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Abstract: The paper provides a comparative analysis of precursory phenomena in the ionosphere
and atmosphere for two strong earthquakes of the same magnitude M7.1 that happened in the same
region (North-East from Los Angeles) within a time span of 20 years, the Hector Mine and Ridgecrest
earthquakes. Regardless of the similarity of their location (South-Eastern California, near 160 km
one from another), there was one essential difference: the Hector Mine earthquake happened during
geomagnetically disturbed conditions (essential in the sense of ionospheric precursors identification).
In contrast, the quiet geomagnetic conditions characterized the period around the time of the
Ridgecrest earthquake. The Hector mine earthquake happened in the middle of the rising phase of
the 23-rd solar cycle characterized by high solar activity, while the Ridgecrest earthquake happened by
the very end of the 24th cycle under very low solar activity conditions. We provide a comprehensive
multi-factor analysis, determine the precursory period for both earthquakes and demonstrate the
close similarity of ionospheric precursors. Unlike the majority of papers dealing with earthquake
precursor identification based on the “abnormality” of observed time-series mainly determined by
amplitude difference between “normal” (usually climatic) behavior and “abnormal” behavior with
amplitudes exceeding some pre-established threshold, we used the technique of cognitive recognition
of the precursors based on the physical mechanisms of their generation and the morphology of
their behavior during the precursory period. These permits to uniquely identify precursors even in
conditions of disturbed environment as it was around the time of the Hector Mine earthquake. We
demonstrate the close similarity of precursors’ development for both events. The leading time of
precursor appearance for the same region and similar magnitude was identical. For the Hector Mine
it was 11 October 1999—5 days in advance—and for 2019 Ridgecrest it was 28 June—7 days before
the mainshock and five days before the strongest foreshock.

Keywords: earthquakes; ionospheric precursors of earthquakes; seismo-ionospheric coupling

1. Introduction

The M7.1 Hector Mine earthquake on October 16, 1999, was preceded by a very strong
foreshock, which the whole seismological world experienced after a heated discussion
in the pages of the Nature journal, started on 25 February 1999, by Robert Geller of the
University of Tokyo [1]. The discussion was based on his earlier critical review of 1997,
which argued that short-term earthquake forecasting is impossible [2]. At almost the same
time, a paper was published that showed that electromagnetic coupling is possible between
processes in the earth’s crust and in the ionosphere, where the Global Electric Circuit’s
atmospheric electric field (GEC) plays the main role [3]. Following this idea, studies were
carried out during the past 20 years, which demonstrated that the earth’s crust affects the
physical processes in the upper geospheric shells in seismically active regions. A physical
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model of the interaction of geospheres was created, called the Lithosphere–Atmosphere–
Ionosphere Coupling (LAIC) model. The last two versions of the model were published
in 2015 and 2018 [4,5], where the model’s genesis can be found in the References list since
2000. The last work in which the seismic-ionospheric couplings mechanism is considered
exclusively was published in 2019 [6]. It is essential that a physical substantiation has
been obtained to initiate specific variations in the atmosphere and ionosphere, which
appear several days before the earthquake, having the potential to be used as earthquake
precursors. But in this way, it is necessary to develop technology for recognizing these
variations against the background of the high variability of the ionosphere (if we are talking
about ionospheric precursors).

The very concept of the LAIC model was well received, but as soon as the first
publications appeared, allowing the precursors’ identification [7,8] which opened the way
to a short-term forecast, they immediately seemed to express the opposite opinion, denying
such a possibility [9,10]. The Hector Mine earthquake became a kind of stumbling block
in the struggle for the ionospheric precursors. As soon as [11] showed, using the global
ionospheric maps (GIM) mapping technology, that the ionospheric anomalies before the
Hector Mine earthquake were of a local nature, the publication was immediately followed
by [12], denying the apparent picture of the presence of such anomalies. Unfortunately, the
authors mentioned above expressed an opinion supporting the nonexistence of physical
precursors. In many of their papers, the results of pre-earthquake signals have been
reviewed and disproved as nonexisting physical phenomena associated with earthquakes
of any origin, regardless of geomagnetic, electromagnetic, or ionospheric ones.

