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Supplementary: Description of Mathematical Background 

1. Bias Correction  
Although the century-long reanalysis precipitation data described above adopt ob-

servational data when modeling, the modeled data still include substantial biases. Bias 
corrections should be applied preliminarily to the model values before further hydrologic 
applications. In the current study, we first carried out bias corrections by a quantile map-
ping (QM) approach, typically adopted in bias correction studies (Cannon et al. 2015; Kim 
et al. 2015; Rabiei and Haberlandt 2015; Eum and Cannon 2017; Li et al. 2017). Conceptu-
ally, the QM method reduces errors by fitting a cumulative distribution of the modeled 
data to a cumulative distribution of the observations via a transfer function as follows 
(Teutschbein and Seibert 2012; Rabiei and Haberlandt 2015):  

ො௠ݔ                     = ௢ିܨ	 ଵ[ܨ௠(ݔ௠)]	                    (1) 

Here, ݔො௠ and ݔ௠ represent the bias-corrected values and the modeled data, respec-
tively, and ܨ௠ and ܨ௢ indicate the cumulative distribution functions (CDFs) of the mod-
eled and observed data, respectively. To avoid large amounts of noise corresponding to 
extreme values (Eum and Cannon 2017; Volosciuk et al. 2017; Maraun and Widmann 
2018), we only consider parametric QM methods in the current study.  

In the estimation of design rainfalls, a BM approach using AMRs is commonly 
adopted. To implement a reanalysis product-based BM approach, we directly improved 
the uncorrected AMRs by using QM without considering other rainfall data. This ap-
proach can reduce the error more efficiently than correcting the entire rainfall series (Li et 
al. 2017). To determine the best-fitting transfer function, we applied three representative 
distributions, namely, gamma, Gumbel, and GEV distributions, to correct the biases of the 
AMRs; these distributions are commonly employed in hydrologic applications and in the 
analysis of extremes (Koutsoyiannis 2004; Wilson and Toumi 2005; Kim et al. 2015; Rabiei 
and Haberlandt 2015). As a QM approach is based on a one-to-one relationship, we 
matched the 48 weather stations with the closest grid points of ERA-20c and 20CR, and 
bias correction parameters were collected at each station. Here, we assumed that the dif-
ference in the spatial resolution between the datasets can be ignored. One major issue in 
the bias correction of climate model data is how to correct the model values beyond the 
temporal range of the observations. The conventional approach of the QM algorithm was 
implemented under the assumption that the climate records were stationary for the whole 
projected period (Teutschbein and Seibert 2012; Cannon et al. 2015). More specifically, the 
CDFs of the observations and the modeled data are estimated using records from a refer-
ence period (i.e., a historical period or calibration period), and the model data for the 
whole projected period are applied to a correction factor as follows: 
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ො௠,௣ݔ =  (2) [ൟ(ݐ)௠,௣ݔ௠,௥൛ܨ]௢,௥ିଵܨ	

Here, ܨ௢,௥  and ܨ௠,୰  are the CDFs of the observed and modeled for the reference 
period (denoted by r), respectively, while ݔො௫,௣(ݐ) and ݔ௠,௣  are the bias-corrected and 
uncorrected (or modeled) data, respectively, at time t during the whole projected period 
(denoted by p). In this concept, the years from 1974 to 2010 were set as the reference 
period, while the whole period from 1900 to 2010 was considered the projected period. 
For the stationary quantile mapping (SQM) scheme, there exist some extreme values 
beyond the range of the reference period that may overestimate the bias-correction results, 
so an appropriate extrapolation scheme should be considered for those values (Themeßl 
et al. 2012; Eum and Cannon 2017; Li et al. 2017). In the current study, we applied a 
constant extrapolation scheme, which applies the correction values at the lowest and 
highest quantiles of the calibration range, as suggested by Themeßl et al. (2012), to the 
events beyond the range of reference data; in constast, the AMRs within the range were 
corrected by parametric approaches based on three different distributions, the GEV, 
gamma, and Gumbel distributions. Note that the SQM approaches with the GEV, gamma, 
and Gumbel distributions are abbreviated hereafter as gevSQM and gamSQM and 
gumSQM, respectively. 

