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Abstract: Interest in future rainfall extremes is increasing, but the lack of consistency in the future
rainfall extremes outputs simulated in climate models increases the difficulty of establishing climate
change adaptation measures for floods. In this study, a methodology is proposed to investigate future
rainfall extremes using future surface air temperature (SAT) or dew point temperature (DPT). The
non-stationarity of rainfall extremes is reflected through non-stationary frequency analysis using SAT
or DPT as a co-variate. Among the parameters of generalized extreme value (GEV) distribution, the
scale parameter is applied as a function of co-variate. Future daily rainfall extremes are projected
from 16 future SAT and DPT ensembles obtained from two global climate models, four regional
climate models, and two representative concentration pathway climate change scenarios. Compared
with using only future rainfall data, it turns out that the proposed method using future temperature
data can reduce the uncertainty of future rainfall extremes outputs if the value of the reference
co-variate is properly set. In addition, the confidence interval of the rate of change of future rainfall
extremes is quantified using the posterior distribution of the parameters of the GEV distribution
sampled using Bayesian inference.

Keywords: Bayesian inference; climate change; GEV distribution; non-stationarity; rainfall extremes;
rate of change; uncertainty

1. Introduction

In most studies investigating future rainfall extremes, it is assumed that future rainfall
data simulated from global climate models (GCMs) or regional climate models (RCMs)
are “observed” data in the future [1,2]. However, even recently developed climate models
simulate temperature stably [3–5] but still expose many limitations to the simulation of
rainfall extremes [6–10]. As can be found in the results of Kim et al. [11], very different
future projection outputs are obtained depending on which RCM-simulated future rainfall
data are used to analyze rainfall extremes. Recently, a series of attempts have been made
to investigate future rainfall extremes based on the relationship between temperature
and rainfall extremes [12–14]. The basic concept commonly included in these attempts is
based on the fact that investigating the behavior of rainfall extremes under global warming
conditions from the relationship between observed temperature and observed rainfall
extremes is an approach to obtain more consistent future outputs [15,16].
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In general, frequency analysis is often used to quantify rainfall extremes. The same
goes for the quantification of future rainfall extremes. Hosseinzadehtalaei et al. [17] esti-
mated rainfall quantiles from a stationary frequency analysis using the rainfall projection
output for the 30 years from 2071 to 2100. They also estimated rainfall quantiles from
another stationary frequency analysis using the present-period rainfall simulation output
for 30 years from 1971 to 2000. Then, the rate of change of future rainfall extremes was esti-
mated from the estimated rainfall quantiles for different periods. Stationary assumptions
for segmented future periods can be found in many studies on rainfall extremes related to
climate change [18–20]. In addition, studies on non-stationary frequency analysis have been
actively conducted. The non-stationarity of time series of rainfall extremes is sometimes
expressed explicitly as a function of time, but it can also be related to climate variables
observed at the same time or the preceding time when rainfall extremes occurred [21].
According to several studies, it is reported that it is more reasonable to use climate vari-
ables than time as co-variates for expressing non-stationarity in a non-stationary frequency
analysis [22,23]. Recently, studies of non-stationary frequency analysis using climate vari-
ables have been suggested for the annual maximum series [24–32]. However, studies that
have produced practical projection outputs of rainfall extremes reflecting future climate
information under future climate change scenarios using non-stationary frequency analysis
are still lacking.

On the other hand, the issue of the validity of the non-stationary frequency analysis
compared to the stationary frequency analysis has actually been a matter of much debate.
Koutsoyiannis and Montanari [33] stated that after making past observations into a station-
ary process, i.e., after adjusting to represent future conditions, it was good to describe future
conditions in the stationary domain. Serinaldi and Kilsby [34] warned that uncertainty
might increase when the non-stationary model is applied since the non-stationary model is
more complex than the stationary model. In addition, De Luca and Galasso [35] pointed
out that, assuming that the process was non-stationary, ergodicity could not be maintained,
so possible trends should be derived from an external source different from the time series
of interest. Therefore, they argued that it was not essential to adopt a non-stationary model.
On the other hand, studies showing that a co-variate-based non-stationary frequency anal-
ysis is more appropriate to convincingly project rainfall extremes in the future have also
been actively proposed [10,12,15,31,36].

