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Abstract: Numerous studies have revealed that the sparse spatiotemporal distributions of ground-
level PM2.5 measurements affect the accuracy of PM2.5 simulation, especially in large geographical
regions. However, the high precision and stability of ground-level PM2.5 measurements make their
role irreplaceable in PM2.5 simulations. This article applies a dynamically constrained interpolation
methodology (DCIM) to evaluate sparse PM2.5 measurements captured at scattered monitoring sites
for national-scale PM2.5 simulations and spatial distributions. The DCIM takes a PM2.5 transport
model as a dynamic constraint and provides the characteristics of the spatiotemporal variations
of key model parameters using the adjoint method to improve the accuracy of PM2.5 simulations.
From the perspective of interpolation accuracy and effect, kriging interpolation and orthogonal
polynomial fitting using Chebyshev basis functions (COPF), which have been proved to have high
PM2.5 simulation accuracy, were adopted to make a comparative assessment of DCIM performance
and accuracy. Results of the cross validation confirm the feasibility of the DCIM. A comparison
between the final interpolated values and observations show that the DCIM is better for national-scale
simulations than kriging or COPF. Furthermore, the DCIM presents smoother spatially interpolated
distributions of the PM2.5 simulations with smaller simulation errors than the other two methods.
Admittedly, the sparse PM2.5 measurements in a highly polluted region have a certain degree of
influence on the interpolated distribution accuracy and rationality. To some extent, adding the right
amount of observations can improve the effectiveness of the DCIM around existing monitoring sites.
Compared with the kriging interpolation and COPF, the results show that the DCIM used in this
study would be more helpful for providing reasonable information for monitoring PM2.5 pollution in
China.

Keywords: ground-level PM2.5 simulation; dynamically constrained interpolation methodology;
PM2.5 transport model; kriging interpolation; orthogonal polynomial fitting; chebyshev basis functions

1. Introduction

Air pollution, especially PM2.5 (particles with aerodynamic diameters less than 2.5 µm),
has escalated to a serious level in China due to the combination of rapid industrialization
and high population density [1]. High concentrations of PM2.5 have been identified as hav-
ing the greatest impact on air quality and visibility [2]. Owing to recent efforts, air pollution
levels in China has been greatly reduced by effectively controlling energy consumption,
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the number of vehicles, construction activity and the size of urban areas. However, seri-
ous haze caused by seasonal factors occurs repeatedly [3–5]. As the 2018 Report on the
State of the Environment in China pointed out, the average number of pollution days in
338 cities is about 36 and even more in the most economically prosperous areas like the
Beijing–Tianjin–Hebei region and the Yangtze River Delta. Therefore, scientific research in
China should include more sustained efforts at air pollution simulation.

PM2.5 simulation and warning play an important role in lessening the harm caused
by dangerous weather and reminding the general population to take protective measures.
The two main approaches to obtaining a spatial distribution of PM2.5 concentrations—-
chemistry transport models [6,7] and statistical models [8,9]—-are subject to restrictions
because of the sparse ground-level PM2.5 measurements obtained from the uneven dis-
tribution of the monitoring network [10]. Chemistry transport models are able to reflect
meteorological and aerosol properties, and they also simulate PM2.5 concentrations in
places without a monitoring site [11]. Comprehensive datasets would make these chem-
istry transport models optimal for PM2.5 simulations and provide a good understanding
of the physicochemical processes in the PM2.5 concentration simulations [12]. However,
the sparsely and unevenly distributed ground-level PM2.5 measurements would lead to a
large deviation [11].

Statistical models are easy to operate and better suited to finding complex site-specific
dependencies among air pollutant concentrations and their estimations [12,13]. Regression
and machine-learning methods in statistical models can make different functions establish
the respective relationships between the routinely measured pollutant data and various
selected predictors [11]. Nevertheless, the sparsely and unevenly distributed ground-level
PM2.5 measurements do not provide a large enough quantity of historical measurement
data under different atmospheric conditions, and this results in the representation of only
a specific monitoring station, hardly extending to regions with different meteorological
conditions [11,14]. Given the above deficiencies caused by limited systematic ground-level
monitoring station measurements, satellite-based aerosol optical depth (AOD) measure-
ment provides a beneficial complement to evaluate the ground-level PM2.5 concentrations
at different spatial scales.

However, it is crucial for higher precision and stability that ground-level monitoring
station measurements not be replaced by AOD data because ground-level monitoring
station measurements remain the preferred source of meteorological data [10,15].

Additionally, the sparsely and unevenly distributed ground-level PM2.5 measure-
ments lead to a focus on urban areas (the Pearl River Delta, Yangtze River Delta, and
Beijing–Tianjin–Hebei Area) [15,16]. However, the regional simulation and analysis of
PM2.5 concentration cannot provide sufficient information for macroscopical monitoring
throughout China. Explorations of countrywide patterns of PM2.5 pollutants should be
more consistent with the actual conditions of air pollution throughout China. As a result,
it is the crucial that the spatiotemporal patterns and correlates of PM2.5 concentrations
throughout China be investigated by using ground-level observations.

Spatial interpolation techniques are essential for simulating PM2.5 variations and
reconstructing the PM2.5 spatial distribution [17–20]. Kriging interpolation, Cressman inter-
polation and orthogonal polynomial fitting (OPF) have been widely used in atmospheric
subjects on account of their high accuracy [17–20]. But these methods still have shortcom-
ings. Due to the requirement of calculating inverse-matrices, the kriging interpolation is
time-consuming and cumbersome [17]. Cressman interpolation needs to be modified to
overcome large errors when it is applied to datasets with large distances between grid
points [18]. Orthogonal polynomial fitting (OPF) has proven to be accurate and efficient
when used in local areas of atmospheric subjects, but its simulation ability in large-scale
fields needs to be further discussed [20].