One major problem in the SQM approach is that it ignores time-dependent charac-
teristics, such as long-term trends. To address this issue, several approaches have been 
tested, such as the detrended quantile mapping and the quantile delta approach (Li et al. 
2010; Bürger et al. 2013; Cannon et al. 2015; Miao et al. 2016; Eum and Cannon 2017). 
Among these approaches, we applied the quantile delta mapping (QDM) method sug-
gested by Cannon et al. (2015) because this approach can preserve the changes not only in 
the mean but also in the extremes for the modeled data. In QDM, long-term trends in data 
are preserved by superimposing the relative changes in the quantiles between the refer-
ence period and the projected period, which are set to the same length. Thus, we first set 
the reference period to 1974-2010 (same as in SQM) and then divided the preceding 
projected period (1900-1973) into two periods, 1900-1936 and 1937-1973, to ensure that the 
lengths of these intervals were equal to the length of the reference period. Consequently, 
the reanalysis daily precipitations were divided into three time periods with the same 
length (1900-1936, 1937-1973, 1974-2010), and the raw models in each time period were 
improved by employing the QDM principle as follows (Cannon et al. 2015; Eum and 
Cannon 2017): 

 ߬௠,௣	(ݐ) = ௠,௣(௧)ܨ (ݐ)	߬௠,௣							,	൧(ݐ)௠,௣ݔൣ ∈ {0, 1} (3) 

(ݐ)௠߂	  = ௠,௣ିଵܨ ൫߬௠,௣	(ݐ)൯ܨ௠,௥ିଵ൫߬௠,௣	(ݐ)൯ =  (4) [((ݐ)௠,௣ݔ)	௠,௣ܨ]௠,௥ିଵܨ(ݐ)	௠,௣ݔ

ො௠,௣ݔ  = [(ݐ)௠,௣߬]௢,௥ିଵܨ	 × (ݐ)௠߂ = [ൟ(ݐ)௠,௣ݔ௠,௣൛ܨ]௢,௥ିଵܨ ×  (5) (ݐ)௠߂

Here, (1) ߬௠,௣(ݐ) is the nonexceedance probability associated with the value at time 
t for a preceding period beyond the observation period (1900-1936 or 1937-1973); (2) ܨ௠,௥ 
and ܨ௠,௣ are the CDFs of the modeled for the reference period (1974-2010) and a projected 
period, respectively; and (3) ∆௠(ݐ)  represents the relative change in the quantiles 
between a preceding period and the reference period (1974-2010). Similar to the SQM 
approach, we applied three distributions, the GEV, gamma and Gumbel distributions, to 
estimate the CDFs in Eqs. 3 through 5, and the QDM schemes with these curves were 
named gevQDM, gamQDM, and gumQDM, respectively. A more specific description of 
QDM can be found in Cannon et al. (2015).  
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For the selection of the distribution, the root mean square error (RMSE) and Nash-
Sutcliffe efficiency (NSE) have been commonly used for hydrological studies, as shown in 
Eqs. 6 and 7, respectively: 

	ܧܵܯܴ  = 	ඨ∑ ൫ ௜ܻ௢ୠ௦ − ௜ܻ௦௜௠൯ଶ௡௜ୀଵ ݊  (6) 

	ܧܵܰ  = 1 −	൥ ∑ ൫ ௜ܻ௢௕௦ − ௜ܻ௦௜௠൯ଶ௡௜ୀଵ∑ ൫ ௜ܻ௢௕௦ − ܻ௠௘௔௡൯ଶ௡௜ୀଵ ൩ (7) 

Here, ௜ܻ௢௕௦ and ௜ܻ௦௜௠ represent the i-th observed and modeled values, respectively, 
among n data, while ܻ௠௘௔௡  denotes the mean of the observations. For the NSE, the 
dataset accuracy improves as the efficiency approaches 1, while a lower RMSE indicates 
better performance. In this analysis, we compared the bias-corrected AMRs obtained by 
using the three QM approaches with the observations from all 48 stations for the reference 
period (1974-2010). As the results of the QDM approaches were identical to those of the 
SQM schemes for the reference period, the QDM results were used to evaluate the 
performances of the three different curves for the bias correction scheme.   

2. Detecting nonstationarity: Long-term trend test 
As mentioned in the Introduction, the conventional bias correction approach is based 

on the condition of stationarity for climate model records, but the real climate may be 
nonstationary in terms of its century-long trends. To determine the significance of the 
AMR trend over South Korea, we evaluated the long-term trends of both the observations 
and the bias-corrected reanalysis data. For these trend tests, a nonparametric method, the 
Mann-Kendall test, was applied in this study. The significance of trends was evaluated by 
comparing the test statistic Z with the standard normal variate at the desired level of 
significance (Hamed and Rao 1998). When |ܼ| > ܼଵିఈ/ଶ	for the standard normal deviate ܼଵିఈ/ଶ	with the significance level ߙ (= 0.05 in the current study), the null hypothesis is 
rejected, and a significant trend is detected in the time series. For the slope, the Theil-Sen 
approach (Theil 1950; Sen 1968), defined by the median among the ranked slope estimates, 
is applied as follows :  ߚ = ݀݁ܯ ൬ݔ௝ − ௜݆ݔ − ݅ ൰,					∀݅ < ݆ (8) 