One of the important issues in the frequency analysis of rainfall extremes is how to
evaluate the relative superiority of the stationary and non-stationary models. In general,
the excellence of a model is discussed using the Akaike Information Criterion (AIC), which
evaluates the fitness of the annual maximum series and probability distribution, or similar
indicators [37,38]. However, the results of goodness of fit are very likely to vary depending
on the sample size. From the other side, it can be said that the uncertainty of the quantiles
derived from the results of a frequency analysis play an important role in discussing
the excellence of the model [34]. The smaller the uncertainty of the estimated quantiles,
the more reliable the model can be recognized as [39]. Ouarda et al. [36] pointed out that
uncertainty is likely to act as a major weakness in the applicability of non-stationary models
through stationary and non-stationary frequency analyses of annual maximum rainfall in
the UAE. However, studies suggesting a methodology that can reduce uncertainty are still
difficult to find.

In this work, a methodological study focused on a specific statistical approach was
performed, and it is different from previous studies in the following three aspects. The
first is that it discusses the results of deriving projection outputs of future rainfall extremes
reflecting future climate information using a non-stationary frequency analysis. The second
is that it introduces the concept of determination of the optimal model, focusing on the
uncertainty as well as the fitness of the data, and the concept of a reference co-variate
to reduce the uncertainty of the non-stationary frequency analysis. The third is that
it investigates the uncertainty of future rainfall extremes by dividing the inter-model
variability generated from various climate model combinations and the uncertainty of the
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co-variate-based non-stationary frequency analysis model, and it identifies the uncertainty
of the rate of change of future rainfall extremes.

This study proceeds as follows: (1) A non-stationary frequency analysis of the annual
maximum daily rainfall time series (AMR) using surface air temperature (SAT) or dew
point temperature (DPT) as a co-variate is performed. (2) Using the Bayesian approach,
parameters of the stationary and non-stationary generalized extreme value (GEV) distribu-
tions for the AMR are sampled from the posterior distribution. (3) Using this, we evaluate
the performance of the stationary frequency analysis and the non-stationary frequency
analysis in terms of uncertainty. (4) We investigate how uncertainty in the non-stationary
frequency analysis can be reduced by determining the appropriate co-variate reference
value corresponding to the rainfall quantile. (5) We present the rate of change in rainfall
quantile under climate change scenario conditions using future information of SAT or DPT
produced from a combination of various climate models. (6) The uncertainty of the rate
of change of future rainfall extremes is analyzed using the information obtained from the
non-stationary frequency analysis by the Bayesian approach.

2. Data and Methods
2.1. Data

We used the daily mean SAT, daily mean DPT, and daily precipitation of two Auto-
mated Surface Observing System (ASOS) meteorological observation sites (Chuncheon
and Cheonan) operated by the Korea Meteorological Agency (KMA) [40]. The Chuncheon
site is located in a mountainous area of the central part of the Korean Peninsula, and the
Cheonan site is located in a plain area of the western part of the Korean Peninsula. The
data period was from 1973 to 2019. Figure 1 shows the spatial location of the sites used.
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Figure 1. Location of meteorological sites.

The Coordinated Regional Climate Downscaling Experiment East-Asia (CORDEX-EA)
team recently produced future climate information for the East Asian region from various
GCMs and RCMs. There are two main types of future climate outputs developed by
CORDEX-EA: 50-km spatial resolution outputs for East Asia and 12.5-km spatial resolution
outputs for Korea. Future climate outputs with a spatial resolution of 12.5 km, produced
from a total of 8 GCM–RCM combinations from 2 GCMs, including the Hadley Center
Global Environment Model version 2-coupled Atmosphere-Ocean model (HadGEM2-AO,
H2) and the Max Planck Institute Earth System Model—Low Resolution (MPI-ESM-LR, E6),
and 4 RCMs, including the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5),
the Regional Spectral Model (RSM), RegCM4 (the latest version of the Regional Climate
Model system), and the Weather Research and Forecasting model (WRF), were used in this
study. In addition, Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 were
applied as future climate change scenarios. That is, a total of 16 future climate ensembles
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were used. For reference, the climate information outputs produced from a combination
of climate modes consist of present data from 1981 to 2010 and future data from 2021 to
2050 [41]. The climate model outputs’ information is summarized in Table 1. All data
of daily outputs produced by the combination of climate models were applied after bias
correction by the quantile mapping process [42] linked to the Boe method [43].

