Concentrations and Sources of Atmospheric PM, Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in Kanazawa, Japan

Kazuichi Hayakawa ${ }^{1, *}$, Ning Tang ${ }^{2,3}$, Wanli Xing ${ }^{3}$, Pham Kim Oanh ${ }^{4}$, Akinori Hara ${ }^{4}$ and Hiroyuki Nakamura ${ }^{4}$
1 Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, O-24 Wake-machi, Nomi, Ishikawa 923-1224, Japan
2 Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; n_tang@staff.kanazawa-u.ac.jp
3 Pharmaceutical and Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; xingwanli@stu.kanazawa-u.ac.jp
4 Medical Sciences, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takara-machi, Kanazawa 920-8640, Japan; kimoanhpham129@gmail.com; ahara@m-kanazawa.jp; hnakamu@staff.kana-zawa-u.ac.jp
* Correspondence: hayakawa@p.kanazawa-u.ac.jp

Text S1 Sample Treatments and Analytical Procedures

An area ($2 \times 5 \mathrm{~cm}$) of each quartz filter containing atmospheric TSP or PM from typical sources was cut into small pieces in a glass flask and an internal standard solution including Pyr- d_{10} and $1-\mathrm{NP}-d_{9}$ was added. PAHs, NPAHs and internal standards were extracted twice through ultrasonication with benzene/ethanol ($3: 1, \mathrm{v} / \mathrm{v}$). The solution was then washed successively with diluted solutions of sodium hydroxide and sulfuric acid, and twice with ultrapure water. After $100 \mu \mathrm{~L}$ of dimethyl sulfoxide (DMSO) was added to the organic solution, the mixture was concentrated using a rotary evaporator, and the residual solution was dissolved in ethanol. After filtering the solution with a membrane disk (HLC-DISK3, pore size $0.45 \mu \mathrm{~m}$, Kanto Chemical Co., Tokyo, Japan), an aliquot of the solution was injected into the two high-performance liquid chromatographic (HPLC) systems (LC-10A series, Shimadzu Inc., Kyoto, Japan) for the separate detection of PAHs and NPAHs.

Nine PAHs, fluoranthene (FR), Pyr, benz[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), banzo[a]pyrene (BaP), benzo[ghi]perylene (BghiPe), indeno[1,2,3-cd]pyrene (IDP), were identified using HPLC equipped with a fluorescence detector according to the USEPA methods (Wise et al., 2016). The analytical column was a reversed-phase column (Inertsil ODS-P, 4.6 i.d. $\times 250 \mathrm{~mm}$, GL Sciences Inc., Tokyo, Japan). The mobile phase was a mixture of acetonitrile/water with a flow rate of $1 \mathrm{~mL} / \mathrm{min}$ and was operated under a gradient concentration. The excitation (Ex) and emission (Em) wavelengths of the fluorescence detector were set at Ex 286 nm and Em 433 nm which are optimum for Pyr and Pyr- d_{10} [1].

Six NPAHs, 9-nitroanthracene (9-NA), 1-nitropyrene (1-NP), 6-nitrocrysene (6-NC), 7-nitrobenz[a]anthracene (7-NBaA), 3-nitroperylene (3-NPer) and 6-nitrobenzo[a]pyrene (6-NBaP), were determined using an HPLC equipped with a chemiluminescence detector. The analytical columns were reversed-phase columns (Cosmosil 5C18-MS-II, 4.6 i.d. \times (250 + 150) mm, Nacalai Tesque, Kyoto, Japan). The mobile phase was a mixture of an imidazole buffer and acetonitrile. The chemiluminescence reagent solution was an acetonitrile solution containing $b i s(2,4,6$-trichlorophenyl)oxalate and hydrogen peroxide. The flow rate of the chemiluminescence reagent solution was $1 \mathrm{~mL} / \mathrm{min}$. Pyr and 1-NP were quantified by using Pyr- d_{10} and 1-NP- d_{9} with other PAHs and NPAHs. The validity of this method has already been confirmed through our previous published reports showing recoveries that varied between 87 and 104%, with limits of detection $(\mathrm{S} / \mathrm{N}=3)$ that varied between 0.25 and 1.5 fmol , and limits of quantification $(\mathrm{S} / \mathrm{N}=10)$ that varied between 10^{-} ${ }^{15}$ and 10^{-12} (over two orders) and showed good linearity $\left(\mathrm{r}^{2}>0.899\right.$) [2-4].

