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Abstract: For diesel engines, accurate prediction of NOx (Nitrogen Oxides) emission plays an
essential role in virtual NOx sensor development and engine design under situations of actual road
driving. However, due to the randomness and uncertainty in the driving process of diesel vehicles,
it is difficult to make predictions about NOx emissions. In order to solve this problem, this paper
proposes differential models for noise reductions of NOx emissions in time series. First, according to
the internal fluctuation of time series, use SSA (Singular Spectrum Analysis) to reduce the noises of
the original time series; second, use ICEEMDAN (Improved Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise) to decompose the noise-reducing data into several relatively
stable subsequences; third, use the sample entropy to calculate the complexity of each subsequence,
and divide the sequences into high-frequency ones and low-frequency ones; finally, use GRU (Gated
Recurrent Unit) to complete the prediction of high-frequency sequences and SVR (Support Vector
Regression) for the prediction of low-frequency sequences. To obtain the final models, integrate
the prediction results of the subsequences. Make comparisons with five single models, SSA single-
processing models, and ICEEMDAN single-processing models. The experimental results show that
the proposed model can predict the instantaneous NOx emissions of diesel engines better than the
single model and the model processed by SSA, and the differentiated model can effectively improve
the execution speed of the model.

Keywords: diesel car; nitrogen oxide transient prediction; deep learning; signal processing

1. Introduction

The diesel vehicle is the main source of NOx emission. In China, according to the 2019
China Mobile Source Environmental Management Annual Report, diesel vehicles account
for 9.1% of motor vehicles in China, but the contribution rate of NOx emission reaches
70% of the total vehicle emissions [1]. At the same time, China has implemented NOx
emission reduction regulations, which limit the NOx emission of motor vehicles strictly,
and put forward higher requirements for automobile manufacturers to adjust the engine
component parameters. Traditionally, in order to reduce emissions by adjusting engine
component parameters, it is necessary to go through the engine test bench or actual driving.
It is very expensive and inefficient to evaluate the success of the adjustment process by
means of PEMS (Portable Emission Measurement System). Therefore, in the actual road
driving process, it is very important to understand the causal relationship between vehicle
operating parameters and emissions and to establish relevant reliable models.
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In recent years, some scholars have used the chassis dynamometer or the engine test
bench to collect the engine working data and construct the models according to the data
obtained in the steady-state. Table 1 presents the results of some recent studies on NOx
steady-state prediction by some authors.

These studies have achieved ideal experimental results, but the data obtained under
steady-state conditions cannot capture the transient behavior of the engine from part load
to full load as well as the hysteresis effect of the engine under start, stop, or cold start
conditions [2], which is often quite different from the emission data generated by diesel
vehicles driving on the real road.

Table 1. Some models for NOx steady-state prediction.

Basic Model(s) Preprocessing Method Reference

Backpropagation neural network Means of mutual information [3]
Artificial Neural Network Uncertainty analysis [4]

Multi-layer perceptron Non-dominated sorting genetic algorithm II [5]
Support vector machine Model parameters optimization [6]

Long Short-Term Memory Encoder-Decoder [7]

In actual road driving, the NOx emission data of the diesel engine is a highly nonlinear,
complex, and changeable sequence. Coupled with the complexity of engine characteristics
and the uncertainty of drivers in the actual road operation process, it is very difficult to con-
struct a highly nonlinear equation group for NOx emission modeling. Traditional modeling
methods for NOx transient emissions include physical or chemical as well as empirical
or semi-empirical assumptions. For example, Maurya et al. [8] used the commercial 3D
CFD (Computational Fluid Dynamics) engine simulation tool STAR-CD, combined with
the mesh generator es-ice, to analyze the combustion process of a dual-fuel engine using
a computational fluid dynamics (CFD) model, and derived the effect of EGR on the com-
bustion and performance of the dual-fuel engine. Stelios A et al. [9] used a semi-empirical
zero-dimensional two-zone model to predict NOx variation with engine load/speed, fuel
injection timing, EGR rate, boost pressure, and fuel injection pressure at a relatively low
cost. CFD models based on physical chemistry are commonly used for NOx predictions.
By calculating the physical and chemical process of fuel combustion, NOx emission can be
estimated accurately. However, due to the complex structure, high computational cost, and
long time required, CFD models cannot be applied in real time [10,11]. Based on physical
and chemical properties and empirical assumptions, these methods are very difficult to
model instantaneous NOx emissions [12] and have limited performance in predicting NOx
emissions during actual road driving [13].