Table 1. Climate model output information.

GCM HadGEM2-AO (H2) MPI-ESM-LR (E6)

RCM MM5 RSM RegCM4 WRF MM5 RSM RegCM4 WRF

Temporal resolution 3-h
Spatial resolution 12.5 km

Variables Atmospheric pressure, maximum/minimum surface air temperature,
specific humidity, precipitation

Scenarios RCP 4.5/RCP 8.5

Temporal domain Present: 1981–2010
Future: 2021–2050

2.2. Non-Stationary GEV Distribution

In this study, GEV distribution was applied as a probability distribution for frequency
analysis of the AMR. The probability density function f(x) of the GEV distribution is
as follows:

f(x) =
1
α

{
1 − β(x − xo)

α

} 1
β −1

exp

[
−
{

1 − β(x − xo)

α

}1/β
]

, (1)

where α is the scale parameter, β is the shape parameter, and xo is the location parameter.
From Equation (1), one can calculate the quantile xT corresponding to the return level

of T-year in the GEV distribution as follows:

xT = xo +
α

β

{
1 −

(
−ln

[
1 − 1

T

])}β

, (2)

Traditionally, the GEV distribution assumes that observations are independent and
identically distributed. However, in order to model non-stationarity in the AMR time series,
many researchers allowed the parameters of the GEV distribution to change depending on
the co-variate [10,22,27–29,31,32,36,39]. In theory, all parameters of the GEV distribution
can be applied as a function of various co-variates, but in this study, a co-variate was applied
only to the scale parameter alpha, as shown below, in order to intuitively understand the
effect of the co-variate.

Non-stationary model n1:

α(y) = exp[α1 + α2SAT(y)], (3)

Non-stationary model n2:

α(y) = exp[α1 + α2DPT(y)], (4)

where SAT(y) is the SAT observed on the day on which the AMR occurred in year y, and
DPT(y) is the DPT observed on the day on which the AMR occurred in year y.

Therefore, one can calculate the quantile xT corresponding to the return level of the
T-year of the non-stationary model as follows:

xT(y) = xo +
α(y)

β

{
1 −

(
−ln

[
1 − 1

T

])}β

, (5)
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That is, the quantile corresponding to the return level of the T-year of the non-
stationary model has various values depending on the co-variate. Since the current hy-
draulic structure design practice is based on the fact that the quantile corresponding to the
return level of the T-year in the stationary model has a single value, the dependence of
the quantile on the co-variate in non-stationary models acts as a major cause that makes
practical application of non-stationary models difficult.

3. Results
3.1. Parameter Estimation and Uncertainty

The parameters of the GEV distribution were estimated using the Metropolis–Hastings
(MH) algorithm. Table 2 shows the parameters and negative log likelihood (nllh) estimated
by fitting each of the three models to the observed AMR. The bold numbers denote the
model representing the smallest nllh. The AMR of the Chuncheon site showed the best
fit when applying the non-stationary model n1 (i.e., using SAT as a co-variate of the scale
parameter). The AMR of the Cheonan site showed the best fit when applying the non-
stationary model n2 (that is, using DPT as a co-variate of the scale parameter). However, the
AIC (where AIC = 2 × (# of parameters) + 2 × nllh) reflecting the parsimony point of view
recommends that it is more appropriate to apply the stationary model s for both AMRs of
both sites. That is, as applied in Lee et al. [10] and Ouarda et al. [36], if an optimal model is
selected using the AIC, which mainly considers the aspect of fitness of the observed AMR,
the stationary model s is selected as the optimal model for the AMR at Chuncheon and
Cheonan sites.

Table 2. Parameters and negative log likelihood.