With an increasing need for higher accuracy of spatial interpolation methods in large-
scale fields, the dynamically constrained interpolation methodology (DCIM) is introduced
to estimate PM2.5 concentrations in national-scale regions of China. The DCIM has proved
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to be an effective tool for improving the utilization of spatiotemporally sparse observa-
tions [21]. As opposed to the dynamically unconstrained interpolation methods, the DCIM
takes numerical models as dynamic constrains, which allows dynamic information from a
given dataset to be fully demonstrated and its estimates to be statistically consistent [22].
Thus, the DCIM is no longer a purely mechanical interpolation method that relies only on
dense monitoring networks without considering surrounding environmental characteris-
tics. Meanwhile, prior studies have suggested that the DCIM is more efficient for acquiring
simulations with a satisfying level of accuracy at unsampled location–time pairs for spa-
tially and temporally observed data [21,23,24]. Therefore, it would be more reasonable to
employ the DCIM to reconstruct the national-scale distribution of PM2.5 observations. In
this paper, the DCIM takes a PM2.5 transport model as dynamic constraints and provides
the characteristics of the spatiotemporally varying key model parameters using the adjoint
method to improve the accuracy of PM2.5 simulations. The PM2.5 transport adjoint model
has been proven to be able to combine observations and models to form an optimal estimate
of the PM2.5 sources. Meanwhile, observations can be used to constrain estimates of model
parameters that are both influential and uncertain in the DCIM [25–29]. The application
effect of the DCIM will be discussed in this paper, and its results will be compared with
those of kriging interpolation and OPF method.

In view of the above mentioned, the object of this article is to use the DCIM to
simulate PM2.5 concentrations at national scale together with ground-level observations.
The remainder of this paper is organized as follows. In Section 2, materials and methods in
this article are described in detail. Implementation and verification of the DCIM are shown
in Section 3. Discussions and conclusions are summarized in Section 4.

2. Materials and Methods
2.1. Study Region and Data

A simulation of ground-level PM2.5 concentrations was carried out over a grid area
of China with a spatial extent between 15◦ and 55◦ north latitude and 70◦ and 140◦ east
longitude (Figure 1). The resolution of grid cells was determined to be 0.5◦ × 0.5◦, which
was determined for the convenience of analysis and discussion of results. In order to
provide additional insight into the spatial aspects of air pollution across the country, 80
major cities were picked out according to economic development, climate, industrial
activity and topography. The majority of the sample cities were distributed in the three
most developed area: the Beijing–Tianjin–Hebei Region, the Yangtze River Delta, and the
Pearl River Delta. The locations of these monitoring sites are plotted in Figure 1.

Atmosphere 2021, 12, x FOR PEER REVIEW 4 of 19 
 

 

 
Figure 1. The computing area and the locations of the 80 sample cities during the experimental pe-
riod. Full names of these cities can be found in [25]. 

2.2. Dynamically Constrained Interpolation Methodology 
Previous studies have shown that the DCIM combines dynamical constraints from 

the numerical model of dynamical processes with statistical information from observa-
tions, which can produce dynamically and statistically consistent simulation of the entire 
study area [21,22]. The observations are interpolated by the dynamic numerical model in 
the DCIM. Moreover, the interpolated results are optimized iteratively by adjusting the 
key model parameters through the adjoint method [21,24]. 

2.2.1. The Dynamic Model 
Generally speaking, PM2.5 varied due to interactions among many processes in-

cluding emissions (anthropogenic emission and natural dust production), transport (as 
well as convection-influenced dispersion and dilution), photochemical transformation 
(new particle speciation and production of secondary PM2.5), and deposition (dry and 
wet), with meteorology playing an overarching role [24]. Because of the complexity of the 
sources and sinks, the general PM2.5 adjoint model included a rich description of the 
photochemical oxidant cycle and a chemical mechanism to simulate the formation of 
secondary PM2.5. The adjoint method is useful for assimilating the observations to obtain 
reasonable model parameters and is used widely in meteorology [24–29]. 

However, the adjoint model was significantly difficult to build because of complex 
chemical mechanisms. To reduce the complexity of the model and achieve the purpose of 
simulation we took the primary PM2.5 and secondary PM2.5 as a whole, calling it the 
“source and sink term” (SAST) without considering the specifics. Because of the type of 
observations and the uncertainty of vertical variation, we established a two-dimensional 
(2D) PM2.5 CTM in rectangular coordinates as follows: 

S
y
CA

yx
CA

xy
Cv

x
CuC

HH +







∂
∂

∂
∂+








∂
∂

∂
∂=

∂
∂+

∂
∂+

∂
∂

t
 (1)

),(),,( 00 yxCyxtC = ,  (2)

0=
∂
∂

t
C

,   on ΓOUT (3)

70 80 90 100 110 120 130 140
Longitude(E)

15

20

25

30

35

40

45

50

55

XN

SZS
YC

LaZ

BaJ XAWN

HHT

CF

DT

TYYQ

CZ

QHR

HRB

MDJ
CC

FSSY
AS

BeJ
TJ

SJZ

QHD
DL

YT

QD
RZ

LYG

WFZBJNa
TA

ZZh
JNiKFZhZ

PDS

HF
WHu

NJYZ NT
SZSH

HuZHaZ NB

NCha

WHaJZ

CS
ChaDZJJ

NCho
CQ

LZZG

CD
MY

KM
YX

GY

GL
LiZ

NN

BH ZhaJ

SG

GZ
ZHShZ

ST
XM

QZ
FZ

WZ

KLY

UMQ

LS

Figure 1. The computing area and the locations of the 80 sample cities during the experimental
period. Full names of these cities can be found in [25].
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The PM2.5 concentration observations in this paper were collected from the China
National Environmental Monitoring Center, from January 2014 to November 2014. The
experiments were carried out over two time periods according to climate and topography.
The first period was from 5 to 11 November 2014. This noteworthy period coincided
with the 21th APEC summit in Beijing. A total of 6385 effective PM2.5 observations were
obtained during the winter period. The second period was from 14 to 20 May 2014. A total
of 6298 effective PM2.5 observations were obtained during the spring period.