With the gradual rise of machine learning, as it is unnecessary to understand the
complex physical and chemical knowledge behind the research object, any additional
complexity will be incorporated into the models when having enough data. At the same
time, the method can consider the impact of environmental conditions on emissions that are
difficult to analyze by physical and chemical models [14], so it is widely used by scholars.
Liu et al. [15] used the integrated method of PCA (Principal Component Analysis) and
genetic algorithm to search for the best super parameters of support vector machine to
predict the steady-state and transient NOx emissions of diesel engines. Ideal results can be
achieved by making predictions of the steady-state emission, but the results of transient
emissions still have large errors at some operating points. Sáez et al. [16] used a single
artificial neural network to predict the transient NOx emission of diesel engines with input
variables of vehicle speed and acceleration, engine speed and torque, intake temperature as
well as air mass flow, which the best result of R2 was only 0.82. In view of the characteristics
of the NOx transient emission time series of diesel vehicles, such as highly non-stationary,
irregular fluctuation frequency as well as internal complexity and variability, as time
goes on, the traditional machine learning algorithm may lose learning abilities [17]. Deep
learning has better learning performance for the highly complex nonlinear data, showing
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more excellent performance, but at present, few scholars use deep-learning methods to
model transient NOx emissions of diesel vehicles. Shin et al. [18] used the DNN (Deep
Neural Network) and Bayesian optimization method to optimize the hyper-parameter
and predict the NOx transient emission, which improved the prediction accuracy and
model stability significantly. However, compared with the single deep neural network,
researchers found that signal processing can extract signal features effectively [19] and
machine learning algorithms have been used in the field of wind speed prediction, power
load forecasting, and financial field. For instance, Ma et al. [20] predicted wind speed
using double decomposition, error correction strategies, and long- and short-term memory
neural networks. Tong et al. [21] proposed a deep learning-based model that refines features
from historical load data and associated temperature parameters by stacking denoised
self-encoders and then training a support vector regression (SVR) model to predict the
total load for the coming day. Niu et al. [22] used a combination of variational modal
decomposition and LSTM to predict stock price changes with good predictive performance.

In this study, the vehicle exhaust online monitoring platform is used to obtain the NOx
emission data of two buses in the actual road driving process, and the in-depth learning
model GRU (Gated Recurrent Unit) is used to establish the instantaneous NOx emission
model. Since there are noises in the collected data, SSA (Singular Spectrum Analysis)
and ICEEMDAN (Improved Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise) are used to filter the noise in the data. Considering that the subsequences
generated by the ICEEMDAN decomposition increase the computational cost, the SVR
(Support Vector Regression) models of the differentiation models are used to replace the
low-frequency subsequence GRU models.

2. Methodology
2.1. Singular Spectrum Analysis

SSA is a non-parametric method for studying nonlinear time series [23]. Based on
time series, the SVD (Singular Value Decomposition) of the specific matrix is constructed.
The specific algorithm process is as follows [24]:

Define the NOx series data as {hi, i = 1, 2, . . . , N} and then calculate the Hankel [25]
trajectory matrix:

H =


h1 h2 . . . hk

h2 h3 . . . hk+1
...