Site Parameter Stationary s Non-Stationary n_1 Non-Stationary n_2

Chuncheon

alpha_1 47.1039 3.2278 3.3694
alpha_2 0.0273 0.0224

beta −0.1498 −0.1081 −0.0956
x_o 110.8374 111.3025 111.1759
nllh 209.4338 209.2788 209.3763

Cheonan

alpha_1 35.6845 2.5806 2.7541
alpha_2 0.0417 0.0363

beta −0.0948 −0.0624 −0.0492
x_o 105.3882 104.6429 106.0307
nllh 193.561 194.4651 192.0164

The fundamental purpose of performing a frequency analysis is to estimate the rainfall
quantile. However, since the parameters of the probability distribution necessary for
estimation of the quantile are estimated from limited samples, uncertainty is bound to be
included in the parameter of the probability distribution and the corresponding rainfall
quantile. Therefore, if the sample size changes (i.e., when new data become available or
when sampling is performed through other techniques), the selection result of the optimal
frequency analysis model centered on fitness with a limited sample such as AIC is likely to
change. Our argument is that the uncertainty of the probability distribution parameter and
rainfall quantile gives important information in selecting the optimal frequency analysis
model. In other words, identifying in which model the uncertainty of the parameter and
rainfall quantile is the lowest can be an important determinant in selecting an optimal
model. This is based on the fact that a model with less uncertainty in the parameter and
rainfall quantile can be recognized as a more reliable model. We quantified the uncertainty
of the model as follows:

p − f actor =
Width o f 95PPU f or parameter ensemble

Parameter ensemble average
, (6)

q − f actor =
Width o f 95PPU f or rain f all quantile ensemble

Rain f all quantile ensemble average
, (7)
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where 95PPU (Percent Prediction Uncertainty) means the 95% confidence interval of the
corresponding variable [44].

A total of 10,000 parameters were sampled from the posterior distribution of param-
eters using Markov chain Monte Carlo (MCMC), and 10,000 rainfall quantile ensembles
corresponding to the return level of 50 years were simulated. Equations (6) and (7) were
used to quantify the uncertainty about the parameter and the uncertainty about the rainfall
quantile. Table 3 shows the results. The parameters of the stationary model s are α, β, and
xo, while the parameters of the non-stationary models (n1 and n2) are α1, α2, β, and xo. For
direct comparison between models, the p-factor converted from α1 and α2 of non-stationary
models to α is also expressed. The α of the non-stationary model was calculated using
exp[α1 + α2E[SAT]] or exp[α1 + α2E[DPT]]. The E[SAT] or E[DPT] is the average of the
SAT or DPT corresponding to each AMR, respectively. The bold numbers denote the
parameter representing the smallest uncertainty.

Table 3. Uncertainty of stationary and non-stationary frequency analysis.

Site Factor Parameter Stationary s Non-Stationary n_1 Non-Stationary n_2

Chuncheon
P

α1 0.4651 0.4886

α2 2.6020 3.5664

α 0.5465 0.5306 0.5219

β −2.6478 −3.1391 −2.9063

xo 0.2736 0.2659 0.2516

q 50-yr 0.8356 0.7329
(0.7003)

0.5952
(0.5572)

Cheonan
P

α1 0.9012 0.7639

α2 2.4406 2.6169

α 0.4782 0.4909 0.5527

β −2.9555 −5.5192 −5.2905

xo 0.2037 0.2236 0.1876

q 50-yr 0.5998 0.8057
0.7624

0.5978
(0.5706)

If a reliable model is selected based on the uncertainty of parameters, it can be rec-
ognized that the optimal model for the AMR at the Chuncheon site is the non-stationary
model n2, and the optimal model for the AMR at the Cheonan site is the stationary model
s. For the AMR at the Chuncheon site, the p-factor of the scale parameter and the location
parameter was the smallest in the non-stationary model n2. For the AMR at the Cheonan
site, the p-factors of the scale parameter and the shape parameter were the smallest in the
stationary model s. However, the p-factor of all parameters in the optimal model is not
smaller than the p-factor of parameters in other candidate models. Selecting the optimal
model based on the p-factor of parameters may involve a lot of subjectivity.

The q-factor of the rainfall quantile corresponding to the return level of 50 years was
calculated in two ways. The first method was to calculate the q-factor using the rainfall
quantile ensemble reflecting all observed co-variate values. The second method was to
calculate the q-factor of the rainfall quantile ensemble under the condition of E[SAT] or
E[DPT] (numbers in parentheses in Table 3). Since the q-factor by the first calculation
method adds co-variate change to the uncertainty caused by parameter estimation, the
q-factor from the first calculation method becomes larger than the q-factor of the second
calculation method. This fact was also discussed in Ouarda et al. [37]. However, it can be
found that the difference between the values of the q-factor calculated by the first method
and the second method is not very large. This suggests that in the range of values of SAT
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or DPT observed routinely, the effect of the change in co-variate on the uncertainty of the
rainfall quantile is limited.