where a positive value of ߚ indicates an increasing trend over time and vice versa. The 
advantage of this method is that it is less sensitive to outliers or extreme values than the 
least-square method (Shadmani et al. 2012; Sayemuzzaman and Jha 2014). 
We first analyzed the trends of the AMRs taken from both the observed data and the bias-
corrected reanalysis data for the reference period (1974-2010). To estimate the 
nonstationarity over the 20th century, the century-long trends of the bias-corrected AMRs 
from 1900 to 2010 were also detected.  

 

3. Rainfall Frequency Analysis under the condition of nonstationarity 
In hydrological models, time-varying parameter schemes have been commonly 

adopted for nonstationarity analysis in hydrometeorological applications (Leclerc and 
Ouarda 2007; Ouarda and El-Adlouni 2011; Panagoulia et al. 2014; Salas and Obeysekera 
2014; Du et al. 2015; Son et al. 2017). As the GEV family is typically applied for estimating 
intensity-duration-frequency relationships in practice, we applied a GEV distribution 
with the time-varying location parameter (ߤ௧), while the scale (ߪ) and shape (ߦ) parameters 
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were set as constants. The location parameter is assumed to be the time-dependent linear 
function described in Eq. 9, and under the condition of nonstationarity, the CDF of the 
GEV distribution is described as Eq. 10. ߤ௧(ݐ) = ݐ௦ߤ +  ௜ (9)ߤ

,ݖ)௭ܨ  (௧ߠ = ݌ݔ݁ ൝− ቂ1 + ߦ ቀݖ − ߪ௧ߤ ቁቃିଵకൡ (10) 

Here, ߤ௜ and ߤ௦ are the intercept and slope of the location parameter, respectively, 
and ߠ௧ = ,௧ߤ} ,ߪ   .represents the time-varying parameter set of the GEV distribution {ߦ

To quantify the parameters for the GEV curve under the condition of nonstationarity, 
we applied the Bayesian principle suggested by Cheng et al. (2014). In this scheme, 
numerous parameter sets are estimated from the joint posterior distribution using the 
differential evolution Markov chain (DE-MC), which is based on the genetic algorithm 
differential evolution for global optimization with the Markov chain Monte Carlo 
(MCMC) principle (Cheng et al. 2014). More specifically, the posterior distribution, ݌(ી|܀), of the parameter vector (ી) is described as follows:  

(܀|ી)݌  = 		 ,ી)݌ (܀)݌(܀ = (܀)݌(ી)݌(ી|܀)݌	 = 	 ׬(ી)݌(ી|܀)݌ ߠ݀(ી|܀)݌(ી)݌ ∝  (11) (ી)݌(ી|܀)݌

where ܀ is the vector of the bias-corrected AMRs, ݌(܀|ી) is the likelihood function, and (܀)݌ and ݌(ી) are the marginal distribution and prior distribution, respectively. In this 
approach, normal distributions are used for the priors of parameters, and the prior 
distributions for all parameters are assumed to be independent (Cheng et al. 2014). The 
joint posterior distribution function ݌(ી|܀) can be formulated by combining the GEV 
likelihood function and prior distribution as follows: 

(܀|ી)݌  ∝ෑߤ|܀)ܸܧܩ௧, ,ߪ ௡(ߦ
௜ୀଵ  (12) 

The posterior distribution for the parameter vector was obtained by maximizing the 
joint posterior distribution illustrated in Eq. 12 via an MCMC scheme. Further information 
can be found in Cheng et al. (2014).  

  With these time-varying parameter chains, the next step is to estimate the return 
period for a given design quantile under the condition of nonstationarity. Numerous 
studies have addressed the nonstationary assumption, for which two main approaches 
were developed: (1) the expected waiting time (EWT) method and (2) the expected 
number of exceedance (ENE) method (Obeysekera and Salas 2014, 2016; Salas and 
Obeysekera 2014; Du et al. 2015; Read and Vogel 2015; Salas et al. 2018).  