... · · ·
...

hL hL+1 . . . hN

 (1)

L represents the sliding window length parameter and 1 < L < N, K is defined as
N − L + 1. Matrix H is the trajectory matrix. The resulting trajectory matrix is then SVD
(Singular Value Decomposed), where H can be rewritten as:

H =
d

∑
i=1

Hi, with, Hi =
√

λiUiVT
i (2)

where d = rank(H) and it is the number of intrinsic components or modes with non-zero
intrinsic values. λi is the singular value in descending order. Ui and Vi are the related
left and right singular vectors, respectively. The set denoted by

{√
λi, Ui, Vi

}
is called the

feature set. Then Hi(i = 1, 2, 3, · · · , d) in the trace matrix is decomposed into signal and
noise. However, an important step is to identify the subset of features that contain the main

variation of H. This is equivalent to approximating the matrix
∼
H by the combination of

the first r elementary matrices using the following equation:
∼
H = ∑r

i=1 Ui
√

λiVT
i ,
∼
H is at-

tributed to the signal, r represents the number of features selected for signal reconstruction,
and the residual R = ∑d

i=r+1 Ui
√

λiVT
i is treated as noise.
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2.2. Improved Adaptive Noise Fully Integrated Empirical Mode Decomposition

In order to overcome the shortcomings of EEMD and CEEMDAN algorithms [26],
Colominas et al. improved the CEEMDAN algorithm [27]. Different from the traditional
method of adding Gaussian white noise, ICEEMDAN extracts the k-th IMF component
through EMD decomposition of Gaussian white noise [28], calculates the local mean
value of signal plus noise for each modal component, and defines the IMF obtained by
decomposition as the difference between the residual signal and local mean.

First, define M(·) as the local mean value of the signal, Ek(·) is the k-th mode compo-
nent after EMD decomposition, then we have E1(x) = x−M(x), and the main steps are
as follows:

The first IMF of the given white noise is added to the original sequence X(t) as follows:

Xi = X + β0E1

(
wi
)

(3)

where β0 represents the noise standard deviation. wi is the added white noise.
Find the local mean M(.) of Xi(t), calculate the average of the local mean and obtain

the following residuals:

R1 =
1
N

N

∑
i=1

M
(

Xi
)

(4)

where N is the number of times to add noise.
Obtain the first IMF as follows:

IMF1 = X− R1 (5)

For k = 2, 3, · · · , K, the residual and the k-th IMF can be calculated by Formulas (6) and (7):

Rk =
1
N

N

∑
i=1

M
(

Rk−1 + εk−1Ek

(
wj
))

(6)

IMFk = Rk−1 − Rk (7)

where ε is the ratio of the added noise.

2.3. Gated Recurrent Unit

Because of the gradient vanishing problem in traditional RNN networks [29], it is
difficult to solve the long-term dependence problem in practical application, which makes
RNN training very difficult. To solve this problem, LSTM and GRU use different functions
to calculate the state of the hidden layer by adding “memory cell” structures into the hidden
layer. The “memory cell” of LSTM is composed of three gates: input gates, forgetting gates,
and output gates, while the GRU “memory cell” is only composed of update gates and
reset gates, with fewer training parameters and faster calculations. The structure of the
GUR neural network is shown in Figure 1 [29].

The function of the update gate is to control the state information of the previous time
into the current state. The larger the value of the update gate is, the more state information
will be brought into the previous moment. The formula of the update gate is [30]:

zt = σ(Wr × [ht−1, xt] + br) (8)

where ht−1 contains the information of the previous node, xt is the current input, σ is the
activation function, w is the neuron connection weight, b is the neuron bias value.

The function of the reset gate is to control the forgetting degree of state information
from the previous moment. When the reset gate is smaller, more state information is
forgotten. The calculation formula of the reset gate is [31]:

rt = σ(Wt × [ht−1, xt] + bz) (9)
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After obtaining the gating signal, the gating signal is reset to obtain the reset data, and
then use tanh to activate the functions to obtain the candidate hidden state:

∼
ht = tanh

(
W∼

h
× [rt·ht−1, xt] + b∼

h

)
(10)

In the update phase, when the state information is changed, the update gate is used
for controlling [32], then the hidden layer state at time t can be expressed as follows:

ht = (1− zt)·ht−1 + zt·
∼
ht (11)

Figure 1. Structure of GRU.