If the optimal model is selected using the uncertainty of the rainfall quantile, that
is, the q-factor, it can be recognized that the optimal model for AMR at both sites is the
non-stationary model n2. Table 4 shows the results of selecting the optimal model using
nllh, AIC, p-factor, and q-factor. The penalty for the number of parameters in AIC is
to evaluate the model by reflecting the uncertainty of the model. However, evaluating
the model using the p-factor or q-factor is a more direct reflection of the uncertainty. As
described above, since the optimal model for the p-factor may vary for each parameter, it is
more preferable to use the q-factor rather than the p-factor to evaluate the reliability of the
model. Our proposal is to evaluate the fitness of the model for AMR using nllh and the
reliability of the model using the q-factor. Therefore, the optimal model for AMR at the
Chuncheon site can be determined as the non-stationary model n1 or n2. Similarly, it can
be said that the non-stationary model n2 is recommended as the optimal model for AMR at
the Cheonan site.

Table 4. Results of determining optimal model.

Site nllh AIC p-Factor q-Factor

Chuncheon n1 s n2 n2
Cheonan n2 s s n2

Figure 2 shows the response of the rainfall quantile to the change in co-variate and the
probability distribution of the observed co-variate. The ensemble average of the rainfall
quantile by model s represents a single value regardless of the co-variate, and the width of
the 95% confidence interval is not related to the co-variate. However, it should be noted
that the ensemble average and 95% confidence interval by models n1 and n2 respond to the
values of the co-variates observed on the day of AMR. The range of the ensemble of rainfall
quantiles by non-stationary models is likely to be wider than the range of the ensemble
of rainfall quantiles by the stationary model since the co-variate change is additionally
reflected in addition to parameter uncertainty. In other words, the uncertainty of the
rainfall quantiles by non-stationary models needs to be recalculated by reflecting only
the uncertainty due to parameters by designating an appropriate co-variate value. The
question is how to specify the appropriate co-variate value.
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Figure 2. Co-variate-dependent rainfall quantile and its uncertainty at (a) the Chuncheon site and (b) the Cheonan site. The
rainfall quantile R50 corresponding to the return level of 50 years is shown. In the upper plot, the solid black line is the
ensemble average of R50 for the stationary model s, and the area painted in green is the 95% confidence interval. Blue lines were
drawn from the non-stationary model n1. The red lines are the result of the non-stationary model n2. The empirical probability
distribution of the observed co-variate is shown in the plot at the bottom. The distribution of surface air temperature (SAT) is
indicated by the blue line and the distribution of dew point temperature (DPT) is indicated by the red line.
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We pay attention to Equations (2) and (5) to find the appropriate co-variate value, that
is, the reference co-variate value. Equation (5) returns the rainfall quantile corresponding to
the return level of the T-year in the non-stationary GEV distribution. Equation (2) returns
the rainfall quantile of the stationary GEV distribution. Equations (2) and (5) can be used to
calculate the value of the reference co-variate of the non-stationary GEV distribution, which
returns the same rainfall quantile as the stationary GEV distribution. Reference co-variates
for various return levels of AMR at the Chuncheon site and the Cheonan site are shown
in Figure 3. In this study, based on the observed AMR, a method of estimating reference
co-variates corresponding to various return levels is proposed under the assumption that
the rainfall quantiles for each return level of the stationary model and the non-stationary
model are the same. However, the relationship between the reference co-variate and
the return level is not yet clear. In addition, the uncertainty of the reference co-variate
should be further revealed. Reference co-variates may be an important research topic in
co-variate-based non-stationary frequency analysis in the future.
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Although not covered in this study, the bivariate frequency analysis related to co-
variates could be one of the important research topics. Although not related to co-variates,
the studies of Shiau [45], which applied a bivariate extreme value distribution to model
extreme floods for flood volumes and flood peaks, Serinaldi [46], which emphasized a
clear understanding of the return level in non-stationary frequency analysis, and De Luca
et al. [47], which evaluated the return level of a design hyetograph using the concept of
copula, can be said to provide good insight in the context of future expansion of this topic.

