. The decreased trend
seemed to be smoother for AbsHULIS than for AbsWSOC; in other words, light-absorbing
properties tended towards short wavelengths for WSOC, suggesting less aromaticity of
WSOC compared to HULIS. As we know [30], MAE presented mass-normalized UV–vis
spectra, namely, light absorbance per unit mass of HULIS-C or WSOC. As we can see from
Figure 2, the normalized absorption intensities for WSOC (MAEWSOC) were higher than
those for the corresponding HULIS (MAEHULIS). The finding contradicts with the results
obtained previously for BB aerosols [41], which suggests higher MAEHULIS than MAEWSOC.
Furthermore, the high PM2.5 level exhibited an absolutely higher Abs value but nearly
the same MAEWSOC at all wavelengths, implying similar compositions regardless of the
PM2.5 levels. Different from MAEWSOC, the wavelength dependence of MAEHULIS was
different for the three PM2.5 levels, with the highest MAEHULIS value for severely polluted
days and the lowest at a moderate PM2.5 concentration, indicating that the chemical and
optical properties of HULIS were different under different pollution levels, and HULIS
could contribute significantly to visibility degradation due to its strong light-absorbing
properties. As we know [29], the chemical components and structure of HULIS from
primary aerosols and secondary processes may well be different; as a result, MAEHULIS
values for different PM2.5 levels were therefore different.
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Figure 2. Wavelength dependences of the light absorption coefficient (Abs) (a) and mass ab-sorption
efficiency (MAE) (b) for water-soluble organic carbon (WSOC), as well as Abs of the humic-like
substance (HULIS) (c) and MAE of HULIS (d) in the industrial region.
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Likewise, Figure S3 shows the wavelength dependences of light absorbance for both
WSOC and HULIS in the suburban region. The overall trend for AbsHULIS was similar
to that in the industrial region; nevertheless, the curve was not as smooth as that in the
industrial region. Furthermore, the higher PM2.5 level corresponded to higher AbsHULIS
and MAEHULIS values at any wavelength, indicating higher absolute and relatively strong
light absorption ability for HULIS by suburban ambient fine particles.

3.3.2. Optical Properties of HULIS

To assess the impact of water-soluble carbon (HULIS-C and WSOC) on light-absorption
(340 nm and 365 nm, namely, Abs340 andAbs365), correlation analysis was conducted be-
tween Abs365, Abs340, and the WSOC concentration [27]. Good correlations between Abs340
andAbs365 and water-soluble carbon (Figure 3) concentrations at the two sites indicated
HULIS-C and WSOC were dominant absorption species. UV absorption at 365 nm and
340 nm could be used for characterizing the origin, aromaticity, and structure of HULIS in
atmospheric samples and sometimes for quantification of HULIS-C and WSOC.
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Figure 3. Scatter plots of Abs365 versus HULIS-C and WSOC at the two sites (a,b) and Abs340 versus
HULIS-C and WSOC (c,d).

The optical properties of HULIS-C and WSOC in PM2.5 samples at the two sites
are summarized in Table 2. MAE280 and MAE365 are widely used to characterize the
overall light-absorbing ability of HULIS, which are positively correlated with both the
aromaticity and molecular size of HULIS. However, the E2/E3 ratio (the ratio of light
absorbance at 250 nm to that at 365 nm) strongly inversely correlates with the aromaticity
of HULIS. In this study, the mean respective values of MAE280, MAE365, AAE300–400,
and E2/E3 were 1.93 M m−1, 0.52 M m−1, 5.36, and 5.71 for industrial PM2.5 HULIS and
1.74 M m−1, 0.63 M m−1, 4.85, and 5.00 for suburban PM2.5 HULIS. MAE280 (1.93 M m−1)
and MAE365 (0.52 M m−1) for HULIS were lower than WSOC MAE280 (2.79 M m−1)
and MAE365 (0.74 M m−1), suggesting that the HULIS fractions did not exhibit better
light absorption than WSOC. Here, we found E2/E3 with slightly higher values in the
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industrial area, suggesting a lower aromaticity of HULIS in the industrial area. In addition,
the MAE365,WSOC values were similar at the two sites (0.74 and 0.76), suggesting similar
chemical compositions for HULIS-C. In contrast, higher MAE365,HULIS-C was observed at
the suburban site. This result shows that HULIS had different chemical components at
the two sites. Moreover, there was no distinct difference in E2/E3 for HULIS and WSOC,
opposite to reports at other urban sites [36]. However, in theory, combustion processes from
industry release more chemical substances with aromatic moieties into the atmosphere,
resulting in a lower E2/E3 ratio and high aromaticity. This phenomenon might be attributed
to the low water solubility of these aromatic hydrocarbons (such as polycyclic aromatic
hydrocarbons, PAHs) from emission sources (vehicle or industries).