2.4. Support Vector Regression

Support Vector Regression is a supervised learning algorithm for classification and
regression, solved by feature mapping the input controls. With powerful theoretical
concepts and applicable to nonlinear data fitting, SVR has been proven by a large number of
scholars to outperform general neural networks [33] and machine learning algorithms [34]
in prediction. The basic principle of SVR is as follows:

Define the output variable as:

f (x) = wφ(x) + b (12)

where w is a vector of weights. φ(x) is a nonlinear function that maps x from the input
space to a higher-dimensional space. b is deviation.

To find w and b, create a minimization function and compute it:

minδ =

[
1
2
‖ w ‖2 +C ∑l

i=1 (ζi + ζ∗i )

]
(13)

where δ is the minimization objective function. C is the penalty factor. ζi, ζ∗i are the
relaxation variables for the upper and lower boundaries of the i-th sample.

Define ε as the insensitive loss factor. yi is the output value of the i-th sample. There
are ζi, ζ∗i , yi, ε, and wi and b to be satisfied:

yi − wi − b 6 ε + ζi
wi + b− yi 6 ε + ζ∗i

ζi, ζ∗i > 0
(14)

By introducing the Lagrange multipliers α∗i and α, and solving the quadratic planning
problem, the regression function is obtained.

f (x) = ∑n
i=1(α

∗
i − αi)K

(
xi, xj

)
+ b (15)

where K
(

xi, xj
)

is the kernel function. xi and xj represent the input vectors of the kernel
function. xi is the input variable in the training set and xj is the input variable in the test set.
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2.5. Deep-Learning Differentiation Models with Double Noise Reduction

Based on SSA, ICEEMDAN, SVR, and GRU neural networks, hybrid models of SSA-
ICEEMDAN-SVR-GRU are proposed. The process of constructing the model is shown in
Figure 2. The descriptions of the details are given below:

(1) Use SSA to decompose and reconstruct the original data, extract the effective trend
information, and discard the noise part. The SSA window length is set to seven,
with bus 1 selecting the first five principal component reconstruction data and bus 2
selecting the first three principal component reconstruction data.

(2) Use ICEEMDAN to decompose the data after the SSA noise reduction into subse-
quences with different complexities to reduce the influence of noise still existing in
the data. Add the standard deviation of noise of 0.45 to ICEEMDAN for 1000 times,
and the maximum number of iterations is allowed to be 40,000.

(3) Using the complexity of the sample entropy operator sequences, and using 1 as
the cutoff point, the subsequences are divided into high-frequency ones and low-
frequency ones.

(4) Vehicle speed, engine speed, torque percentage, instantaneous fuel consumption,
and gas pedal opening are used as inputs to the sub-model, and the ICEEMDAN
decomposed subseries are used as outputs. Model and predict the high-frequency
subsequences by GRU. Predict the low-frequency subsequences by SVR. Since the
optimal hyperparameters of each sub-model are different, the optimal hyperparame-
ters of each sub-model are obtained by a grid search. The hyperparameters of grid
search for the GRU model include the number of hidden layers, number of neurons
in hidden layers, number of iterations, and batch size. The hyperparameters of grid
search for the SVR model include learning rate, kernel function, number of iterations,
and penalty factor. Obtain the final results by integrating the prediction results of the
two models.

Figure 2. Flow chart of SSA-ICEEMDAN-SVR-GRU models.

In order to test the abilities of SSA-ICEEMDAN-SVR-GRU models to predict the NOx
emissions of diesel vehicles in actual roads, we compare the performance of 12 different
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prediction models, including SVR models, LSTM models, GRU models, SSA-SVR models,
SSA-LSTM models, SSA-GRU models, ICEEMDAN-SVR models, ICEEMDAN-LSTM mod-
els, ICEEMDAN-GRU models, RF (Random Forest) models, and Bayes network models.

3. Case Study
3.1. Data Sources

The data of this study comes from the vehicle exhaust online monitoring platform,
which uses the GPRS (General Packet Radio Service) to monitor the real-time exhaust
emission of the vehicle when driving on the actual road. The terminal equipment includes
a nitrogen oxide sensor, OBD (On-Board Diagnostic) data reader, and wireless data trans-
mission unit. The NOx sensor is an electrochemical sensor that directly measures the
amount of NOx emissions per second. Through strict management and control, collect and
manage the data information of exhaust monitoring parameters and the basic information
of vehicles. The data collected by the platform has the characteristics of standardization,
authenticity, and accuracy. The basic engine parameters for the two buses are given in
Table 2.