3.2. Future Rainfall Extremes

In most studies, including those of Hosseinzadehtalaei et al. [17] and Kim et al. [11],
the future rainfall extremes taking into account climate change scenarios are estimated
based on the ratio of rainfall quantiles under present climate conditions to rainfall quantiles
under future climate conditions (i.e., rate of change). When estimating the rainfall quantile
in present or future climate conditions, stationary conditions are generally assumed for
each period (e.g., 1980–2010, 2021–2050, and 2071–2100). That is, the present rainfall
quantile is estimated under the assumption that the AMR produced from the climate
model under the present climate condition satisfies the stationary condition, and the future
rainfall quantile is estimated under the assumption that the AMR produced under the
future climate condition also satisfies another stationary condition. Figure 4a shows the
results of projecting the rate of change of future rainfall extremes using this approach. The
rate of change is defined as [future rainfall quantile]/[present rainfall quantile]. That is, a
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rate of change of 1.2 means that the future rainfall quantile will increase by 20% over the
present rainfall quantile.
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Figure 4. Rate of change of (a) daily rainfall quantile for return level of 50 years, (b) annual mean
SAT, and (c) annual mean DPT. The rate of change is calculated as the ratio of the x value of the
future period (2021–2050) to the x value of the present period (1981–2010) for each of the eight climate
model combinations. Here, x is (a) the daily rainfall quantile for a return level of 50 years, (b) the
annual mean SAT, and (c) the annual mean DPT, respectively.

Based on the ensemble average of the rate of change by eight climate model combina-
tions, the rainfall extremes in the future period (2021–2050) are likely to increase from 8% to
24% over the rainfall extremes in the present period (1981–2010). However, depending on
which climate model combination is applied, the rate of change has very different values
(0.67–1.81). It can even be found that cases where the rate of change is greater than 1 (i.e.,
rainfall extremes increase) and less than 1 (i.e., rainfall extremes decrease) are occurring
simultaneously. Figure 4b,c show the rate of change in annual average SAT and DPT. Com-
pared with rainfall extremes, it can be seen that the fluctuation range of the rate of change
for each combination of climate models is significantly reduced. In addition, regardless of
the combination of climate models applied, the rate of change shows a consistent increase
pattern. These results, coupled with the results of Section 3.1 which state that temperature
is the recommended co-variate for the estimation of rainfall extremes, can be said to suggest
a new approach to producing more reliable future rainfall extremes outputs.

A trend analysis of SAT and DPT produced from various climate model combinations
was performed to estimate future rainfall extremes reflecting climate change scenarios from
co-variate-based non-stationary models derived from observations described in Section 3.1.
The trend was assumed to be linear, as shown in Equations (8) or (9). The yearly SAT and
DPT calculated from the daily SAT and DPT time series for the present and future periods
produced for each climate model combination were used for the linear trend analysis.

∆SATY = βs(Y − 2010), (8)

∆DPTY = βd(Y − 2010), (9)

where Y is the future year, and ∆SATY and ∆DPTY are the annual mean SAT or DPT
at future year Y minus the average of SAT or DPT for the present period (1981–2010),
respectively. In Equations (8) and (9), 2010 means the last year of the present period.

From the trend analysis of SAT and DPT, one can set the scale parameter of the GEV
distribution for a specific year in the future as follows:

Non-stationary model n1:

α(y) = exp[α1 + α2(SATr + ∆SATY)], (10)
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Non-stationary model n2:

α(y) = exp[α1 + α2(DPTr + ∆DPTY)], (11)

where SATr and DPTr are the reference SAT and DPT for the return level obtained in
Figure 3, respectively. Figure 5 shows the time evolution of the scale parameter of model
n2 at the Cheonan site. It can be found that the scale parameter increases gradually in
the future.
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4. Discussion and Application
4.1. Decision Making from Ensemble Average and Uncertainty