2.2. Dynamically Constrained Interpolation Methodology

Previous studies have shown that the DCIM combines dynamical constraints from the
numerical model of dynamical processes with statistical information from observations,
which can produce dynamically and statistically consistent simulation of the entire study
area [21,22]. The observations are interpolated by the dynamic numerical model in the
DCIM. Moreover, the interpolated results are optimized iteratively by adjusting the key
model parameters through the adjoint method [21,24].

2.2.1. The Dynamic Model

Generally speaking, PM2.5 varied due to interactions among many processes includ-
ing emissions (anthropogenic emission and natural dust production), transport (as well
as convection-influenced dispersion and dilution), photochemical transformation (new
particle speciation and production of secondary PM2.5), and deposition (dry and wet), with
meteorology playing an overarching role [24]. Because of the complexity of the sources and
sinks, the general PM2.5 adjoint model included a rich description of the photochemical
oxidant cycle and a chemical mechanism to simulate the formation of secondary PM2.5.
The adjoint method is useful for assimilating the observations to obtain reasonable model
parameters and is used widely in meteorology [24–29].

However, the adjoint model was significantly difficult to build because of complex
chemical mechanisms. To reduce the complexity of the model and achieve the purpose
of simulation we took the primary PM2.5 and secondary PM2.5 as a whole, calling it the
“source and sink term” (SAST) without considering the specifics. Because of the type of
observations and the uncertainty of vertical variation, we established a two-dimensional
(2D) PM2.5 CTM in rectangular coordinates as follows:

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

=
∂

∂x

(
AH

∂C
∂x

)
+

∂

∂y

(
AH

∂C
∂y

)
+ S (1)

C(t0, x, y) = C0(x, y), (2)

∂C
∂t

= 0, on ΓOUT (3)

∂C

∂
→
n

= 0, on ΓOUT (4)

Here, C represents the PM2.5 concentration; u and v are the horizontal wind velocity in
the x and y coordinates, respectively; AH is the horizontal viscosity coefficient; and S is the
SAST. The model has initial conditions C0 and is subject to constant boundary conditions at
the inflow boundary ΓIN and to no gradient boundary conditions at the outflow boundary
ΓOUT. The detailed numerical scheme for this 2D PM2.5 CTM is the same as that in [18].

2.2.2. Parameter Optimization by the Adjoint Method

In order to construct the adjoint model, the cost function is defined as

J =
1
2

∫
Σ

K(C− Cobs)
2dσ (5)
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Based on the theory of the Lagrangian multiplier method, the Lagrangian function is
defined as

L = J +
∫ {

p×
[

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y
− ∂

∂x

(
AH

∂C
∂x

)
− ∂

∂y

(
AH

∂C
∂y

)
− S

]}
dΩ (6)

Here Σ is the set of the observations; C and Cobs are the simulated and observed PM2.5
concentrations, respectively; p denotes the adjoint variable of C; and K is the weighting
matrix and theoretically should be the inverse of the observation error covariance matrix.
Assuming the errors of the data are uncorrelated and equally weighted, K can be simplified,
and in this study K is 1 if observations are available and 0 otherwise.

To let the cost function reach the minimum, we make the first-order derivates of
Lagrangian function with respect to all the variables and parameters to be zero:

∂L
∂p

= 0, (7)

∂L
∂C

= 0, (8)

∂L
∂k

= 0, (9)

where k is the key model parameters, which includes initial condition, AH and S.
From Equation (8), the adjoint model for the 2D PM2.5 CTM, which governs the

evolution of the adjoint variable p, can be obtained. From Equation (9), the gradients of
the cost function with respect to the key model parameters AH and S can be deduced. The
detailed description of the adjoint model and gradients can be found in [18]. Based on the
gradients obtained from Equation (9), the key model parameters can be optimized using
the steepest descent method.

2.2.3. Default Settings of the Dynamical Model

The resolution of grid cells was determined to be 0.5◦ × 0.5◦. There were 81 grid cells
in the x direction and 141 cells in the y direction. The integral time step was 600 s. The
first studied period coincided exactly with the 21th Asia–Pacifc Economic Cooperation
(APEC) summit taking place in Beijing, and this studied period was divided into two parts:
the initial simulation period and target simulation period. The initial simulation time was
72 h and from 5 to 7 November 2014. The target simulation time was 96 h and from 8 to
11 November 2014. The second studied period was from 14 to 20 May 2014, and the initial
simulation time was 72 h (from 14 to 16 May 2014). The target simulation time was 96 h
(from 17 to 20 May 2014).