Table 2. Basic engine parameters of the two buses.

Parameter Bus 1 Bus 2

Engine Power 213 kw 206 kw
Air intake System Turbocharged inter-cooled Turbocharged inter-cooled

Type 6-cylinder, in-line, electrical
control systems

6-cylinder, in-line,
water-cooled

Displacement 8.9 L 8.4 L
Maximum Torque (N.m) 1050 1100

Emission Standards EU IV EU IV
Rated Speed (rpm) 2100 2200

The experimental data were selected according to the method of Günther et al. [35].
The data acquired by the monitoring platform were divided into individual micro-travels.
Micro-travel is defined as the travel between two stops starting at speed zero and ending
at speed zero. These stops include bus stops, traffic light sections, and stops due to
heavy traffic.

For buses, the selected samples include the data for all the working conditions of idle
speed, acceleration, constant speed, deceleration, and stop. The main parameters collected
include vehicle speed, engine speed, torque percentage, instantaneous fuel consumption,
accelerator pedal opening, and NOx concentration. By modeling the collected real-time
data, the transient emission prediction of NOx concentration for diesel vehicles is realized.

3.2. Evaluation Indexes

In this paper, root mean square error (RMSE) [36], determination coefficient (R2) [37],
mean absolute error (MAE) [36], and normalized root mean squared error (NRMSE) [38]
are used to evaluate the performance of the model. The calculation formula is as follows:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (16)

R2 = 1− ∑(y− ŷ)2

∑(y− y)2 (17)

MAE =
1
n ∑n

i=1|ŷi − yi| (18)

NRMSE =
RMSE

ymax − ymin
× 100 (19)
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here, y is the experimental value, ŷ is the predicted value of the model, y is the average
value of the measured value, ymax is the maximum value of NOx concentration, and ymin is
the minimum value of NOx concentration.

3.3. Data Processing Analysis

In this part, the main theories and algorithms are introduced in detail, including
the SSA algorithm, ICEEMDAN algorithm, GRU network, and SVR machine learning
algorithm. Among them, GRU and SVR models are completed by Python 3.6, and data
processing algorithms, including SSA, and ICEEMDAN are completed by MATLAB 2019b.

3.3.1. Singular Spectrum Noise Reduction

In the process of SSA noise reduction, the window length L and the number of
reconstructed principal components m are determined. Generally, let L < N

2 , where
N is the length of the noise-reduction sequence, and the proportion of the sequence
period [38]. Since there are no obvious periodic changes in the actual driving process
of diesel buses, it is more appropriate to set the window length L as seven after the test.
The number of principal components m is very important for reconstructions and noise
reductions, the value of which is usually set based on the contribution rate of each principal
component eigenvalue. Generally, the contribution of the noise component is very small.
The component characteristics of the two buses are shown in Figure 3. It can be seen from
Figure 3 that the first two components are significantly larger than the rest, indicating that
they have more information content. Table 3 shows the performance results of SSA-SVR
models when m takes different values. It is found from Table 3 that bus 1 has the best
result when m = 5, which indicates that the data after component 5 is the noise components
that should be removed, and the information component before component 5 should be
retained. From Table 3, it is found that bus 2 has the best result when m = 3, which indicates
that the data after component 3 contains noises that are directly so the information of the
first three components is retained. Figure 4 shows the NOx emission sequence results after
the SSA treatment.

Figure 3. Component characteristics of two buses ((a) bus, (b) bus 2).
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Table 3. Comparison of SSA-SVR results with different m values.