How to reflect the impact of climate change in the estimation of the design rainfall
depth is a task in the new normal era facing hydrologists. The most common way to
investigate changes in future rainfall extremes is to use future rainfall data derived from
climate models with climate change scenarios applied. In the early days, future rainfall
extremes were estimated using rainfall data predicted from one climate model [19], but
it has been established that it is desirable to use ensembles simulated in various climate
models [20]. To quantify uncertainty in future climate change with a probabilistic approach,
an ensemble of various climate model combinations is needed [1]. The reason why many
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researchers use the ensemble approach and try to obtain a better ensemble is to determine
what the rate of change of future rainfall extremes will be in the end. In terms of climate
change adaptation policy, the rate of change of the design rainfall depth at a specific
duration for a specific return level at a specific site should eventually be given as a single
value. This single value will be the ensemble average no matter what method we take [2,11].
However, as shown in previous studies [10,17] and Figure 4a of this study, the future rainfall
extremes estimated by the stationary frequency analysis method using future rainfall data
showed a lot of variation depending on which climate model combination was applied. In
other words, the inter-model variability was very high. Even the future rainfall extremes
of a specific site tend to increase in some combinations of climate models and decrease in
other combinations of climate models. If the deviation between the ensemble members
constituting the ensemble average is too large (i.e., the uncertainty is too large), policy
decisions based on the ensemble average struggle to obtain credibility from the general
public [15]. In fact, the large inter-model variability of future rainfall extremes has been
proven through many studies [6,7]. Therefore, the reliability of future rainfall extremes
projection at a specific site is generally low. Therefore, we need a new approach that can
convince the general public about the uncertain future rainfall extremes.

We thought that a new approach to presenting convincing future rainfall extremes
to the general public is to reduce the gap between future ensemble members. From the
perspective of reducing the differences arising from various climate model combinations,
the comparison of the results of Figures 4a and 6 suggests that using future SAT or DPT in
conjunction with a non-stationary model is better than using future AMR values. Consis-
tency of future projections will contribute to future rainfall extremes gaining public trust
and being reflected in policy.

The total uncertainty of future rainfall extremes decomposed into major sources is
plotted in Figure 7. The total uncertainty was expressed as the coefficient of variation
of samples extracted from the posterior distribution of future rainfall extremes. When
the stationary model was applied, the uncertainty due to parameter estimation and the
uncertainty due to various climate model combinations were similar. In fact, the uncertainty
resulting from the estimation of the parameter of probability distribution is directly related
to the data period we have observed. It is very difficult to reduce the uncertainty arising
from parameter estimation since it is actually difficult to artificially increase the data period.
The uncertainty of these two sources, parameter estimates and climate model combinations,
can be found to propagate, without loss, to estimates of future rainfall quantiles. On the
other hand, it can be found that most of the uncertainty included in the future rainfall
quantile estimated from the co-variate-based non-stationary model is due to the parameter
estimation of the GEV distribution. This result is because various combinations of climate
models simulate similar future SATs or DPTs. In other words, this means that even if an
ensemble of various climate model combinations is applied, the uncertainty of rainfall
extremes does not increase significantly.

4.2. Uncertainty of Rate of Change

In this section, as an application of the proposed approach, we tried to quantify the rate
of change of rainfall extremes for future temperature increase and the degree of uncertainty
in such a rate of change.

By combining the non-stationary model n1 and Equation (10) or the non-stationary
model n2 and Equation (11), an ensemble of rainfall quantiles corresponding to the increase
in SAT or DPT can be obtained. Figure 8 shows the probability that the rainfall quantile for
the return level of 50 years exceeds a certain rate of change (i.e., likelihood of increase, LoI)
given that SAT or DPT increase (∆SAT or ∆DPT). For example, in the scenario in which
the SAT rises by 6 ◦C at the Chuncheon site, the probability that the rainfall quantile for
the 50-year return level increases by 20% or more is about 40%. Similarly, in the scenario
where the DPT rises by 4 ◦C at the Cheonan site, it can be found that the probability of a
rate of change of 1.1 or higher is about 50%.
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Figure 6. Rate of change of rainfall quantile for return level of 50 years: (a) Chuncheon site and
(b) Cheonan site, using non-stationary models n1 and n2. The rate of change is calculated as the
ratio of the rainfall quantile for the future year 2050 to the rainfall quantile for the present period
(1981–2010) for each combination of eight climate models.
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Figure 7. Coefficient of variance in rainfall quantile for return level of 50 years from (a) the stationary
model; (b) the non-stationary model n2 at the Cheonan site. The ensemble was obtained from
the posterior distribution by the Metropolis–Hastings (MH) algorithm. “Parameter” describes the
uncertainty that arises when fitting the observed AMR to a stationary or non-stationary generalized
extreme value (GEV) distribution. “Climate model” represents the uncertainty arising from various
combinations of climate models under the Representative Concentration Pathway (RCP) 4.5 climate
change scenario. “Combined” represents the combined uncertainty arising from parameter estimation
and climate model combinations.
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tained using future rainfall time series produced from various climate models create a lot 

Figure 8. Likelihood of increase of rate of change under (a) SAT increment at the Chuncheon site, and (b) DPT increment at
the Cheonan site.