In this study, we carefully analyzed the arguments of critics of ionospheric precursors,
describing the Hector Mine case. In that case, they are all based on playing with the
amplitude variations of the Total Electron Content (GPS TEC) and attempt to explain
all the observed anomalies by high geomagnetic activity in October 1999. At the same
time, they lose sight of the fact that the physics of the effect on the ionosphere of the
earthquake preparation process is fundamentally different from the mechanism of the
effect on the ionosphere of geomagnetic storms, which we pointed out back in 2003 [13].
The spatial locality and dependence of the ionospheric precursors on local time, not to
mention more subtle things associated with a change in the vertical profile of electron
concentration, make it possible to unambiguously identify the ionospheric precursors,
even in the most challenging cases of ionospheric disturbance. In this case, variations
in the electron concentration before different earthquakes are not chaotic but have the
property of close similarity. One example is the overnight positive variation in electron
concentration [14], which makes the process of identifying the precursor deterministic [15].
Multiparameter analysis involving various types of precursors [16] and the use of various
technologies for monitoring the ionosphere (vertical sounding, GPS TEC, radio occultation
technologies, ionospheric tomography, etc.) make it possible to recognize ionospheric
precursors with high accuracy. We call this approach “cognitive identification” [17].

The last major California earthquake, the M7.1 Ridgecrest earthquake on July 5, 2019,
provides an excellent opportunity to demonstrate the benefits of cognitive identification, as
well as to explore the uniqueness and similarity of two earthquakes of the same magnitude
that occurred in the same region but under different solar and geomagnetic conditions
with an interval of 20 years.

In this work, we present results from analyzing the ionosphere and atmosphere for
two strong earthquakes of the same magnitude, M7.1 in 1999 at Hector Mine and the
Ridgecrest earthquakes of 4 July 2019, which occurred in the same region (North-East from
Los Angeles, California). To perform this work, we analyzed data from a local network
of GPS receivers in California, Global Ionospheric Maps provided by NASA in IONEX
format, and ground-based vertical sounding ionosonde. The preview of the structure as
follows: Sections 1 and 2 summarize the studies of two earthquakes; Section 3 previews the
geomagnetic conditions during the time of both events, Sections 4 and 5 describe GPS TEC
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analysis and Ionosphere Mapping, Section 6 focuses on achieving results, and Section 7
reports the final remarks of the work.

2. Seismo-Tectonic Conditions of the Hector-Mine and Ridgecrest Earthquakes

Both events happened not far from one another (~160 km) in South-eastern California
along the line following the lineaments of main tectonic faults direction from South-East
(Hector Mine) to North-West (Ridgecrest). Both events have a similar mechanism—right-
lateral strike-slip along the local faults (Lavic Lake fault for Hector Mine and Airport Lake
fault for Ridgecrest). For both events, the foreshocks were registered, but here we can
mark the difference. In the case of the Hector Mine earthquake, 50 weak foreshocks with
magnitude 0.4 < M < 3.7 were registered in the 20 h leading up to the main event [18].
The M7.1 Ridgecrest event was preceded by a strong M6.4 foreshock, followed by a 34-
hour-long earthquake sequence that led up to the M 7.1 event [19]. The sequence included
five moderate earthquakes 4.5 < M < 5.4. The M6.4 foreshock was preceded by the M4.0
event ~31 min before, and was followed by smaller events. We will not concentrate on the
aftershocks of these events because our paper is devoted to their precursors, and we look
for information that may help their detection.

Our previous investigations [5] demonstrated that the foreshock period is accompa-
nied by the short-term precursors of different origins, including the ionospheric ones. One
of the foreshock period’s seismic indicators is the drop of the b-value (b–coefficient in the
Gutenberg-Richter relationship) before the mainshock [20]. Schorlemmer and Wiemer [21]
concluded that “b values could be used for accurately predicting rupture areas: although
the timing of earthquakes remains unpredictable”. We examined the literature on the pos-
sible variations of the b-value before the Hector Mine and Ridgecrest earthquakes [19,22].
From these, we can conclude that the b-value drop was registered before the mainshock
in both cases. This fact gives us a hope that the short-term precursors were present and
could be analyzed from the point of view of their similarity, not excluding the difference in
some individual parameters. Our main emphasis will be put on ionospheric precursors,
which were registered by the local network of GPS receivers in California, Global Iono-
spheric Maps provided by NASA in IONEX format, and ground-based vertical sounding
ionosonde at Point Arguello.

3. The Principles of Ionospheric Precursors Detection

Our approach is based on the following main principle: we look for not a kind of
anomaly detected by statistical processing but a result of developing the physical process
responsible for the ionospheric precursor’s generation [14]. To give confidence, we use the
set of techniques for multiparameter data processing developed and tested as practical
applications for a large set of major earthquakes worldwide [17,23], which we name
“cognitive recognition”.

The ionospheric precursors should have the following phenomenological proper-
ties [13]:

It should be local in space and should indicate by its position the location of the
impending earthquake epicenter (the latter feature is checked after the event).