Table 2. Optical parameters (MAE, AAE300–400 and E2/E3) for HULIS-C and WSOC at the two sites.

Optical Parameters

Industrial Region Suburban Region

Fair
(n = 24)

Polluted
(n = 50)

All
(n = 74)

Fair
(n = 29)

Polluted
(n = 31)

All
(n = 60)

Mean ± Std Mean ± Std

WSOC

MAE280(m2 g−1) 2.68 ± 0.73 2.85 ± 0.83 2.79 ± 0.81 2.07 ± 0.64 3.01 ± 0.88 2.55 ± 0.90
MAE365(m2 g−1) 0.73 ± 0.20 0.74 ± 0.24 0.74 ± 0.23 0.64 ± 0.31 0.88 ± 0.27 0.76 ± 0.31

AAE(300–400) 5.11 ± 0.52 5.48 ± 0.55 5.36 ± 0.57 5.02 ± 1.05 5.09 ± 0.67 5.05 ± 0.88
E2/E3 5.03 ± 0.84 5.90 ± 1.82 5.61 ± 1.62 4.86 ± 1.03 5.14 ± 1.19 5.01 ± 1.12

HULIS-C

MAE280(m2 g−1) 1.67 ± 0.65 2.06 ± 0.76 1.93 ± 0.75 1.29 ± 0.54 2.17 ± 0.68 1.74 ± 0.76
MAE365(m2 g−1) 0.45 ± 0.21 0.56 ± 0.22 0.52 ± 0.22 0.56 ± 0.22 0.70 ± 0.22 0.63 ± 0.23

AAE(300–400) 5.18 ± 0.58 5.45 ± 0.62 5.36 ± 0.62 4.55 ± 2.00 5.14 ± 1.70 4.85 ± 1.87
E2/E3 5.47 ± 0.90 5.83 ± 1.08 5.71 ± 1.04 4.67 ± 2.01 5.31 ± 1.45 5.00 ± 1.77

However, there was no clear difference in AAE300–400 value for HULIS and WSOC
in the industrial region, indicating that the light-absorbing chromophores in the HULIS
may have been similar to those in the original WSOC, consistent with other reports [42].
The average AAE300–400 value reached approximately 5, within the range of brown carbon
species (AAE = 2–7) [27], and much higher than that of black carbon (AAE = 1) [7], which
highlights the presence of massive amounts of UV-light absorbing organic compounds
in HULIS and WSOC. The high AAE300–400 value indicates that HULIS-C and WSOC
components absorb more radiation over the UV wavelength range, and there is high
wavelength dependence of optical properties. Recent studies [27] indicated that AAE from
biomass burning (6–8) was higher than that from coal combustion (1–2.9). The AAE value
in our study was also close to the AAE of aged aerosol, so we infer that BB and secondary
process were two important sources for the light-absorbing species.

The slight differences between polluted and fair days at the two sites might be ex-
plained by different sources and atmospheric conditions. We found relatively higher
MAE280, MAE365, AAE300–400, and E2/E3 for HULIS on polluted days than on fair days
at the two sites. This result agrees well with different chemical structures for HULIS on
polluted and fair days, which can be further attributed to differences in emissions and/or
formation processes.

The dependences of MAE280 and the E2/E3 ratio on HULIS-C levels are shown in
Figure 4. As illustrated, similar distribution patterns were found for HULIS-C MAE280
at the two sites, and both of them showed a weak positive correlation on polluted days
(suburban: r = 0.47, industrial: r = 0.37). The E2/E3 value showed quite a poor or slightly
negative correlation with HULIS-C concentration. Given that MAE280 and E2/E3 are linked
with the chemical structure, we cannot directly obtain a clear relationship between optical
characteristics and HULIS-C concentrations through our results.
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Figure 4. (a,b) Correlations between MAE280 and HULIS-C, (c,d) variation of E2/E3 with HULIS-C
concentration at the two sites.