Text S2 Calculation of source contribution to combustion-derived particulate

Atmospheric particulate (P) consists of combustion-derived particulate $\left(\mathrm{P}_{\mathrm{c}}\right)$ and noncombustion derived particulate (P_{o}). P_{o} consists of particulate from natural sources such as soils, plants and road surface scraps. P_{c} can be divided further into particulate from sources with high combustion temperatures $\left(\mathrm{P}_{\mathrm{h}}\right)$ and particulate from sources with lowcombustion temperatures $\left(\mathrm{Pl}_{1}\right)$ and is described as follows:

$$
\begin{align*}
& \mathrm{P}=\mathrm{P}_{\mathrm{c}}+\mathrm{P}_{\mathrm{o}} \tag{1}\\
& \mathrm{P}_{\mathrm{c}}=\mathrm{P}_{\mathrm{h}}+\mathrm{P}_{1} \tag{2}
\end{align*}
$$

Letting the proportion of P_{h} in P_{c} be $x(0<x<1)$ and the proportion of P_{c} in P be $y(0$ $<y<1$) in Equations (1) and (2), the following equations are obtained for atmospheric concentrations of $\mathrm{Ph}_{\mathrm{h}}\left(\left[\mathrm{P}_{\mathrm{h}}\right]\right), \mathrm{P}_{\mathrm{l}}\left(\left[\mathrm{P}_{\mathrm{i}}\right]\right), \mathrm{P}_{\mathrm{c}}\left(\left[\mathrm{P}_{\mathrm{c}}\right]\right), \mathrm{P}_{\mathrm{o}}\left(\left[\mathrm{P}_{\mathrm{o}}\right]\right)$ and $\mathrm{P}([\mathrm{P}])$:

$$
\begin{array}{lll}
{\left[\mathrm{P}_{\mathrm{h}}\right]=\left[\mathrm{P}_{\mathrm{c}}\right] x} & \text { and } & {\left[\mathrm{P}_{1}\right]=\left[\mathrm{P}_{\mathrm{c}}\right](1-x)} \\
{\left[\mathrm{P}_{\mathrm{c}}\right]=[\mathrm{P}] y} & \text { and } & {\left[\mathrm{P}_{\mathrm{o}}\right]=[\mathrm{P}](1-y)} \tag{4}
\end{array}
$$

Therefore, x is able to provide an estimation on the extent to which high temperature combustion products $\left(\mathrm{P}_{\mathrm{h}}\right)$ are contributing to combustion-derived particulate $\left(\mathrm{P}_{\mathrm{c}}\right)$, and y is able to provide an estimate on the extent to which P_{c} contributes to the total particulate (P). From Equations (3) and (4), the concentration ratio of P_{h} and $\mathrm{P}_{\mathrm{l}}\left(\left[\mathrm{P}_{\mathrm{h}}\right]:\left[\mathrm{P}_{\mathrm{l}}\right]\right)$ in the atmosphere at the monitoring sites is given by $x:(1-x)$ and the concentration ratio of P_{c} and $\mathrm{P}_{\mathrm{o}}\left(\left[\mathrm{P}_{\mathrm{c}}\right]:\left[\mathrm{P}_{\mathrm{o}}\right]\right)$ is given by $y:(1-y)$.

Hear [$1-N P_{h}$], $\left[1-N P_{1}\right]$ and $\left[1-N P_{c}\right]$ are 1-NP concentrations in P_{h}, P_{1} and P_{c}, respectively, and $\left[\mathrm{Pyr}_{h}\right],\left[\mathrm{Pyr}_{1}\right]$ and $\left[\mathrm{Pyr}_{c}\right]$ are Pyr concentrations in $\mathrm{P}_{h}, \mathrm{P}_{1}$ and P_{c}, respectively, assuming that both 1-NP and Pyr are not chemically changed in the urban atmosphere during the period between emission to sampling (Figure S1). Atmospheric concentrations of $1-\mathrm{NP}$ bound to P_{h} and P_{1} at the monitoring sites are respectively given by $\left[1-\mathrm{NP}_{\mathrm{h}}\right]\left[\mathrm{P}_{\mathrm{h}}\right] x$ and $\left[1-N P_{1}\right]\left[\mathrm{P}_{1}\right](1-x)$. The atmospheric concentrations of Pyr bound to P_{h} and P_{1} at the monitoring sites are also respectively given by $\left[\mathrm{Pyr}_{\mathrm{h}}\right]\left[\mathrm{P}_{\mathrm{h}}\right] x$ and $\left[\mathrm{Pyr}_{1}\right]\left[\mathrm{P}_{1}\right](1-x)$, and the following equations are obtained for atmospheric concentrations of $1-\mathrm{NP}([1-\mathrm{NP}])$ and Pyr ([Pyr]):