It should have clear dependence on the local time (most often in the middle lati-
tudes, we observe the positive night-time variation of the electron concentration in the
ionosphere).

The precursor appears within the time interval 10–1 days before the mainshock.
The size of the large-scale irregularity in the ionosphere in its maximum phase of

temporal development depends on the magnitude of the impending earthquake.
In case of availability of the satellite data (topside sounding, local plasma parameters),

the precursors could be identified by the variation of the height scale, electron temperature
variations, and variations of the main ion’s composition.

Special visualization procedures called the “precursor mask” [14] permit identifying
the ionospheric precursors even in conditions of strong geomagnetic disturbances.
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In the case of ground-based vertical sounding data availability, specific features
registered on ionograms during the precursory period give additional information on the
earthquake approaching [24].

The difference between the ionospheric variations over the earthquake preparation
zone during precursory periods and in conditions of geomagnetic disturbance should
be discussed. The system of electromagnetic fields and currents during a geomagnetic
storm has a global character, and on the scales of a few thousand kilometers (until the
local time effects will be essential due to longitude difference), the ionosphere will react
identically as if it is a solid plane. Before earthquakes, the gas emission (bringing radon
to the surface) has a mosaic character. The strain and stress are distributed irregularly
following the complex structure of the area’s tectonic faults and block structure. The
electric fields and variations of air conductivity also have an irregular and mosaic character,
which demonstrates the appearance of several sources of acoustic gravity waves moving
in different directions [25] and initiating the traveling ionospheric disturbances. It will
stimulate an event which we call the Local Ionosphere Variability [23]. Just for the case
of the Hector Mine earthquake (when the ionosphere was magnetically disturbed), we
plotted two spatial TEC distributions during the precursory period (Figure 1, left panel)
and geomagnetic storm (Figure 1, right panel). One can see the drastic difference in the
spread of TEC values: in the left panel during precursory period s = 4.08, while during a
geomagnetic storm in the right panel s = 1.48.
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Figure 1. Left panel–spatial distribution of TEC values over the Hector Mine earthquake preparation zone at 22:00 UT on
13 October 1999; right panel spatial distribution of TEC values over the Hector Mine earthquake zone during the maximum
phase of geomagnetic storm at 22:00 UT on 22 October 1999. The red sign at the left panel shows the Hector Mine earthquake
epicenter position.

Using the principles mentioned above, it is possible to unambiguously identify the
ionospheric precursors, which we intend to demonstrate in the following paragraphs.

4. Solar and Geomagnetic Conditions around the Time of the Hector Mine Earthquake
on 16 October 1999 and Ridgecrest Earthquake on 5 July 2019

As mentioned earlier, the earthquakes happened in quite different geophysical condi-
tions: the Hector Mine earthquake took place in the middle of the rising phase of the 23rd
solar cycle, while the Ridgecrest earthquake happened close to the solar minimum during
the falling phase of the 24th cycle. Besides, just during the Hector Mine earthquake, the
values of F10.7 reached the magnitude equal to values of the solar maximum. In turn, the
24th solar cycle was extremely weak compared to the two previous cycles, which led to the
fact that the solar activity during the Ridgecrest earthquake was nearly three times weaker
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than during the Hector Mine earthquake (see the top panel of Figure 2). Consequently, the
absolute values of TEC for the period of the Hector Mine earthquake are more than three
times larger than values for the Ridgecrest earthquake period (see Figure 3) regardless of
the Ridgecrest earthquake being close to the summer solstice. At the same time, the Hector
Mine earthquake was close to the fall equinox. We can see quite strong variations of the
Hector Mine case’s solar activity during the observation period (value of 10.7 index changes
from 120 on day -15 till 200 on days -2, -1). The maximum TEC values’ envelope follows the
variations of the F10.7 index, except for the geomagnetic storm period on day 6 (DOY 295).
The most reliable indicator of the geomagnetic storms is the global equatorial geomagnetic
index Dst presented in Figure 2b). For the Hector Mine period (red curve), we see that
the whole period was strongly disturbed, with two small disturbances (days -18 and -6)
and with a powerful geomagnetic storm, almost −250 nT (day 6). If identifying the strong
magnetic storm effect in the ionosphere is not a problem, we should be cautious during
the small disturbances to not mix effects in the ionosphere from these disturbances with
ionospheric precursors, requiring additional identification tools.
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Figure 2. Geophysical indices for periods around the time of Hector Mine (red curves) and Ridgecrest
(green curves) earthquakes. (a) Solar radio flux index F10.7; (b) Global equatorial geomagnetic index
Dst; (c) Global daily index of ionospheric activity Ap. The time scale is showing the days in relation to
the day of the main shock. EQ day for the Hector Mine earthquake was DOY 289, for the Ridgecrest
earthquake it was DOY186.
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Figure 2 shows the drastic difference in solar and geomagnetic activity for time
intervals around the time of the earthquakes considered. The green lines corresponding
to the Ridgecrest earthquake demonstrate extremely quiet conditions that are difficult
to comment on except the small negligible disturbances on day four seen in Dst’s small
positive peak. A small increase of Ap to 10 nT corresponds to quiet geomagnetic conditions.Atmosphere 2021, 12, 262 6 of 17 
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5. GPS TEC Analysis