The initial meteorological fields adopted in our experiments were from NCEP Climate
Forecast System (CFS-R/CFSv2) with 0.5◦ × 0.5◦ spatial resolution and 1 h temporal
resolution. The dynamic model was subject to constant boundary conditions at the inflow
boundary and to no gradient boundary conditions at the outflow boundary. According to
the new ambient air quality standards announced by China’s Ministry of Environmental
Protection (MEP) in 2013, inflow boundary values were fixed as 35.0 µg/m3. The horizontal
diffusion coefficient AH was fixed as 100.0 m2/s. In view of the importance of initial
conditions to the simulated results of a dynamic model [21,24–26], the initial conditions
were obtained by interpolating the observed PM2.5 using surface spline interpolation [21].

2.2.4. The Process of DCIM

Previous studies have indicated that the DCIM was a feasible and effective method
for interpolating the sparse observations for both space and time, which can improve the
utilization of these observations [21,24–29]. Based on the processes to interpolate the sparse
observations using DCIM in [21,24], the processes to simulate the PM2.5 concentrations at
national scale using DCIM in this paper were as follows:
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Step 1. Assign the initial guess values to all the model parameters in the dynamic
model (i.e., 2D PM2.5 CTM in this study). Divide observation period into two parts: the
initial simulation period and target simulation period.

Step 2. Run the dynamic model in the initial simulation period and acquire the
interpolated results.

Step 3. Calculate the cost function and then integrate the adjoint model backward in
time to get the adjoint variables.

Step 4. Compute the gradients of the cost function with respect to the key model
parameters (spatially varying initial conditions and S in this study).

Step 5. Adjust the key model parameters utilizing the steepest descent method, and
update the values of the key model parameters in the dynamic model.

Step 6. Check whether the cost function has satisfied the requirements of minimization.
If the minimization requirement is satisfied, then terminate the iteration and go to Step 7;
otherwise, return to Step 2.

Step 7. Set the interpolated PM2.5 concentrations at the last time-step obtained using
the DCIM as the initial condition. Run the dynamic model with the optimized key model
parameters to simulate the PM2.5 concentrations over the following two hours.

Step 8. The initial time of the initial simulation period is longer by two hours. Take
the interpolated results at this initial time as initial condition and assign the initial guess
values to all the model parameters. Repeat Step 2 through Step 7 to simulate the PM2.5
concentrations over the next two hours.

Repeat Step 2 through Step 8, until all the PM2.5 concentrations in the target simulation
period are simulated.

In this study, the sparsely observed PM2.5 concentrations were interpolated for space
and time to perform the simulations following the aforementioned processes. We focus
on the simulation results in the target period. When the DCIM was implemented, the key
model parameters, including spatially varying initial conditions and SAST, were adjusted
synchronously while the other model parameters remained constant.

2.3. The OPF Method Based on Chebyshev Basis Functions

The OPF method based on Chebyshev basis functions was an effective method for
reconstructing the PM2.5 fields accurately in the central and southern regions of China [20].
In our study, the OPF method based on Chebyshev basis functions (COPF) followed the
definitions shown in [20]. Let xi be the points on x axis (i = 1, 2 · · · , I). The Chebyshev
polynomials in the x direction are

Φo(x i) = 1,

Φ1(x i) = xi − P1,0Φ0(x i),

Φ2(x i) = xi
2P2,1Φ1(x i)− P2,0Φ0(x i),

. . .

Φk(x i) = xi
k − Pk,k−1Φk−1(x i

)
− Pk,k−2Φk−2(x i)− . . .− P2,0Φ0(x i),

(10)

where k is the order of the polynomials in the x direction, Φo(x i), Φ1(x i) . . . Φk(x i) are
Chebyshev polynomials from order zero to k. P is the coefficient of Chebyshev polynomials
and defined as

Pk,l =

I
∑

i=1
xk

i Φl(x i

)
I

∑
i=1

Φ2
l (x i

) , (11)

where Pk,l is the l-th coefficient of the k-order polynomial. The Chebyshev polynomials in
the y direction also follow the above definition.
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PM2.5 data sets are denoted by (xi, yi, zi), i = 1, 2 · · · , I, where x is a rectangular
coordinate converted from longitudes based on the stereographic map projection; y is
rectangular coordinate converted from latitudes based on the stereographic map projection,
z is the PM2.5 observation; and I is the total number of the data. The PM2.5 observations
Z(x i, yi) can be stated as

Z̃(xi, yi) =
K0

∑
k=0

S0

∑
s=0

Ak,sΦk(x i)ςs(y i), (12)

where i = 1, 2 · · · , I, k and s are the orders of polynomials for the x and y directions,
respectively. K0 and S0 are the corresponding cutoff orders. Ak,s are expansion coefficients.
Φk(x i) is the k-order Chebyshev orthogonal polynomial in the x direction. and ςs(y i) is
the s-order Chebyshev orthogonal polynomial in the y direction.

Based on the least-square method, the expansion coefficients can be solved as

Ak,s =

I
∑

i=1

I
∑

j=1
Z(x i, yi)Φk(x i)ςs(y i)

I
∑

i=1
Φ2

k(x i)
I

∑
j=1

ς2
s(y i)

. (13)

3. Results and Analysis
3.1. Verification and Evaluation of DCIM

In this part, the 8-fold cross-validation technique was applied to evaluate the simu-
lation power of the DCIM [16,24]. The 80 sampled cities were randomly divided into 8
folds. Seven folds were selected as the training set and labeled as interpolated samples,
the datasets of which were interpolated to obtain the corresponding simulations. The
other fold was employed as the validation set, the datasets of which were not used for
interpolation but only for verification and labeled as checked samples. This process was
repeated 8 times until every fold was tested.