$$
\begin{gather*}
{[1-\mathrm{NP}]=\left[1-\mathrm{NP}_{\mathrm{h}}\right]\left[\mathrm{P}_{c}\right] x+\left[1-\mathrm{NP}_{1}\right]\left[\mathrm{P}_{\mathrm{c}}\right](1-x)} \tag{5}\\
{[\mathrm{Pyr}]=\left[\mathrm{Pyr}_{\mathrm{h}}\right]\left[\mathrm{P}_{\mathrm{c}}\right] x+\left[\mathrm{Pyr}_{\mathrm{r}}\right]\left[\mathrm{P}_{\mathrm{c}}\right](1-x)} \tag{6}
\end{gather*}
$$

The atmospheric [1-NP]/[Pyr] ratio at the monitoring site can therefore be expressed by the following equation:

$$
\begin{gather*}
{[1-\mathrm{NP}] /[\mathrm{Pyr}]=\left\{\left[1-\mathrm{NP}_{\mathrm{h}}\right] x+\left[1-\mathrm{NP}_{1}\right](1-x)\right\} /\left\{\left[\mathrm{Pyr}_{\mathrm{h}}\right] x\right.} \\
\left.+\left[\mathrm{Pyr}_{1}\right](1-x)\right\} \tag{8}
\end{gather*}
$$

Replacing $\left[\mathrm{P}_{\mathrm{c}}\right]$ in the right side of equation (5) with $[\mathrm{P}] y$ according to equation (6), the atmospheric $[1-\mathrm{NP}]$ at the monitoring site can be expressed by the following equation.

$$
\begin{equation*}
[1-\mathrm{NP}]=\left\{\left[1-\mathrm{NP}_{\mathrm{h}}\right] x+\left[1-\mathrm{NP}_{1}\right](1-x)\right\}[\mathrm{P}] y \tag{8}
\end{equation*}
$$

Equation (7) means that the contribution ratio of Ph_{h} to $\mathrm{Pc}(=x)$ is a function of [1NP]/[Pyr].

Here, vehicles and coal combustion are used as standard sources for Ph_{h} and P. . By introducing values of $\left[1-\mathrm{NPh}_{\mathrm{h}}\right]\left(=65.5 \mathrm{pmol} \mathrm{mg}^{-3}\right),\left[1-\mathrm{NP}_{\mathrm{l}}\right]\left(=4.6 \mathrm{pmol} \mathrm{mg}^{-3}\right),\left[\mathrm{Pyrh}_{\mathrm{h}}\right](=180$ pmol mg^{-3}) and $\left[\mathrm{Pyrı}_{1}\right]\left(=3,400 \mathrm{pmol} \mathrm{mg}^{-3}\right.$) derived from Table 1 into equations (vii) and (viii), the following equations are obtained.

$$
\begin{equation*}
[1-\mathrm{NP}] /[\mathrm{Pyr}]=\{65.5 x+4.6(1-x)\} /\{180 x+3400(1-x)\} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
[1-\mathrm{NP}]=\{65.5 x+4.6(1-x)\}[\mathrm{P}] y \tag{10}
\end{equation*}
$$

where [1 - NP] and [Pyr] are atmospheric concentrations of $1-\mathrm{NP}$ and Pyr at the various monitoring sites. [1 $-\mathrm{NP}_{\mathrm{h}}$], [$\mathrm{Pyr}_{\mathrm{h}}$], [$\left.1-\mathrm{NP}_{\mathrm{l}}\right]$ and [$\left.\mathrm{Pyr}_{1}\right]$ can be obtained by analyzing $1-$ NP and Pyr in Ph_{h} and P_{1} [5].