In Figure 3a,c are presented the time series of the GPS TEC for the stations closest
to the earthquake epicenter: (a)—station gol2 the case of the Hector Mine earthquake;
(c)—station ramt for the Case of Ridgecrest earthquake. To see more in detail the TEC
variability, the residual ⊗TEC is presented in a percentage format. Since the absolute TEC
values at night can be an order of magnitude lower than the daytime values (which is
quite natural), many authors neglect the small nighttime deviations in absolute values
and come to incorrect conclusions regarding the presence or absence of precursors. In
contrast, the primary game in the scene of precursors generation is played out at night.
Conversely, the use of ⊗TEC as a percentage makes it possible to filter out the daily TEC
changes associated with variations in the level of ultraviolet radiation from the sun that
mainly forms the ionosphere.

Looking at the TEC variations and their residuals for both cases, it is challenging to
say whether we see any variation that we can interpret as a precursor. We can see that
the only major feature is the effect of the magnetic storm on 22 October (DOY295) of 1999.
Moreover, instead of applying the statistical methods, at this point, we start the process of
cognitive recognition. As it was demonstrated in [14], the precursor should look like the
positive night-time deviation a few days before the earthquake, which could be revealed in
the precursor mask shown in Figure 4. We transformed color tones to express the ⊗TEC
graphs shown in the bottom panel of Figure 3 into two-dimensional distribution along axes
of DOY as X and LT as Y. ⊗TEC (%) is expressed by color tones

In addition to the vertical TEC data we present in Figure 4, the vertical sounding
data from Point Arguello ionosonde in the same format (only instead of ∆TEC the ∆foF2
is shown) provides insights. For the Hector Mine case, we see the positive night-time
deviations of TEC and foF2 on days 284–289, and for the Ridgecrest earthquake, the
positive variations during the night-time were registered on days 177–180. The only
difference we can mark is the leading time of the precursor. If in 1999 the precursor was
generated just a few days before the mainshock, in 2019 it appeared earlier; six days before
the mainshock M7.1 and five days before the strongest foreshock M6.4. We will discuss
this difference later, and here it is necessary to explain why the ionosonde data in 2019 are
so messy. This is because of the automatic scaling. In 1999 the ionograms were processed
manually. In 2019, the automatic scaling demonstrated the ragging lines instead of quasi-
sinusoidal variations of the critical frequency in 1999, which is reflected on residuals. Just
recently, a joined analysis of several types of physical precursors (lithosphere, atmosphere,
and ionosphere) associated with the 2019 Ridgecrest earthquake was studied [26]. The
Ridgecrest earthquake preparation phase probably activated a series of anomalous patterns
in the lithosphere, atmosphere, and ionosphere. The range of lag-time varies between 9
years (lithosphere), 25–79 days (atmosphere), and 25–34 days (ionosphere). Data from
Point Arguello ionosondes were analyzed, and the anomaly was revealed on June 2. Our
analysis of the same data revealed another anomaly on June 29. There are no contradictions
between both results. Instead of in opposite, the results identify the natural processes in
the ionosphere revealed by different techniques.

De Santis et al.’s approach identified the medium-term ionospheric precursors of
earthquakes from Point Arguello ionosondes, which is inside the zone of earthquake
preparation. Similar approaches have been studied and assessed statistically before [27,28].
Our analysis considers the short-term type of seismo-ionospheric precursors concerning
the earthquake’s final stage as a chaotic process [29] (the last 10 days before the main shock)
when the foreshock sequence is registered together with the b-value decrease [30] and
when the precursor “masks” were formed, representing the ionosphere’s last state before
the seismic event. Ideally, both results compliment each other. The results represent the
complex developed in the ionosphere during the time of the earthquake preparation phase
according to the temporal evolution as a function of magnitude [31] and spatial allocation
concerning the earthquake preparation zone [32].
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Returning to the registered night-time positive deviation of electron concentration
presented in Figure 4, we still do not claim that suspicious variations are precursors. We
continue to apply our techniques of identification. As is shown in Figure 1, the spatial
TEC variability in the vicinity of the epicenter during the precursory period was more
extensive than in quiet and even magnetically stormy conditions. So, it is worth applying
our spatial variability detection technique to calculate the local spatial variability coefficient.
Nevertheless, now, instead of Max-Min analysis [8], we will calculate root mean square
deviation (RMSD) of TEC using the vertical series of TEC inside some regions (in our case,
in South-East California). GPS receivers’ positions for the 1999 and 2019 cases are shown in
Figure 5.