Evaluation indices, including the mean absolute gross estimation error (MAGE), the
mean normalized gross estimation error (MNGE), the correlation coefficient (R), and the
index of agreement (IA), were adopted to evaluate the performance of the DCIM. The
correlation coefficient indicates the correlation between simulations and observations. IA
is a dimensionless indicator of accuracy between zero and one, which describes how well
simulations and observations agree. The closer the values approach one, the more accurate
the simulation. Their specific definitions, shown as follows, were calculated by the value of
simulation and observations:

MAGE =
1
N

N

∑
i=1
|Pi −Oi| (14)

MNGE =
1
N

N

∑
i=1

[(|Pi −Oi|)/Oi] (15)

R =

N
∑

i=1

(
Pi − P

)
(Oi −O)√

N
∑

i=1
(Pi − P)2 N

∑
i=1

(Oi −O)
2

(16)

IA =

1−
N
∑

i=1
(Pi −Oi)

2

N
∑

i=1

(∣∣Pi −O
∣∣+ ∣∣Oi −O

∣∣)2
(17)
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where N was the number of observations; P and O were the simulated PM2.5 concentrations
and observations; and P and O were mean simulations and mean observations, respectively.
For the DCIM method, we tried the evaluation procedure 8 times to check potential bias
from using the result of a single time. Therefore a total of eight groups of experiments,
named as PE_1–PE_8, were implemented.

The COPF method and kriging interpolation were used for comparison. Reference to
the work in [20], the semivariogram model was chosen as a spherical semivariogram model
for the kriging interpolation in our study. The range and sill were respectively fixed to 10◦

and 1◦. Due to the limited numbers of available observations, the range of polynomial
orders in the x and y directions were limited to 8 in the COPF method. PM2.5 distributions
were calculated 81 times (polynomial orders of x and y directions each increased from 0 to
8) in the cross-validation. The optimal orders were found when the order combinations
reached the minimal average MAGEs and IA of the verification cities.

The 8-fold cross-validation experiments were implemented in the first target discus-
sion period from November 8 to 11, 2014). For the COPF, all the combinations of k and s
(polynomial orders of x and y directions) were tested first. The MAGEs and IA arrived
at the minimum when s and k were set to 2 and 4, respectively. In this way, the optimal
degree of COPF was found, and we denoted it by COPF24. The DCIM simulations were
compared with the simulations obtained from kriging and COPF24.

The results of the 8-fold DCIM cross-validation experiments on November 8–11, 2014,
were displayed in Tables 1 and 2 (Estimation errors for the 8-fold cross-validation DCIM
experiments). For the interpolated samples, MAGEs between the observations and the
corresponding 8-fold cross-validation DCIM simulations dropped at least 60.89%, which
was reduced from 45.33 µg/m3 to 16.01 µg/m3. The corresponding MNGEs decreased by
60.89%, which occurred in PE_8 (see Table 1). Furthermore, values of R (from 0.93 to 0.96)
and IA (from 0.96 to 0.98) showed significant accuracy and correlation between interpolated
observations and the corresponding 8-fold cross-validation DCIM simulations. For the
checked samples, the largest drop in the MAGEs and MNGEs between the observations and
the final 8-fold cross-validation DCIM simulations were 49.19% and 17.69%, respectively.
Compared with the results of the interpolated samples, the discrepancies between the
simulations and the observations were slightly large, but all much less than those at the
initial iteration step. Meanwhile, the values of R (from 0.69 to 0.78) and IA (from 0.79 to
0.88) indicated a reasonable range of the national-scale DCIM simulations.

Table 1. Simulation Error for the 8-fold cross-validation DCIM experiments at the initial and final iteration steps of DCIM
experiments on 8–11 November 2014.

Expt
K1 a (µg/m3) K2 a K3 a (µg/m3) K4 a

Initial Final Initial (%) Final (%) Initial Final Initial (%) Final (%)

PE_1 41.23 11.66 61.89 22.35 43.31 23.86 65.72 57.16
PE_2 41.79 12.62 61.89 22.47 39.31 26.01 65.64 59.26
PE_3 39.91 10.21 63.05 24.58 52.61 26.73 57.34 50.10
PE_4 42.76 10.60 59.80 23.26 32.29 22.04 80.78 70.19
PE_5 40.02 10.40 64.06 24.86 46.77 23.86 49.97 41.13
PE_6 42.51 11.60 63.72 24.75 39.47 24.20 47.03 43.62
PE_7 43.56 13.59 64.05 24.68 19.50 17.66 60.97 57.35
PE_8 45.33 16.01 59.96 23.45 13.90 12.41 79.47 67.11

K1 a is MAGEs between the observations and the corresponding simulated PM2.5 in interpolated samples. K2 a is MNGEs between
the observations and the corresponding simulated PM2.5 in interpolated samples. K3 a is MAGEs between the observations and the
corresponding simulated PM2.5 in checked samples. K4 a is MNGEs between the observations and the corresponding simulated PM2.5 in
checked samples.
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Table 2. Correlation coefficient and index of agreement for the 8-fold cross-validation DCIM experi-
ments on 8–11 November 2014.

Expt K1 a K2 a K3 a K4 a

PE_1 0.97 0.95 0.88 0.77
PE_2 0.96 0.93 0.82 0.70
PE_3 0.97 0.96 0.85 0.73
PE_4 0.98 0.96 0.88 0.78
PE_5 0.96 0.93 0.87 0.76
PE_6 0.96 0.93 0.84 0.70
PE_7 0.96 0.94 0.79 0.69
PE_8 0.96 0.94 0.83 0.71

K1 a is the index of agreement in interpolated samples. K2 a is the correlation coefficient in interpolated samples.
K3 a is the index of agreement in checked samples. K4 a is the correlation coefficient in checked samples.