3.4. Correlation between HULIS-C and Chemical Species
3.4.1. Interplay between HULIS-C and Carbonaceous Components

Figure 5a–c show the correlation scatter plots of HULIS-C vs. carbonaceous compo-
nents (WSOC, OC, and EC) at the two sites. Moreover, the scatter plots of OC vs. EC are
also presented in Figure 5d. The observed highly positive correlations between HULIS-
C, WSOC, and OC demonstrated that three species share common sources. Further, we
attempted to find the correlation between HULIS-C and primary emissions, such as EC
(mainly produced from combustion sources and as a representative primary emission
indicator). As presented in Figure 5c, the correlation between HULIS-C and EC was weak,
especially in the industrial region, indicating that EC was actually not an influential source
of HULIS-C, implying vehicle emissions were not the main source of HULIS. A weak
correlation between OC and EC showed their distinct sources. According to Table 1, in our
study, the mean OC/EC ratio was about 5.0 (4.87 in the industrial region and 4.97 in the
suburban region). The average OC/EC ratio was significantly higher on polluted days
(6.28) than on fair days (3.57) at the suburban site. Conversely, no distinct difference was
found in the industrial region (O/C = 4.47 on fair and 5.06 on polluted days), which might
be explained by high primary emissions such as PAHs and EC [43] and relatively small
contributions from secondary sources on polluted days.

3.4.2. Relationship between HULIS-C and SNA

From Figure 6, significant correlations were also observed between HULIS-C and
secondary inorganic ions at the two sites. Figure S4 depicts the scatterplot of HULIS-C with
SO4

2−, NO3
−, and NH4

+ at both sites. As presented in Figure 6 and Figure S4, correlation
coefficients between HULIS-C and SNA were generally higher on polluted days than on
fair days regardless of sampling sites, implying more secondary formation on polluted
days. A previous study [44] showed BB and secondary formation processes were two main
sources for HULIS in winter. In Figure S4, a relatively weaker correlation between HULIS-C
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and sulfate than between HULIS-C and NO3
− possibly indicated that coal combustion was

not an important source of HULIS.
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Figure 5. The scatter plots of HULIS-C versus carbonaceous components. (a)WSOC, (b) OC, and
(c) EC at the two sites. (d) Correlations between OC and EC.
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Figure 6. Correlations between HULIS-C concentration and secondary inorganic ion (SNA = NH4
+ +

NO3
− + SO4

2−) concentration in industrial (a), and suburban (b) regions.

3.4.3. Relationship between HULIS-C and Some Specific Tracers

Tables 3 and 4 summarize the correlation coefficients of HULIS-C with some specific
tracers, including K+, AMS tracer ions, formate, and oxalate. A strong correlation between
HULIS-C with corrected K+ (r = 0.817) indicated that BB was a significant source of HULIS-
C in the industrial region. This was further supported by the correlations between HULIS-C
and AMS BB tracers such as C2H4O2

+ (r = 0.736) and C3H5O2
+ (r = 0.710) ions detected by

SP–AMS. This finding was similar to our previous studies [28,45]. In contrast, relatively
weak correlations between HULIS-C with Kb (r = 0.289), C3H5O2

+ (r = 0.435), and C2H4O2
+

(r = 0.253) were observed in the suburban area, suggesting the limited contribution of BB
to winter HULIS. We found moderate/tight correlations between HULIS-C with oxalate
(0.481) and formate (r = 0.856) in the industrial region, suggesting secondary reactions
could be a possible source of HULIS-C. Consistently, previous studies have also shown
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the formation pathways of HULIS and oxalate are similar, i.e., heterogeneous process,
and/or photochemical oxidation, and biomass burning sources [46–48]. On the other
hand, HULIS-C and oxalate (r = 0.026) and formate (−0.054) in the suburban area showed
no correlations.

Table 3. Correlation coefficients (r) of HULIS-C with some specific tracers, including Kb, AMS ions, formate, and oxalate in
the industrial region.