Atmosphere 2021, 12, 262 8 of 17 
 

 

Our analysis of the same data revealed another anomaly on June 29. There are no contra-
dictions between both results. Instead of in opposite, the results identify the natural pro-
cesses in the ionosphere revealed by different techniques. 

De Santis et al.’s approach identified the medium-term ionospheric precursors of 
earthquakes from Point Arguello ionosondes, which is inside the zone of earthquake prep-
aration. Similar approaches have been studied and assessed statistically before [27,28]. 
Our analysis considers the short-term type of seismo-ionospheric precursors concerning 
the earthquake’s final stage as a chaotic process [29] (the last 10 days before the main 
shock) when the foreshock sequence is registered together with the b-value decrease [30] 
and when the precursor “masks” were formed, representing the ionosphere’s last state 
before the seismic event. Ideally, both results compliment each other. The results repre-
sent the complex developed in the ionosphere during the time of the earthquake prepara-
tion phase according to the temporal evolution as a function of magnitude [31] and spatial 
allocation concerning the earthquake preparation zone [32]. 

Returning to the registered night-time positive deviation of electron concentration 
presented in Figure 4, we still do not claim that suspicious variations are precursors. We 
continue to apply our techniques of identification. As is shown in Figure 1, the spatial TEC 
variability in the vicinity of the epicenter during the precursory period was more exten-
sive than in quiet and even magnetically stormy conditions. So, it is worth applying our 
spatial variability detection technique to calculate the local spatial variability coefficient. 
Nevertheless, now, instead of Max-Min analysis [8], we will calculate root mean square 
deviation (RMSD) of TEC using the vertical series of TEC inside some regions (in our case, 
in South-East California). GPS receivers’ positions for the 1999 and 2019 cases are shown 
in Figure 5. 

 
Figure 5. (a) positions of GPS receivers used for analysis of ionospheric precursors for the Hector Mine earthquake case. 
(b) positions of GPS receivers used for analysis of ionospheric precursors for the Ridgecrest earthquake case. 

It should be noted that regardless of the fact that the positions of earthquake epicen-
ters are marked by red stars in the figures, in the real analysis, we did not know their 
positions and used the set of receivers in a specific area of California. The time series of 
RMSD for the 1999 and 2019 cases are presented in Figure 6. 

  

Figure 5. (a) positions of GPS receivers used for analysis of ionospheric precursors for the Hector Mine earthquake case.
(b) positions of GPS receivers used for analysis of ionospheric precursors for the Ridgecrest earthquake case.

It should be noted that regardless of the fact that the positions of earthquake epicenters
are marked by red stars in the figures, in the real analysis, we did not know their positions
and used the set of receivers in a specific area of California. The time series of RMSD for
the 1999 and 2019 cases are presented in Figure 6.
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As one can see, in both cases the time intervals of increased RMSD in TEC variations
coincided with the time of the positive night-time variations of TEC, and critical frequency
is demonstrated in Figure 4. In 2019, the increased spatial variability was not critical
because of the TEC values, which were three times lower compared with 1999. By this test,
we take one step forward to determine these time intervals as precursory periods.

The last test dealing with time series was calculating the cross-correlation coefficient
between pairs of stations according to the technology described in [7]. The results are
presented in Figure 7.

