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Abstract: The fate of atmospheric volatile organic compounds (VOCs) strongly depends on the
partitioning processes on the surface of aerosols, which are coated with a thin water film. However,
the behavior of VOCs in the aqueous film of aerosols is difficult to measure. In this work, the
interfacial partition constant of cyclohexanone was determined using a novel flow-tube reactor. A thin,
aqueous film placed in the reactor was exposed to cyclohexanone gas. The subsequent partitioning
was measured using chromatography techniques. The quality control tests were first conducted
to ensure the accuracy of the adsorption experiments. The cyclohexanone concentration was then
plotted as a function of film thickness to obtain the partitioning constants. As the thickness of the
water film decreased, the aqueous concentration of cyclohexanone increased, indicating that surface
adsorption played a dominant role in the uptake of cyclohexanone. According to the temperature
dependence of the interfacial partition constant, the solvation enthalpy and entropy of cyclohexanone
were obtained. The results of this study would help to elucidate the effect of atmospheric water film
on the gas–aerosol partitioning of VOCs, and thus can help to better understand the fate of VOCs in
the atmosphere.

Keywords: cyclohexanone; air–water interface; partition constant; solvation enthalpy and entropy

1. Introduction

Cyclohexanone is one of the most commonly used industrial raw materials [1,2]. It can
be found in the synthesis process of nylon, caprolactam, adipic acid, etc. Cyclohexanone
is also a form of widely used solvent for dissolving cellulose, acetate resins, vinyl resins,
rubbers, and waxes [3]. The toxicity of cyclohexanone is moderate from inhalation and
skin contact. In animals, a high concentration of gas-phase cyclohexanone can cause
central nervous system depression, stupor, hyper- or hypoactivity, ataxia, and convulsive
movements [4]. As a form of volatile organic compound (VOC), cyclohexanone is emitted
into the atmosphere in large quantities every year [5–8]. The distribution of cyclohexanone
between air-bulk water or other mixtures has been reported [9,10]. However, the effect of
atmospheric aerosols on its diffusion has not yet been assessed.

Atmospheric water films on aerosol particles, such as fog, mist, dew, cloud droplets,
etc., are the largest air–water interface in the atmosphere [11]. The fate of atmospheric
VOCs such as cyclohexanone strongly depends on the partitioning processes between air
and water [12–14]. Generally, cyclohexanone is first adsorbed at the gas–water interface,
and further dissolved into the aqueous phase of aerosols in the transport process. Similar
to Henry’s law constant, the interfacial adsorption of organic compounds can be described
by the air–water interface partition constant, which depends on the polarity and size of the
target molecule and the polarity of the film surface [15].

To elucidate the significance of the air–water interface in the atmospheric fate and
transport of cyclohexanone vapor, the air–water interface partition constant is required.
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The objective of this work was to obtain the partition constant of cyclohexanone. The
uptake enthalpy and entropy were also obtained with the same apparatus.

2. Materials and Methods
2.1. Chemicals and Materials

Chemicals used in this study included: cyclohexanone (analytically pure, Sinopharm
Chemical Reagent, Shanghai, China), NaOH (chromatographic pure, Beijing Chemical
Manufacturer, Beijing, China), nitrogen and air (99.999%, products of Beijing Haipu Gas
Industry, Beijing, China), and high purity hydrogen, produced by a hydrogen generator
(99.999%, Beijing Beifen Kehuan Instrument, Beijing, China). All these gases were purified
by being passed through silica gel, 5A molecular sieves and active carbon before use. The
aqueous solution of cyclohexanone was made using Milli-Q water (18.5 mΩ cm, Gaosen
instrument equipment, Shanghai, China).

2.2. Method and Apparatus

There are various experimental methods for determining interfacial partition con-
stants, and a commonly used method for the adsorption of gas-phase cyclohexanone on
atmospheric water films is based on a flow-tube reactor technique described by Chen
et al. [15–17]. The cyclohexanone concentration in the water films was accumulated by both
adsorption and absorption processes, which can be described by the following equation:

CT
W = CW + Cg

KAI

δ
(1)

where CT
w is the overall equilibrium concentration for cyclohexanone, Cw is the bulk water

phase concentration of cyclohexanone, Cg is the concentration in the gas phase, δ is the
thickness of water film, and KAI is the partition constant at the air–water interface. Divide
both sides by Cg, and the equation can be rewritten as:

K∗WA = KWA +
KAI

δ
(2)

where K∗WA is a composite of the bulk water–air partition constant, and KWA is the conven-
tional Henry’s constant, which describes the equilibrium relationship between bulk air and
bulk water. When the film thickness tends to be infinitely large, the interfacial partitioning
is negligible. However, when the value of δ is small, the partition in the air–water interface
cannot be ignored.