Species HULIS-C Formate Oxalate Kb C2H4O2
+ C3H5O2

+ C4H9
+ C4H7

+ CO2
+ C2H4O+

HULIS-C 1
formate 0.856 1
oxalate 0.481 0.426 1

Kb 0.817 0.744 0.396 1
C2H4O2

+ 0.736 0.737 0.303 0.711 1
C3H5O2

+ 0.710 0.738 0.339 0.658 0.982 1
C4H9

+ 0.699 0.626 0.374 0.597 0.897 0.920 1
C4H7

+ 0.718 0.693 0.397 0.605 0.914 0.949 0.978 1
CO2

+ 0.533 0.680 0.053 0.470 0.816 0.849 0.716 0.783 1
C2H4O+ 0.509 0.329 0.483 0.465 0.640 0.614 0.691 0.637 0.170 1

Table 4. Correlation coefficients (r) of HULIS-C with some specific tracers, including K+, AMS ions, formate, and oxalate in
the suburban region.

Species HULIS-C Formate Oxalate Kb C2H4O2
+ C3H5O2

+ C4H9
+ C4H7

+ CO2
+ C2H4O+

HULIS-C 1
formate −0.054 1
oxalate 0.026 0.824 1

Kb 0.289 0.031 −0.077 1
C2H4O2

+ 0.253 0.403 0.013 0.315 1
C3H5O2

+ 0.435 0.198 0.069 0.342 0.782 1
C4H9

+ 0.652 0.063 0.010 0.317 0.662 0.934 1
C4H7

+ 0.660 0.078 0.044 0.274 0.624 0.949 0.973 1
CO2

+ 0.489 0.258 0.051 0.449 0.878 0.947 0.874 0.861 1
C2H4O+ 0.312 0.298 0.010 0.243 0.937 0.812 0.719 0.695 0.849 1

In summary, the poor correlation of HULIS-C with EC, together with the tight correla-
tion with SNA and moderate relation with Kb, indicates that that secondary reaction and
BB are two major sources of HULIS-C during winter.

3.5. PMF Analysis for Potential Sources of HULIS

The PMF-apportioned source contributions to HULIS and HULIS-C at both sites are
shown in Figure 7. A strong linear correlation between the measured and PMF-reconstructed
HULIS mass concentrations (suburban: r = 0.92; industrial: r = 0.97) demonstrates the validity
and robustness of our PMF solutions (Figure S5 in the Supplement).

As shown in Figure 7a in the industrial region, Factor 1 was dominated by As, Cu,
Zn, Pb, and Cl−, so it was treated as being from industrial emissions and coal combustion.
Factor 2 was characterized by high percentages of Fe, Al, and Zn, and EC also contributed
to some extent; thus, it was considered as a vehicle emission source [49]. Factor 3 was
considered to be road dust due to the high loadings of Mg2+ and Ca2+ in its profile. The
main components of Factor 4 were SNA (SO4

2−, NO3
− and NH4

+) and oxalate, and it was
therefore designated as secondary aerosols. Factor 5 contained a high proportion of Kb,
moderate Cl-, and very low As; thus, it was determined as a biomass burning source [50].
Among the five identified sources, factor 5 contributed the most to HULIS-C. It was worthy
to note that road dust contribution to HULIS-C was very low, so we ignored this factor in
further discussion. The PMF model was also used to determine the possible sources of
HULIS in the suburban region. Similarly, as shown in Figure 7b, Factor 1 and Factor 2 were
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considered as biomass burning and secondary aerosols sources, respectively. Factor 3 was
dominated by Zn, Pb, Fe, Al, and EC and was designated to be vehicle emissions. Factor 4
was characterized by a predominant loading of As, Zn, and Cu and was viewed as a coal
combustion source. The contribution of factor 2 ranked first among all identified sources
for HULIS in the suburban region. In this study, the sampling site of the suburban area
was located near Zhongwu Road, influenced by considerable vehicular emissions such as
NOx, which may have led to subsequent significant secondary formation.
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Based on PMF results, we also calculated the source-specific contributions to HULIS-
C mass concentration at these two sites (Figure 7c,d). Biomass burning was the largest
contributor (41.3%) to HULIS-C in the industrial region. Vehicle emissions were the second
largest (28.0%) contributor to HULIS-C, followed by secondary aerosols, which accounted
for 25.4%. In contrast, secondary aerosols were the most significant contributor to HULIS-C
(46.5%) in the suburban region, with the three primary sources, i.e., biomass burning,
vehicle emissions, and coal combustion, accounting for 53.5% in total.
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In summary, despite some differences in the contributions to the HULIS-C mass at
the two sites, biomass burning, secondary aerosols and vehicle emissions were found to
be three common sources of HULIS-C, and they accounted for 41.3%, 25.4%, and 28.0%
in the industrial region, and 9.4%, 46.5%, and 24.3%, respectively, in the suburban region.
HULIS-C in the industrial region was relatively strongly affected by the biomass burning,
and the primary pollution in the industrial region was serious. In contrast, secondary
processes seemed to be more important to HULIS-C in the suburban region than in the
industrial region.