RMSE (ppm) R2 MAE (ppm)

m Bus 1 Bus 2 Bus 1 Bus 2 Bus 1 Bus 2

3 97.512 90.112 0.917 0.897 54.967 51.897
4 97.139 92.692 0.923 0.896 55.033 52.998
5 96.982 91.892 0.925 0.899 55.015 52.392
6 98.939 90.934 0.922 0.902 55.739 52.401

Unused SSA 112.458 107.485 0.901 0.865 60.553 57.861

Figure 4. Comparison of NOx concentration sequence before and after SSA treatment ((a) bus 1,
(b) bus 2).

3.3.2. ICEEMDAN Decomposition Sequence

After the noise of the original NOx concentration data is reduced by SSA, use ICEEM-
DAN to decompose the data and obtain the subsequences of two buses. Then add the
standard deviation of noise of 0.45 to ICEEMDAN for 1000 times, and the maximum num-
ber of iterations is allowed to be 40,000, which fully avoided the influence of noises on the
results. The decomposition results of the two buses are shown in Figure 5. The fluctuation
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frequency of the subsequence gradually becomes stable with the increase of decomposition
times until there are residual quantities of a single trend. Bus 1 is decomposed into 13 IMFs
and 1 RES, bus 2 is decomposed into 12 IMFs and 1 RES.

Figure 5. Series results of ICEEMDAN decomposing the NOx emission ((a) bus 1, (b) bus 2).

3.3.3. Calculation of Sub-Sequence Complexity

In order to reduce the computational complexity of the GRU neural network and
avoid overfitting situations, calculate the complexity of the NOx concentration series by the
sample entropy. The sample entropy can be used to evaluate the repetition of the waveform
before and after or frequencies. The higher the entropy, the greater the frequency change in
the waveform, and the more repetitive the waveform; the lower the entropy, the smaller
the frequency change in the waveform, and the less repetitive the waveform. According to
the complexity of subsequences, divide the subsequences into high-frequency ones and
low-frequency ones. Use GRU neural network to predict high frequency, and use SVR to
predict low frequency. The calculation results of sample entropy of two bus NOx emission
subsequences are shown in Table 4.

Looking at Figure 5 and Table 4, the greater the sample entropy, the more obvious
the frequency change of subsequence, and the higher the complexity. When the sample
entropy is lower than 1, the fluctuation of sequence data is more gentle. Therefore, this
paper takes the sample entropy value equal to 1 as the division standard of high-frequency
and low-frequency sequences. IMF1 to IMF6 of bus 1 are predicted using GRU neural
network, and IMF7 to IMF13, including RES, are predicted by SVR; IMF1 to IMF5 of bus 2
are predicted using GRU neural networks, and IMF6 to IMF12, including RES, are predicted
by SVR.
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Table 4. Sample entropy calculations for each subseries.

Bus 1 Bus 2

Sequence Sample Entropy Sequence Sample Entropy

IFM1 2.359 IFM1 1.866
IFM2 2.114 IFM2 1.741
IFM3 1.407 IFM3 1.959
IFM4 1.372 IFM4 1.681
IFM5 1.586 IFM5 1.451
IFM6 1.019 IFM6 0.758
IFM7 0.729 IFM7 0.682
IFM8 0.554 IFM8 0.533
IFM9 0.451 IFM9 0.467

IFM10 0.397 IFM10 0.305
IFM11 0.189 IFM11 0.185
IFM12 0.426 IFM12 0.018
IFM13 0.158 RES 0.001

RES 0.004

3.3.4. Analysis of the Prediction Results of Each Sub-Sequence by GRU and SVR

For the subsequences decomposed by ICEEMDAN, use GRU and SVR models to
predict the high-frequency and low-frequency subsequences respectively. Observe the
learning situation of the subsequences. For NOx emission of the two buses, the multi-index
evaluation results of each subsequence prediction model are given in Table 5.

Table 5. Multi-index evaluation results of the subsequence prediction model for NOx concentration.