In Figure 7a (Hector Mine earthquake), we observe that the main minima of cross-
correlation coefficients for different pairs of stations fall into the time interval indicated
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by the Index of spatial variability RMSD from 10 to 15 October, where 15 October is the
day before the mainshock (Figure 6). In the Ridgecrest earthquake (Figure 7b) case, we
observe an additional minimum appearing before the M4.1 foreshock having a place on
18 June 2019. The coherent minimum is observed inside the precursory interval for the
Ridgecrest earthquake on 28 June (DOY 179) when the maximum deviations are observed
in the precursor mask.
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Summarizing the results of the multicomponent analysis of the GPS TEC monitoring
over the areas of the M7.1 Hector Mine earthquake (1999) and Ridgecrest earthquake (2019),
we can state that in both cases, the positive deviation in GPS TEC was registered during
night-time. One can clearly see the positive trend of night-time TEC values marked by
red lines on the time series in Figure 3. These periods coincide with yellow and red spots
in the morning and evening segments of precursors’ masks inside the blue rectangles
both on the GPS and vertical sounding data (Figure 4). We reveal the increased spatial
variability over the area of earthquake preparation in the RMSD plots (Figure 6) coinciding
with the precursory periods observed at time series of TEC and foF2 on precursors’ masks.
We observe a drop of cross-correlation coefficients value inside these intervals for both
earthquakes (Figure 7).

Still, we do not have the confidence that registered variations are precursors, except
for the fact that they are similar to ionospheric variations recognized as a precursor for
many other cases of ionospheric precursor studies. Still, we need proof of their regionality
and have the instruments to estimate the earthquake magnitude. This is the problem we
hope to resolve with ionospheric mapping technology.

6. Ionospheric Mapping

Determining the locality of the ionospheric anomaly detected needs application of the
mapping procedure as an obligatory element of the precursor identification. If the precursor
itself is detected by the GPS receiver/ionospheric station closest to the epicenter of the
event, then its locality should be determined with the mapping procedure. Back in 2003,
it was shown [13] that the locality of an anomalous phenomenon in the ionosphere is the
main necessary feature of an ionospheric precursor; therefore, the construction of the mask
should be accompanied by the construction of differential maps of TEC over the earthquake
preparation zone. In addition to confirming the precursor locality, differential maps also
help to clarify the position of the earthquake epicenter and estimate its magnitude. In
fact, the process of operational forecasting itself should begin with mapping; when a local
anomaly is detected, it is necessary to construct a precursor mask based on the data of the
receiver closest to the position of the maximum of the anomaly detected via mapping.

There are several options for mapping that exist today: the creation of maps with
a local network of stationary GPS/GLONASS receivers, as was done for the case of the
earthquake in Aquila in 2009 [23], via vertical sounding from the satellite [33]; high-
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orbit tomography [34]; global ionospheric maps (GIMs) distributed by the International
Global Navigation Satellite Systems (GNSS) Service (IGS) in the IONEX (IONosphere map
EXchange) format [35,36]; and radio occultation sounding [37].

Despite the low resolution of IONEX maps, they are currently the most suitable option
for data availability and efficiency. The IGS data in IONEX format is a matrix with elements
that are TEC values multiplied by 10. The matrix resolution is 2.5◦ in latitude and 5◦ in lon-
gitude. The TEC values are calculated by IGS every two hours (the transition to a time reso-
lution of 1 h is currently underway). Differential maps of the global TEC—TECGIM, which
represent the deviation of the current TECGIM values from the background TECGIMA, are
calculated and constructed with the formula ∆TECGIM = (TECGIM–TECGIMA)/TECGIMA,
where the moving average TEC values calculated for 15 previous days are used as back-
ground values for the same moment of the local time. Examples of differential maps for
various earthquakes can be found in earlier works [23].

Nevertheless, we should keep in mind that the local GPS receivers’ network in Cali-
fornia is very dense, and the number of receivers included in the IGS service is far from
complete: data of the small part of this network are included in the procedures of GIM maps
constructing. From the other point of view, the local network practically has no receivers
in the Pacific Ocean west from the California shore, while the GIM, using procedures of
modeling and extrapolation, is able to provide the TEC values over the ocean as well.

In this regard, we decided to experimentalize by comparing the maps constructed
with data from the local GPS receivers’ networks and from GIM.

In Figure 8a,b are the differential GIM and local GPS networks TEC maps built for
DOY284 (11 October 1999) for 03:00 LT, and in Figure 8c,d are the differential GIM and
local GPS networks TEC maps built for DOY179 (28 June 2019) for 04:00 LT.
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The difference in the local time selection for 1999 and 2019 cases is connected with the
fact that in 1999 the IONEX index was calculated every two odd hours, but later IGS started
to produce IONEX every two even hours. Nevertheless, the days for which the precursor
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maps were built were not chosen by chance; they were selected by the ionosphere itself,
which in the set of maps appeared in a distribution where the isolated maximum revealed
itself. Of course, we had in mind that we were looking for the night time distributions,
but the expected distribution appeared on the day when the minimum of cross-correlation
coefficient was registered and at the local time when the brightest spot at the precursor
mask was revealed as well. This demonstrates the synergy of different factors of temporal
behavior.