If Figure 8 is substituted for a specific DPT rise scenario, the cumulative probability
distribution for the rate of change of the rainfall quantile can be obtained as follows. The
LoI(r) in Figure 8 is the probability that the rate of change of the rainfall quantile for a
specific return level is more than r under a specific DPT rising condition, so the probability
that the rate of change is less than r is 1 − LoI(r). That is, the cumulative probability
distribution of the rate of change r is 1−LoI(r). Figure 9 shows the cumulative distribution
of the rate of change of the rainfall quantile for the 50-year return level in the scenario
where DPT rises by 1, 3, and 6 ◦C respectively. At the Cheonan site, the ensemble average
of the rate of change of the rainfall quantile for the 50-year return level was 1.11, and the
95% confidence interval of the rate of change was calculated from 0.66 to 1.76 when the
DPT increased by 3 ◦C.
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5. Conclusions

In most studies, the approach to investigate future rainfall extremes takes a method of
considering future rainfall data obtained from GCMs or RCMs as future observation data.
However, the very large deviations between the statistics of rainfall extremes obtained
using future rainfall time series produced from various climate models create a lot of
confusion in establishing climate change adaptation measures. The uncertainty of future
rainfall extremes hinders the public’s confidence in the outputs produced by many experts.
In this study, we proposed an approach that integrates future SAT and DPT information
and a non-stationary GEV model to obtain a future rainfall extremes ensemble. We also
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produced outputs of future rainfall extremes that reflect future SAT and DPT information
simulated in various climate model combinations. The future rainfall extremes estimated
from the future rainfall data differed greatly depending on the applied climate model
combination, but the future rainfall extremes estimated using the proposed approach were
relatively consistent regardless of the climate model combination.

The non-stationarity of AMR was implemented by expressing the scale parameter of
the GEV distribution as a function of the SAT or DPT observed on the day of the AMR.
We were able to find a non-stationary GEV distribution that gave a smaller value than
the nllh of the stationary GEV distribution. However, since the difference in nllh is likely
to change anyway during the parameter estimation process, it was recognized that the
performances of the stationary GEV distribution and the non-stationary GEV distribution
in terms of the goodness of fit of the data were almost similar. In this study, the rainfall
quantile for various parameter combinations was generated using MCMC sampling from
the posterior distribution of parameters derived by the MH algorithm. From the point
of view that the model with less uncertainty inherent in the rainfall quantile, which is
the result of frequency analysis, is more reliable, we found that performing an SAT- or
DPT-based non-stationary frequency analysis instead of a stationary frequency analysis is
advantageous in obtaining a more robust rainfall quantile.

In this study, a method of estimating the reference value of the co-variate correspond-
ing to the return level based on the observed AMR was proposed, but the relationship
between the reference value of the co-variate and the return level is not yet clear. Further-
more, the uncertainty of the reference co-variate needs to be further studied. The issue of
reference co-variate will be an important research topic in non-stationary frequency analysis.

Finally, the uncertainty of the rate of change of the rainfall quantile in the future
SAT or DPT conditions could be quantified by using the rainfall quantile ensemble in the
present and future SAT or DPT conditions that can be obtained during the uncertainty
analysis process.

The approach we propose in this study is not a new theory in the domain of non-
stationary frequency analysis. In this study, even though there are still many limitations, a
method to reduce the uncertainty of non-stationary frequency analysis was discussed by
introducing a reference value to the co-variate of the non-stationary frequency analysis.
In addition, when projecting the quantile of future rainfall extremes, it was suggested
that using future co-variate data could improve the consistency between climate models
rather than using future rainfall data simulated in the climate model. Finally, using the
proposed method, the uncertainty of the rate of change of future rainfall extremes could
be identified by dividing the uncertainty based on the parameter estimation of the non-
stationary model and the uncertainty due to the inter-model variability of various climate
model combinations. These points will be able to provide additional insights based on
current knowledge.
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