The adsorption experiments performed with the flow-tube reactor are shown in
Figure 1. The reactor was optimized based on the published work [15–17], including a
half-circular visible Plexiglas tube, a 316 stainless steel body, a rectangular quartz trough,
sealing parts, and sensors. Thin film water was placed on the bottom surface of the rect-
angular quartz boat (length 490 mm, width 30 mm, and height 5 mm) and exposed to
cyclohexanone vapor during the experiment. The inner surface of the glass tube was
attached with a PTFE film to prevent the adsorption of cyclohexanone [18]. To improve sta-
bility and reproducibility, three types of sensors were used for the accurate measurements
of temperature, pressure, and humidity in the reactor. Coolant circulators were used to
control the coolant temperature in the range of 247 K to 373 K. A mixture of glycol (50%)
and water (50%) was used as a coolant and was circulated in the reactor to maintain the
temperature of the water film.

Nitrogen was used as the carrier gas at a flow rate of 150 mL·min−1. The flow rate
was controlled by a SY-9312D mass flow controller (MFC, range 0–500 mL·min−1, ShengYe
Technology Company of Beijing, Beijing, China). To avoid the volatilization of the water
film during the experiment, the carrier gas was humidified by passing through a vessel
containing deionized water. The temperature of the vessel was kept consistent with the
temperature of the water film to avoid the condensation of the water vapor.
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Figure 1. Flow-tube reactor for uptake experiments of cyclohexanone onto thin water films.

The cyclohexanone vapor was produced by the vapor saturator, including a temperature-
controlled heating unit and a thermal desorption column [19]. The thermal desorption
column was a stainless steel tube (SS316, o.d. 6.33 mm, 0.43 m long) with 6 mL 102 pickling
silanized white carrier (60–80 mesh size) inside. About 4–5 cm of loose glass wool was
plugged at both ends of the column to prevent the carrier powder from flowing out. The
valves at both end of the column were used to control the inflow of cyclohexanone; when
the valves were opened, the cyclohexanone vapor was carried to the reactor for the adsorp-
tion experiment. The bypass allows the carrier gas to enter the reactor directly, without
passing through the vapor generator. The outlet line was heated to 100 ◦C to prevent
cyclohexanone from condensing during transfer.

2.3. Experiment Procedure

Before the experiment, to obtain a uniform water film more easily, the quartz boat was
covered with 5 mL NaOH (50 wt%) for 1 h. After rinsing off the boat with a large amount
of deionized water, a known amount of deionized water was added to it for film formation.
The thermal desorption column injected with 0.25 mL of cyclohexanone was used for vapor
generation. Gas chromatography (GC) was used to record the cyclohexanone signal. It
took a few hours for the steam and water film to reach the partition equilibrium. When the
GC peak height reached a plateau, the adsorption was completed. Water film in the reactor
was collected for liquid–chromatography analysis. Before starting the next experiment, the
carrier was switched to bypass and the whole equipment was purged to avoid residue.

In this work, the stability of this instrument was confirmed by a series of blank experi-
ments using the boat without any water film. After that, the effects of water film thickness
(102–1020 µm) and temperature (278–296 K) on the partition equilibrium of cyclohexanone
were investigated. The same humidified carrier gas was used in these experiments.

2.4. Analysis

The analysis of cyclohexanone was performed on a 3420A gas chromatograph (Beijing
Beifen–Ruili Analytical instrument, Beijing, China) equipped with a flame ionization
detector (FID). An SE-54 column (1 m × 3 mm) was used for separation. A 6-port injection
valve (Valco Instrument, Houston, TX, USA) and a digital valve sequence programmer
were connected to the GC for automatic gas-phase sample injection every 6 min.

An ultra-performance liquid chromatography (UPLC, LC-30AD, Shimadzu Corpora-
tion, Kyoto, Japan) equipped with a diode-array detector was used to quantify cyclohex-
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anone in the aqueous film samples. An ultra-aqueous C18 column (2.1 × 100 mm, 3 µm)
was used for separation. The mobile phase was methanol and deionized water (60:40).
The detection wavelength was set to 273 nm [20]. The injection volume was 2 µL, and the
column thermostat was set to 20 ◦C.

3. Results and Discussion
3.1. Quality Control

In order to ensure the accuracy of the method for the adsorption of gas-phase cyclo-
hexanone and the proper interpretation of the results, appropriate quality control (QC) of
the experiments was necessary. The reliability of the measured interfacial partition constant
depended on the confidence in the results.

The blank experiment using an empty thermal desorption column was first performed
to monitor the temperature and humidity in the flow-tube reactor system. Figure 2 shows
the stability of temperature and humidity. All points were determined twice, and the
estimated error in this test was between 0.5% and 1% for temperature and humidity,
respectively.