One can notice that the positions of maxima of the ⊗TEC do not coincide for GIM
and the local GPS TEC distributions. Besides, these maxima do not coincide with the
epicenter positions. According to our experience with ionospheric mapping using the
different techniques, the GIM maps more adequately reflect the real situation, because the
procedures of the data calibration and interpolation are more sophisticated than the simple
Kriging procedure used for the local GPS TEC data. Local stations may have some bias,
introducing false irregularities into the distribution.

We can add two more reasons which contribute to the non-coincidence of the center of
ionospheric distribution and epicenter position. The first one is connected to the physical
source through air ionization changes the Global Electric Circuit’s electric properties over
the zone of earthquake preparation. This source is the volumetric activity of radon [4]. The
radon activity through the process of air ionization produced by α-particles emitted by
radon during its decay leads to sharp changes in the air temperature and relative humidity,
which could be monitored by the correction of the chemical potential of water vapor in
the atmosphere (ACP) [4]. Looking at the distribution of the ACP parameter before the
Ridgecrest earthquake (Figure 9), it can be seen that the most intense ACP activity was
observed to the south from the epicenter, just close to the maximum of the ionospheric
anomaly shown in the upper panel of Figure 8.
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The second reason for the equatorward displacement of ionospheric anomaly from
the epicenter of impending earthquake position is connected with the mechanism of
electromagnetic seismo-ionospheric coupling. The anomalous electric field changes its
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direction from vertical to field-aligned, starting from the altitude of 60–80 km. The lower
the epicenter latitude, the smaller the magnetic inclination angle, and as the direction
taken by the anomalous electric field becomes more horizontal the position of the anomaly
mapping within the ionosphere shifts equatorward.

The last proof of the ionospheric precursor locality for the case of the Ridgecrest
earthquake we would like to provide the data from the Langmuir probe installed onboard
the China Seismo-Electromagnetic Satellite (CSES) which was presented in [38]. It is
interesting to note that the large-scale ionospheric irregularity over California was also
registered during the night of 28 June 2019 (Figure 10). In the upper panel of Figure 10
one can see the variations of the electron concentration along the orbits registered by the
Langmuir probe. The red curve corresponds to the satellite passing over the earthquake
preparation zone. The bottom panel shows the distribution of electron concentration over
California on DOY 179 (28 June). The CSES satellite has the sun-synchronized orbit with
crossing the equator at 14 LT and 02 LT. The night-time passes over California are shown in
Figure 10.
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7. Determination of Earthquake Forecast Parameters

After considering the precursors’ behavior in time and space, it is worth discussing
the possibility of determining the main forecast parameters: time, place, and magnitude of
an impending earthquake.

For both cases, we determined the precursory period (from precursor mask and
spatial variability index), which lasted nearly five days. In the Hector Mine earthquake
case, the precursory period terminated one day before the mainshock, and in the case
of the Ridgecrest earthquake, six days before the mainshock and three days before the
foreshock. We obtained 6- and 1-day leading times for the Hector Mine and six days for
the Ridgecrest from the cross-correlation coefficients. From the analysis of the ionospheric
precursors’ spatial distribution, the most pronounced days revealed the apparent local
anomaly was five days before the Hector Mine earthquake and seven days before the
Ridgecrest earthquake. In this regard, we should state that we cannot determine the
impending earthquake’s time with precision better than 1–7 days before the mainshock.
There are plenty of publications with statistical analysis of ionospheric precursors for
different regions of the globe [39,40] and on a global scale [41]. Based on the last publication,
the largest probability of the ionospheric earthquake precursor lies within the interval 1–7
days, which exactly coincides with our estimations. It should be taken into account that
every seismic area has its own characteristics. This means that putting the task of real
prediction, the historical study should be undertaken as it was done for Italy [15], but in
any case, the seven days tolerance is much better than any middle-term, and especially
long-term, forecast.

Regarding the epicenter position’s determination, it was demonstrated as early as
2003 that the ionospheric precursors have a local character and are “tied” to the anticipated
earthquake epicenter position. Li and Parrot [42] demonstrated the procedure of epicenter
position determination from in-situ satellite measurements of electron concentration using
mapping of the anomaly registration from several passes of the DEMETER satellite over
the seismically active area. The data we have using the GIM data, from which we calculate
the differential maps, is similar but continuous in time (Figure 8, upper panel). We can
associate the maximum of the ionospheric anomaly distribution with the earthquake epi-
center position. In the Ridgecrest earthquake case we have three sources of information
simultaneously: GIM differential map; local network differential map; and in-situ mea-
surements of the electron concentration onboard the CSES satellite. If we associate the
probable position of the epicenter with the maximum of the registered anomaly we will get
different numbers, but if we calculate the average of the three sources of coordinates we
will obtain 35 N and 117.37 W, which against the real values of 35.766 N and 117.605 is not
an imperfect estimation.