The comparison results of different methods were illustrated in Figure 2 (Interpolation
errors in checked samples of different methods for the 8-fold cross-validation experiments)
and Figure 3 (Scatter plots and performance of different methods for the 8-fold cross-
validation experiments). As shown in Figure 2, the MAGEs and IA of the DCIM were lower
than those of kriging interpolation and COPF24 in most of the cross-validation processes
except for PE_7 and PE_8. The interpolation errors of kriging interpolation were larger
than those of the COPF24 in most of the cross-validation processes except for PE_8. As
illustrated in Figure 3, the averaged MAGEs of the DCIM, kriging and COPF24 were 21.93,
24.15 and 25.92 µg·m−3, respectively. The averaged IAs in checked samples of the DCIM,
kriging and COPF24 were 0.80, 0.79 and 0.51, respectively. In summary, multiple runs
produced similar results, with little difference.
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Figure 2. Interpolation errors in checked samples of different methods for the 8-fold cross-validation experiments on
8–11 November 2014.
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Figure 3. Scatter plots and performance of different methods for the 8-fold cross-validation experiments on 8–11 November
2014: (a) Performance of the 8-fold cross-validation DCIM simulations in the interpolated samples, (b) Performance of the
8-fold cross-validation DCIM simulations in the checked samples, (c) Performance of the 8-fold cross-validation kriging
simulations in the checked samples, (d) Performance of the 8-fold cross-validation COPF simulations in the checked samples.

Figure 3 illustrates the scatterplot that compares the performance of different methods
for the 8-fold cross-validation experiments on 8–11 November 2014. The 1.25:1, 1:1 and
0.75:1 lines are shown for reference. According to the validation scatter plots shown in
Figure 3, the DCIM captured 72.91% of the observations in the checked samples within
the 1.25:1 line and the 0.75:1 line, which verified the usefulness of the DCIM on PM2.5
simulations. The kriging interpolation and the COPF24 captured 72.83 and 69.60% of the
observations, respectively. Meanwhile, the DCIM captured 78.89% of the observations
in the interpolation samples within the 1.25:1 line and the 0.75:1 line. By comparison
with the results from the kriging interpolation and the COPF24, the DCIM clearly had
the highest accuracy. The 8-fold cross-validation DCIM simulations of all the sampled
cities in target simulation period were more consistent with the observations. The COPF
method performed worse than the DCIM and kriging in national-scale simulations during
this period.

The 8-fold cross-validation experiments were implemented in the second target dis-
cussion period (17–20 May 2014). In this period, the COPF achieved the minimum errors
when s and k were set to 2 and 4. The results of COPF24 were used for comparison. The
comparison results of different methods were illustrated in Figure 4 (Interpolation errors
of different methods for the 8-fold cross-validation experiments) and Figure 5 (Scatter plots
and performance of different methods for the 8-fold cross-validation experiments). The
DCIM simulations of the checked samples were more accurate than those of kriging and
COPF24, with less mean MANGEs and IAs for the 8-fold cross-validation experiments. The
DCIM captured 77.59% of the observations in the checked samples within the 1.25:1 line and
the 0.75:1 line, which verified the usefulness of the DCIM on PM2.5 simulations. The kriging
interpolation and COPF24 captured 82.78 and 77.59% of the observations, respectively.
Meanwhile, the DCIM captured 88.34% of the observations in the interpolation samples
within the 1.25:1 line and the 0.75:1 line. On the whole, the result demonstrated that the
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DCIM can be deemed more effective in national-scaled PM2.5 simulations, compared with
the kriging interpolation and COPF method.
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Figure 4. Interpolation errors in checked samples of different methods for the 8-fold cross-validation experiments on
17–20 May 2014.
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Figure 5. Scatter plots and performance of different methods for the 8-fold cross-validation experiments on 17–20 May 2014:
(a) Performance of the 8-fold cross-validation DCIM simulations in the interpolated samples, (b) Performance of the 8-fold
cross-validation DCIM simulations in the checked samples, (c) Performance of the 8-fold cross-validation kriging simulations
in the checked samples, (d) Performance of the 8-fold cross-validation COPF simulations in the checked samples.



Atmosphere 2021, 12, 272 12 of 19

3.2. Performance of the DCIM

In the process of data analysis, it had been found that the checked samples showed
a larger simulation error than the interpolated samples. That was to say, in DCIM, inter-
polated all the observations may improve the simulation accuracy. In order to further
validate the simulation results, all the observations were interpolated in DCIM to simulate
concentrations of PM2.5 with the strategy stated in Section 2.2.3. Simulation errors analysis
of the target simulation period was adopted to further investigate DCIM performance.

For the first target period (From 8 to 11 November), the MAGEs between the observa-
tions and the DCIM simulations were decreased from 41.48 µg/m3 to 12.54 µg/m3, which
was a decline of 69.77%. The corresponding MNGEs were decreased from 62.35% to 25.31%,
which was down 59.41%. Furthermore, the values of R (0.91) and IA (0.95) indicate that
DCIM is a feasible simulation method and high in accuracy. For the DCIM performance
evaluation, regression statistics along with the normalized mean bias (NMB), and another
measure of error, normalized mean error (NME) [26], were further calculated. The mean
value of NMB and NME were 0.26% and 21.04%, respectively. Furthermore, the mean
value of all the observations was 68.73 µg/m3, and the mean value of the simulated results
was 68.34 µg/m3. Figure 6a illustrated the scatterplot to compare the observations and
the DCIM simulations visually. The 1.25:1, 1:1 and 0.75:1 lines were shown for reference.
For 90.83% of the observations, the ratio was between 0.75 and 1.25, which verified the
usefulness of the DCIM on PM2.5 simulations.
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Figure 6. Comparison of the simulated and observed PM2.5 concentrations on November 8–11, 2014: (a) scatter plot (µg/m3)
(the 0.75:1, 1:1 and 1.25:1 lines are shown for reference), (b) variation of spatial mean, NMB, NME and correlation (r), and
spatial distribution of (c) NMB and (d) NME.