The EWT interpretation starts from estimating the probability for the first occurrence 
exceeding a design quantile (ݖ௤଴). Under the condition of nonstationarity, the exceedance 
probabilities (݌௧) vary with time, and the first occurrence exceeding the design quantile 
 is described as follows (Salas and Obeysekera 2014; Du et al. 2015; Salas et ݔ at time (௤଴ݖ)
al. 2018): 

(ݔ)݂  = ܲ(ܺ = (ݔ = (1 − ଵ)(1݌ − ଶ)(1݌ − ⋯(ଷ݌ (1 −     ௫݌(௫ିଵ݌

 	= ௫ෑ(1݌ − ௧)௫ିଵ݌
௧ୀଵ 	ݔ								, = 	1, 2,⋯ ,∞																																	 (13) 

The expected waiting time for the first event exceeding ݖ௤଴, i.e., the return period (T), 
is obtained as follows: 
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 ܶ = (ܺ)ܧ = 	෍(ݔ)݂ݔஶ
௫ୀଵ = ෍݌ݔ௫ෑ(1 − ௧)௫ିଵ݌

௧ୀଵ
ஶ
௫ୀଵ  (14) 

Unlike the EWT scheme, the ENE approach focuses on the expected number of 
exceedances over the design life T. The number of events (Y) exceeding the design rainfall 
 :in T years can be expressed as follows (Du et al. 2015; Salas et al. 2018) (௤଴ݖ)

 ܻ = 	෍݌௧்
௝ୀଵ  (15) 

The return period (T) for the first event exceeding the design quantile (ݖ௤଴) can be 
numerically estimated by applying Y = 1 in Eq. 15. Here, the exceedance probability (݌௧) 
corresponding to the design quantile (ݖ௤଴) is expressed for the GEV distribution as follows: 

௧݌  = 1 − ݌ݔ݁	 ൝− ቂ1 + ߦ ቀݖ௤଴ − ߪ௧ߤ ቁቃିଵకൡ (16) 

Both EWT and ENE are applicable for nonstationary events. However, the EWT 
approach has the drawback of requiring infinitely many (or as many as possible) future 
exceedance probabilities to numerically solve the problem (Du et al. 2015; Salas et al. 2018). 
For this reason, we applied the ENE scheme to estimate the design quantile (ݖ௤଴) with a 
return period ranging from 10 years to 200 years.  

In the proposed approach, four parameters (ߤ௦, ߤ௜, ߪ and ߦ) of the GEV distribution 
are required to estimate the intensity-duration-frequency relationships under the 
condition of nonstationarity. By using the Bayesian principle in Eqs. 11 and 12, we 
collected the time-varying parameter sets (ߤ௦,௠, ,௜,௠ߤ	 ௠ߪ  and ߦ௠ ) based on the bias-
corrected AMRs of ERA-20c and 20CR from 1900 to 2010. However, as these bias-corrected 
values may still have errors of a certain magnitude, estimating the future risk by these 
model parameters may also misrepresent that future risk. On the other hand, the 
conventional approach based on observations may not sufficiently represent the long-
term changes in the AMRs due to the lack of data in certain regions including South Korea. 
For this reason, we estimated the nonstationary design rainfall by using all four parameter 
sets (ߤ௦,௠, ,௜,௠ߤ	  ௠) derived from the bias-corrected AMRs of ERA-20c and 20CRߦ ௠ andߪ
at 48 stations. More specifically, we explored the design quantiles with return periods 
ranging from 10 years to 200 years by applying the median and 90% confidence interval 
(CI) of the four parameter chains generated by Eqs. 11 and 12. Note that in this analysis, 
we considered 2011 the beginning year (ݐଵ) for the target return period in Eq. 15. A flow 
chart for the nonstationary analysis is illustrated in Figure S1.   
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Figure S1. A flow chart for estimating design rainfall under the conditions of nonstationarity and 
stationarity. 

Considering the condition of nonstationarity at all 48 stations, we finally explore the 
spatial change in design rainfall with a 100-year return period over South Korea. After 
creating contour maps of design rainfalls for both the nonstationary model and the 
stationary model based on a scattered data interpolation method in MATLAB (Amidror 
2002), we spatially assessed the relative difference (RD, %) between the modeled design 
rainfalls and the conventional values as follows: 

(%)ܦܴ  = ௥௠௢ௗܦ − ௥௢௕௦ܦ௣௢௕௦ܦ × 100 (17) 

Here, ܦ௥௢ୠ௦ represents the design rainfall using the observed AMRs for the reference 
period (i.e., 1974-2010), while ܦ௣௠௢ௗ  indicates the design rainfalls based on the 
nonstationary interpretation. Here, the design rainfalls for the nonstationary model were 
estimated from the median values of the parameter chains for the GEV distribution.  

 
 