4. Conclusions

Water-soluble HULIS-C accounted for 21.1% of OC in the industrial region and 35.1%
of OC in the suburban region, illustrating the important role of HULIS in atmospheric
aerosols. The HULIS and WSOC fractions in PM2.5 were lower in the industrial area
than in the suburban area due to the combined impacts of different HULIS sources at
these two sites. During polluted days, HULIS values were in the range of 3.67–15.32 and
6.09–16.21 µg m−3 in the industrial and suburban region, respectively, compared with
2.26–6.54 and 3.96–7.55 µg m−3 during fair days. The high OC/EC ratios indicated the
importance of secondary formation processes throughout the sampling period. The much
higher SNA contribution to PM2.5 on polluted days further supports the importance of
secondary processes of inorganic species in haze. The wavelength dependence of MAE365
of HULIS-C was different under three different PM2.5 levels, with the highest MAE365
value on severely polluted days, suggesting HULIS could contribute significantly to haze
formation due to their strong light absorbing property.

PM2.5 HULIS from the industrial site exhibited slightly higher MAE280, MAE365, and
AAE300–400 values. In comparison to fair days, high MAE280 and MAE365 values for HULIS
fractions were also found on polluted days, indicating the presence of abundant compounds
with high aromaticity or different emission/secondary formations. No clear differences
in AAE300–400 and E2/E3 values for HULIS and the original WSOC were observed at the
two sites, indicating HULIS were the major components of WSOC.

Good correlations of PM2.5 HULIS-C with both BB tracers (i.e., Kb, C2H4O2
+, C3H5O2

+)
and SNA suggested BB emissions and secondary formation processes were the two major
sources of HULIS in the industrial region, especially on polluted days. On the contrary,
relative weak correlations between HULIS-C with the aforementioned BB tracers implied
the limited contribution of biomass burning to suburban HULIS-C. Three primary sources
(i.e., biomass burning, industrial emission/coal combustion, and vehicle emissions) and one
secondary source were identified by PMF in the industrial region. Moreover, four sources,
i.e., biomass burning, vehicle emissions, coal combustion, and secondary aerosols, were
identified by PMF in the suburban region. Secondary sources were the major contributor
to HULIS-C, followed by vehicle emissions, coal combustion, and biomass burning in the
suburban area. The contributions of primary sources to HULIS overall outweighed those of
secondary sources throughout the episode at both sites (industrial: 74.6%, suburban: 53.5%).

Our findings relate to PM2.5 chemistry and its future reductions. Further investigations
on other properties of PM2.5 HULIS in these two sites are yet to be conducted, including
ROS generation and molecular characterization of HULIS, in order better address the
possible health effects of HULIS.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
433/12/2/276/s1, Figure S1: Location of two sampling sites in Changzhou, Figure S2: Linear
regressions of HULIS with HULIS-C and WSOC at (a) suburban site and (b) industrial region,
Figure S3: Wavelength-dependence of the Abs and MAE of WSOC and HULIS in suburban region,
Figure S4: Correlations between HULIS-C with (a,b) NO3

−, (c,d) SO4
2−, and (e,f) NH4

+ ions,
Figure S5: Relationship between PMF-predicted HULIS-C concentration and measured HULIS
mass concentrations.
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