On the other hand, it should be noted that the national-scale simulations of PM2.5
in China were almost always underestimated in high PM2.5 concentration range. This
issue will be further discussed in Section 4. However, the correlation coefficient (0.94) and
IA (0.96) between the observations and simulated results indicated the DCIM showed a
reasonable scope of underestimation. Meanwhile, Figure 6b had shown the usefulness of
the DCIM in time series analysis and simulation. The values of mean, NMB, NME and
correlation coefficients were calculated (spatial averages) and plotted as a two-hour time
series (Figure 6b).
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As can be seen, the mean values of observations and simulated results were almost
equal and had the same time-varying trend. The NMB values ranged from–17.99% to
20.21%, the NME values were approximate to 19.50%, and correlation coefficients ranged
from 0.89 to 0.97, which proved that the DCIM was stable with time. Figure 6c,d showed
the spatial distributions of the NMB and NME between the observations and the simulation
results. The DCIM simulated PM2.5 well in most areas (85.64%), where the NMB value was
less than 0.20 and the NME value was also less than 0.20.

To further verify the simulation ability, the DCIM was implemented in the spring,
from 14 to 20 May 2014. The initial simulation period was from 14 to 16 May. And the target
simulation period was from 17 to 20 May. All the observations over the initial simulation
period were interpolated to simulate PM2.5 concentrations from 17 to 20 May, according to
the strategy stated in Section 2.2.3. Simulation errors analysis of the target simulation period
was adopted to further investigate DCIM performance. For the performance evaluation,
regression statistics along with two measure of bias (the mean bias (MB) and the normalized
mean bias (NMB)), and two measures of error (the root mean square error (RMSE) and
normalized mean error (NME)), were calculated. The mean value of MB and RMSE were
−0.07 µg/m3 and 18.73 µg/m3 respectively, and those for NMB and NME were −0.12%
and 20.94%, respectively. Furthermore, the correlation coefficient between the observations
and simulated results was 0.89.

Figure 7a illustrated the scatterplot to compare the observations and the DCIM simu-
lations visually. The 1.25:1, 1:1 and 0.75:1 lines were shown for reference. For 75.63% of the
observations, the ratio was between 0.75 and 1.25. In order to investigate the performance
of DCIM over time, the values of mean, NMB, NME and correlation coefficients were
calculated (spatial averages) and plotted as a time series (Figure 7b). As can be seen, the
mean values of observations and the simulated results were almost equal and have the
same time-varying trend. The NMB values ranged from −14.37% to 16.90%. The NME
values ranged from 14.82% to 24.56%, which proved that the DCIM was steady during the
time. Spatially, the DCIM estimated observed PM2.5 well in most areas (79.35%) where the
NMB value was less than 0.2 and the NME value was also less than 0.2 (Figure 7c,d).
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To sum up, the DCIM provided effective dynamic information compared with kriging
and COPF. First, the time series analysis of the simulation values using mean, NMB, NME
and correlation coefficients showed that the DCIM can achieve a more accurate real-time
simulation, which the dynamically unconstrained interpolation techniques were unable to
achieve. Second, the DCIM can also give the characteristics of the spatiotemporal variation
parameters during the target simulation periods, which contributed to the existing relevant
research in China to a certain extent.

3.3. Mapping of the Mean PM2.5 Simulations

The mean observations of the 80 sample cities and mean distributions of PM2.5 on
8–11 November 2014 were mapped in Figure 8. The mean distributions of DCIM, kriging
and COPF showed similar distribution with the mean observations map. The DCIM results
presented a smoother pattern with a smaller MAGE than the results from the other methods
did. As can be seen from the DCIM results, the levels of PM2.5 simulations were higher in
the northern region than in the southern. Shandong and Jiangsu provinces presented higher
PM2.5 concentrations, which was in conformity with industrial development. Guangdong
and Fujian provinces presented lower PM2.5 concentrations due to the low levels of anthro-
pogenic emissions and favorable meteorological conditions for atmospheric dispersion [10].
Meanwhile, heavily polluted regions were identified in North and Northeast China, PM2.5
concentrations of which rose to 120–160 µg/m3 during the target simulation period. Com-
pared with the MODIS-derived seasonal mean 1 km-resolution PM2.5 maps averaged over
the winter period 2000–2018 as shown in [30], the DCIM results showed similar spatial
distribution but presented a higher level of PM2.5 concentrations in Northeast China. One
major reason for the higher level might be the serious pollution from coal combustion
in winter, as reported in a previous study [26]. Adverse weather conditions (i.e., long,
dry winter that require indoor heating) further intensified the haze epidemic in northern
cities. Another reason might be the atmospheric conditions of aerosols, caused by stagnant
weather, with a weak wind and planetary boundary layer [31]. It was noteworthy that air
quality in Beijing and Hebei (60–80 µg/m3) was much improved, which benefited from
the introduction of an emergency emissions-reduction strategy during the Asia–Pacific
Economic Cooperation (APEC) summit in November.