Figure 1. Map of sampling sites.
Table S1. Correlation coefficients between atmospheric compounds.

	PM ${ }_{2.5}$	PM>2.5	P_{0}	$\mathbf{P}_{\text {c }}$	$\mathbf{P}_{\text {h }}$	P1	ГPAH	INPAH
PM2.5								
PM>2.5	0.6921							
P_{0}	0.9999	0.6934						
$\mathrm{Pc}_{\text {c }}$	0.5585	0.4390	0.5456					
P_{h}	0.1186	0.0150	0.6518	0.7038				
P 1	0.6626	0.5732	0.1075	0.9223	0.3800			
$\Sigma \mathrm{PAH}$	0.6811	0.5954	0.6716	0.8661	0.3116	0.9737		
$\Sigma \mathrm{NPAH}$	0.3850	0.3268	0.3582	$\underline{0.8211}$	0.6689	$\underline{0.7152}$	$\underline{0.7520}$	

TSP samples were collected in Kanazawa for 7 days in every season from spring, summer, autumn, 2017 to winter, 2018. P_{o}, particulate from non-combustion source; P_{c}, particulate from combustion source; P_{h}, particulate from combustion source with higher temperature (vehicles); P_{1}, particulate from combustion source with lower temperature (heating facilities/industries). Bold means correlation coefficient ≥ 0.9; Underline indicates $0.9>$ correlation coefficient ≥ 0.7.

Table 2. Toxic equivalency factors of PAHs (TEFPAH).

Compound	Relative Potency Factor
BaP	1
BaA	0.1

BbF	0.1
BkF	0.01
Chr	0.001
IDP	0.1

$\overline{\text { TEF, cited from the reference by USEPA (1993) [6]. }}$
Table 3. Toxic equivalency factors of NPAHs (TEF NPA).

Compound	Relative Potency Factor
1-NP	1
$6-\mathrm{NC}$	0.2
$6-\mathrm{NBaP}$	0.1
3-NPer	0.08

$\overline{\mathrm{TEF}}$, calculated from direct-acting mutagenic activities [6].

References

1. Hayakawa, K.; Nakamura, A.; Terai, N.; Kizu, R.; Ando, K.Nitroarene concentrations and direct-acting mutagenicity of diesel exhaust particulates fractionated by silica-gel column chromatograph. Chem. Pharm. Bull. 1997, 45, 1820-1822, doi:10.1248/cpb.45.1820.
2. Hayakawa, K.; Kitamura, R.; Butoh, M.; Imaizumi, N.; Miyazaki, M. Determination of diamino- and aminopyrenes by highperformance liquid chromatography with chemiluminescence detection. Anal. Sci. 1991, 7, 573-577, doi:10.2116/analsci.7.573.
3. Hayakawa, K.; Murahashi, T.; Butoh, M.; Miyazaki, M. Determination of 1,3-, 1,6-, and 1,8-dinitropyrenes and 1-nitropyrene in urban air by high-performance liquid chromatography using chemiluminescence detection. Environ. Sci. Technol. 1995, 29, 928932, doi:10.1021/es00004a012.
4. Tang, N.; Taga, R.; Hattori, T.; Toriba, A.; Kizu, R.; Hayakawa, K. Simultaneous determination of twenty-one mutagenic nitropolycyclic aromatic hydrocarbons by high-performance liquid chromatography with chemiluminescence detection. In Proceedings of the 13th International Symposium, Bioluminescence and Chemiluminescence Progress and Perspective; World Science: London, UK, 2005; pp. 441-444.
5. Hayakawa, K.; Tang, N.; Toriba, A.; Nagato, E.G. Calculating sources of combustion-derived particulates using 1-nitropyrene and pyrene as markers. Environ. Pollut. 2020, 265, 114730, doi:10.1016/j.envpol.2020.114730
6. USEPA, Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. EAP/600/R-93/089 (1993). Available online: https://www.epa.gov/risk/relative-potency-factors-carcinogenic-polycyclic-aromatic-hydrocarbonspahs (accessed on 12 February 2021).