Figure 3 shows the chromatogram of a blank experiment conducted with cyclohex-
anone vapor passing through it. The signal of cyclohexanone can be continuously collected
by automatic injection, and the concentration of cyclohexanone in the carrier gas was able
to be quantified. The time interval of similar peaks is 6 min. The embedded figure in
Figure 3 shows the chromatogram for a single injection of cyclohexanone.
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3.2. Interfacial Partition Constant of Cyclohexanone

The uptake experiments were conducted at 296 K. The water film thickness ranged
from 102 to 1020 µm. The bottom surface area of the glass boat is 147 cm2 and was fully
coated with the water film. The thickness of the film was controlled by the volume of
water added.

Figure 4 shows the variation of the overall equilibrium concentration of cyclohexanone
in the aqueous film with the inverse of the film thickness at 296 K. The cyclohexanone
concentration was plotted as a function of the inverse of film thickness to determine
the partitioning constants. With the increase in film thickness, the overall equilibrium
concentration of cyclohexanone in the aqueous film decreased. On the contrary, surface
adsorption became the dominant partition mechanism as the film thickness decreased. The
correlation coefficient of the linear fit was 0.9932, indicating a good correlation between the
two parameters. According to Equation (1), the y-axis intercept and slope of the curve are
the values of bulk phase concentration (Cw) and KAI·Cg, respectively. In combination with
the cyclohexanone concentration (Cg) determined by GC, the interfacial partition constant
KAI and the bulk phase partition constant Kwa were obtained.
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As shown in Table 1, the average gas-phase concentration for different water film
experiments was 2.56 mg·L−1 with a relative standard deviation of 4.33%. The overall
concentrations of cyclohexanone in water film determined by UPLC ranged from 19.92 to
80.22 mg·L−1. The concentration decreased with increasing film thickness. The interfacial
partition constant KAI at 296 K is 2107.52. Based on the value of KAI, when the thickness of
the aqueous film was less than 437 µm, the concentration of cyclohexanone in the aqueous
film (KAI·Cg/δ) was all higher than that in bulk water (CW).

Table 1. Bulk and interface air–water partition constants of cyclohexanone.

Thickness/(µm) Cg/(mg·L−1) a CT
w/(mg·L−1) Kwa Cw/(mg·L−1) b KAI/(µm)

102
2.56

(RSD = 4.33%)

80.22

4.57 12.33 ± 3.31 2107.52 ± 234.80
340 26.99
544 27.02

1020 19.92
a The Cg value is the average gas-phase concentration for different water film experiments. b Uncertainties for
Cw, KAI were based on the standard errors for the linear regression as shown in Figure 4.

3.3. The Effect of Temperature on the Uptake of Cyclohexanone into the Water Film

The relationship between partition and temperature can be described by the van’t
Hoff equation:

lnK∗Wa = −
∆g→wH

R
· 1
T
+

∆g→wS
R

(3)
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The effect of temperature on lnK∗Wa was studied on a 340 µm film by varying the tem-
perature from 278 to 296 K. The value of lnK∗Wa was obtained from the overall concentration
for cyclohexanone in the film, consisting of the cyclohexanone distributed at the air–water
interface and the aqueous phase. Figure 5 shows the value of lnK∗Wa as a function of 1/T.
The y-axis intercept and slope of the curve can be converted into ∆g→w H (enthalpy of
solvation) and ∆g→w S (entropy of solvation). The experiments were conducted at only
one film thickness, which may cause a deviation in the uncertainty of the data. However,
according to the mass distribution between the gas–water interface and bulk water, the
mass fraction of cyclohexanone in the gas–water interface was 0.37%. At this film thickness,
absorption into the bulk phase of the thin film was dominant over the surface adsorption
term. The effect of interfacial adsorption on the mass partitioning of cyclohexanone can-
not be neglected when δ is very small. Moreover, the values obtained for ∆g→w H and
∆g→w S, were 4.83 ± 0.47 kJ·mol−1 and −13.94 ± 1.65 J·mol−1, respectively (uncertainties
for ∆g→w H and ∆g→w S were based on standard errors for the linear regression, as shown
in Figure 5).
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4. Conclusions

In this work, a new flow-tube reactor technique was developed. This reactor technique
is very reliable, quick, and completely automatic. It provides a simple, straightforward
procedure to measure the partitioning behavior for cyclohexanone in thin films. The air–
water interfacial partition constant at 296 K, and the relevant thermodynamic parameters
were obtained. The value of KAI was 2107.52. The enthalpy of cyclohexanone uptake in
thin water film was 4.83 ± 0.47 kJ·mol−1, and the entropy was −13.94 ± 1.65 J·mol−1.

Surface adsorption became the dominant absorption mechanism for cyclohexanone
as the film thickness decreased. As far as we know, the values of air–water interfacial
partition constant of cyclohexanone presented in this paper are the first values based on
experimental data. The study of gas-phase cyclohexanone partitioning on atmospheric
water films has the potential to provide insight into the processing of cyclohexanone by
atmospheric aerosols and droplets.
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