The mean observations of the 80 sample cities and mean distributions of PM2.5 during
17 May to 20 May 2014 were mapped in Figure 9. In detail, the DCIM, kriging interpolation
and COPF obtained similar national-scale mean distributions with the mean observations
map during 17 May to 20 May 2014. With smaller errors, the DCIM presented smoother
pattern. Figure 9 illustrated that the mean values of PM2.5 concentrations were much larger
in the middle China, where the emission of PM2.5 concentrations was enormous. And the
mean values were smaller in southeast China, where the precipitation was rich. Compared
with the research results in the same period in [18], similar spatial distribution of PM2.5
concentrations indicated the rationality of the DCIM.
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4. Discussions and Conclusions

This study introduced the PM2.5 transport model based on the adjoint data assim-
ilation to interpolate the sparse observations for simulating the hourly average PM2.5
concentrations two hours in advance and national-scale spatial distribution of PM2.5 con-
centrations in China. From the perspective of interpolation accuracy and effect, this study
selected kriging interpolation and COPF, which had been proved to have high PM2.5
simulation accuracy for comparative analysis.

Comparison between final interpolated values and observations showed that the
DCIM was better for national-scale simulation than kriging and COPF during the discussion
periods. More importantly, the spatiotemporal variation of the simulated results was
physically reasonable (see Figures 6 and 7). Our DCIM results showed a good correlation
coefficient and index of agreement, which indicated the PM2.5 simulations of the analysis
period were highly spatially correlated. The mean distributions of DCIM showed similar
distribution with that of kriging and COPF. And the DCIM presented smoother reasonable
pattern with smaller simulation errors than the other methods. Though seasonal high
levels of PM2.5 concentrations during the analysis period were often recognized to bring
significant biases, the final DCIM results in this study presented a relatively high simulation
accuracy, which indicated its conceivable application for providing insights into policies to
mitigate air pollution in China.

Previous studies had shown that mapping the distribution of PM2.5 concentration in
China faced many challenges because of the wide geographical range, complex terrain
and sparse observations from unevenly distributed systematic ground-level monitoring
stations [12]. For that reason, the DCIM was adopted to improve utilization of the sparsely
observed PM2.5 concentrations for both space and time [21]. Due to the rigorous mathe-
matical basis and mature development, the transport model was chosen as the dynamical
model among numerous models. This article sought to investigate the DCIM performance
in the spatiotemporal simulation patterns of PM2.5 concentrations over China utilizing
ground-level observations.

In addition, the PM2.5 transport model, which provided the dynamic constrains in
the DCIM, had been proved to be a good solution in simulating national-scale ground-
level PM2.5 in [25,26]. This adjoint model was easy to implement and had high practical
operational performance, which effectively made up for the simulated errors caused by
sparse observations. Moreover, a benefit from the adjoint data assimilation, the major
parameter estimation can be obtained from the iterative optimization. The ability to
provide dynamic information from the final DCIM results cannot be matched by other
traditional interpolation methods. Therefore, the final simulations from the DCIM in this
study were close to the observed values, which can be accepted as an effective research
program of the PM2.5 distribution and transport.

There were still some limitations to the approach used in this study. On one hand,
we tended to underestimate our simulations and such underestimation mostly occurred
when the measured ground-level PM2.5 concentrations were high. In view of the seasonal
emission effect in the analysis period, this underestimation may be mostly because of the
coal-based industries in north such as coal-fired power plants, iron and steel manufactur-
ing [17]. On the other hand, the uneven sampling distribution of the monitor and limited
PM2.5 measurements may not be able to make a relatively accurate simulation of the spatial
concentration. For the target simulation periods in winter, the sparse PM2.5 measurements
in a highly polluted region have a certain degree of influence on the interpolated distribu-
tion accuracy and rationality. Therefore, three new cities in the North China Plain (Jinlin,
Dandong and Fuxin) were added to the sampled cities. The observations of the new cities
were interpolated in the DCIM for the mean distributions of PM2.5 on 8–11 November 2014,
and the new mean distribution of PM2.5 were mapped in Figure 10. Compared with the
mean distribution of PM2.5 in Figure 8, the new pattern presented was smoother in the
North China Plain. In a highly polluted region, the spatial distribution of PM2.5 would
be improved by adding the right amount of the observations in the DCIM experiments.
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The bias between the simulations and the observations will be reduced with the gradually
increasing number of monitoring sites in China and available PM2.5 measurements.
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Figure 10. Mean distribution of the simulated PM2.5 on 8–11 November 2014 obtained after adding
observations.

In addition, it is necessary to indicate that some aspects related to data assimilation
and the dynamic model developments are restricted in this study, which should be further
improved in future studies. Admittedly, for large-scale regions, the sparse PM2.5 measure-
ments in a highly polluted region have a certain degree of influence on the interpolated
distribution accuracy and rationality. Adding the right amount of the observations can
improve this situation. Only using ground-level observations may result in relatively large
observational errors in assimilation and independent verification. In future studies, the
contemporaneous satellite observations of PM2.5 will be needed to supplement the data
information and provide a further quality check.

Despite the potential application of the spatial interpolation for solving the PM2.5
studies with sparse data, the simulation of PM2.5 concentrations involved a large number of
dynamic factors. We therefore applied the dynamically constrained interpolation method
to give a better representation of the national-scaled PM2.5 simulations. Overall, compared
with the kriging interpolation and COPF, the DCIM was promising for providing reasonable
information for the spatiotemporal simulations of PM2.5 variation in large geographical
regions. In order to obtain more accurate spatial distribution in large-scale region we will
continue to improve the details of the DCIM.
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