The earthquake magnitude is based on the idea that the ionospheric anomaly size is
the same order of magnitude as the earthquake preparation zone, proposed by Dobrovolsky
et al. [32]. Its radius could be determined as R (km) = 100.43 M, where R is the radius
of the earthquake preparation zone, and M is the earthquake magnitude. Many of the
magnitude estimation cases are based on differential GIM maps one can find in [23]. Here
we used a modified approach. Instead of differential maps calculated in absolute TEC
values, we calculated the percentage differential maps presented in Figure 8 (upper panel),
where the ionospheric anomalies are rounded by some circles based on the Dobrovolsky
formula. For the magnitude M7.1, the radius should be 1130 km. To demonstrate that this
is a reasonable estimation, we drew the circles with the given radius on both earthquakes’
distributions. One can see that they fall into the range of 20–22% of positive deviation.
This coincides with our previous earthquake results in the Kamchatka region [43]. We can
conclude that by estimating the ionospheric anomaly size on the level of deviation 20–22%,
we can estimate the earthquake magnitude.

Concluding this paragraph, we can state that data of ionospheric monitoring can allow
the estimation of all three parameters necessary for short-term earthquake forecasting with
reasonable precision.
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8. Discussion

This publication attempts to demonstrate the progress in the technology of the iono-
spheric precursors of earthquake identification compared with the first attempts [7,8,13].
The Ridgecrest M7.1 earthquake on 5 July 2019 happened precisely 20 years after the Hector
Mine earthquake with the same magnitude and in the same region of California, USA,
providing a unique opportunity to demonstrate the technological development and its
ability to detect the precursors both in quiet and strong disturbing conditions. We have
illustrated the uniqueness of the “precursor mask” technology, permitting us to identify the
ionospheric precursors even in strongly disturbed conditions, such as existed in October
1999. Simultaneously we demonstrated the close similarity of precursors’ development for
the given region and given magnitude. Even the local time of optimal precursor detection
is practically the same. The leading time of precursor’s appearance is also the same order
of magnitude (11 October, 5 days before, and 28 June, 7 days before the mainshock, but 5
days before the strong foreshock). Within the multiparameter monitoring paradigm [16],
we separated the area of multiparameter ionospheric monitoring where we used several
sources of information: vertical ionospheric sounding; GPS TEC from local networks;
global GIM maps; and satellite measurements of the space plasma parameters. We also
used the multifactor analysis where from the same source, we generated the special de-
tection instruments such as cross-correlation coefficient or spatial variability index, which
helped to detect the precursory periods (red lines in Figure 3 and burgundy rectangles at
Figure 4) and the most sensitive days (minima at cross-correlations coefficient curves at
Figure 7). All together, this has allowed us to detect and identify the ionospheric precursors
unequivocally. We did not touch here on the problem of statistical analysis and false alarm
determination. The reason is straightforward: this paper’s main task is to demonstrate
the precursors’ difference and similarity for two selected earthquakes only. As a hint for
future discussion on the false alarm problem, we can say that multiparameter analysis is a
cure for false alarms. We can have a similar precursor effect for one parameter, but without
an earthquake, to have false indications in many different measurements simultaneously
is impossible. Our next goal is to move to the next step: automation of the described
procedures to implement our technology in short-term earthquake forecasting.

9. Conclusions

Twenty years passed between two strong earthquakes in South-East California. They
were witnesses to the development of the physical theory of ionospheric anomalies gener-
ation over the earthquake preparation zone on the final stage of the seismic cycle. With
the deepening understanding of seismo-ionospheric coupling, the Global Electric Circuit’s
role was clarified and the daily variations of the Global Boundary Layer of the atmosphere
were investigated. Simultaneously the technique of precursors identification became more
sophisticated and physically grounded. Even though every seismic event has its unique
characteristics, it was demonstrated that close similarity of precursors for different earth-
quakes is an intrinsic feature of the seismo-ionospheric coupling process, and just this
feature could be used for their identification automation. With this publication, we want
to draw a line under discussions of whether or not ionospheric precursors develop over
seismically active regions and whether they could be used in the process of earthquake
forecasting. Closing the discussion, we propose to start to use the described technologies
in future earthquake forecast activity.
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