Bus 1 Bus 2

Sequence Model RMSE
(ppm) R2 MAE

(ppm)
Time

(s) Model RMSE
(ppm) R2 MAE

(ppm)
Time

(s)

IMF1

GRU model

43.304 0.620 25.037 163

GRU model

34.168 0.510 20.837 158
IMF2 17.456 0.955 10.711 162 13.381 0.944 9.030 157
IMF3 3.797 0.999 2.590 162 3.603 0.998 2.648 157
IMF4 2.035 0.999 1.596 162 1.236 0.999 0.935 157
IMF5 0.894 0.999 0.657 162 0.761 0.999 0.564 157
IMF6 0.889 0.999 0.651 162

SVR model

1.437 0.999 0.992 5
IMF7

SVR model

0.707 0.999 0.533 5 1.200 0.999 0.745 5
IMF8 1.739 0.999 1.335 5 1.063 0.999 0.628 4
IMF9 0.297 0.999 0.216 4 0.846 0.999 0.662 4
IMF10 0.503 0.999 0.434 4 0.128 0.999 0.081 4
IMF11 0.226 0.999 0.185 4 0.385 0.999 0.198 4
IMF12 0.242 0.999 0.194 4 0.194 0.999 0.156 3
IMF13 0.053 0.999 0.035 3 NA * NA NA NA

RES 0.406 0.999 0.358 3 0.241 0.999 0.211 3

* means no data.

In the experiment, the high-frequency sequence IMF1 of bus 1 and bus 2 is complex.
According to the GRU model, the value for the two buses R2 are 0.620 and 0.510 respectively,
which indicates that the noise or outliers may be decomposed into IMF1 during the
decomposition process, which affects the prediction effects of the models. However, with
the increase of decomposition times, the noise data in the subsequence is gradually reduced,
and the prediction stability of the model is significantly enhanced, with a R2 which is close
to 1, indicating that the predicted and actual values of the subsequence are very close, and
the prediction effects are excellent. In the low-frequency sequence, the SVR model also
shows good effects, and the value of R2 is close to 1, which shows that in the low-frequency
sequence, SVR can replace GRU, and the calculation time of the SVR model is much lower
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than that of GRU models. Therefore, use the SVR model to reduce the prediction time in
low-frequency sequences, but the prediction performance of the model is still stable.

4. Results and Discussion

In order to verify the prediction performance of the multiple noise-reduction deep-
learning differentiated model SSA-ICEEMDAN-SVR-GRU proposed in this paper, a com-
parative analysis was carried out. First, compare the model with five single models of
GRU, LSTM, SVR, Bayes, and RF without noise reductions; then compare the model with
GRU, LSTM, and SVR that have undergone SSA one-step noise reduction; in addition,
ICEEMDAN-GRU, ICEEMDAN-LSTM, and ICEEMDAN-SVR models are added for com-
parison, involving a total of 12 different models for comparison. Table 6 lists the multi-index
evaluation results of two buses using different models.

Table 6. Comparison of multi-index forecast results.

RMSE (ppm) R2 MAE (ppm) NRMSE (%)

Model Bus 1 Bus 2 Bus 1 Bus 2 Bus 1 Bus 2 Bus 1 Bus 2

SVR 112.630 97.609 0.901 0.889 60.284 49.006 6.458 7.716
Bayes 125.557 95.229 0.877 0.885 76.681 61.382 7.167 7.528

RF 113.412 94.232 0.899 0.888 65.928 56.859 6.479 7.449
LSTM 104.178 99.938 0.915 0.883 55.575 56.616 5.974 7.900
GRU 103.032 98.723 0.917 0.886 55.535 54.331 5.908 7.804

SSA-SVR 97.079 83.442 0.924 0.912 54.816 45.253 5.566 6.596
SSA-LSTM 90.449 80.623 0.934 0.918 51.719 48.611 5.186 6.373
SSA-GRU 88.915 80.832 0.937 0.917 49.922 48.166 5.098 6.390

ICEEMDAN -SVR 77.607 60.868 0.953 0.957 46.193 39.647 4.450 4.812
ICEEMDAN -LSTM 68.217 55.702 0.964 0.964 43.071 35.91 3.912 4.403
ICEEMDAN -GRU 69.371 56.824 0.962 0.962 43.832 36.705 3.978 4.492

SSA-ICEEMDAN-SVR-GRU 46.904 46.782 0.983 0.974 30.735 30.859 2.689 3.698

4.1. Comparative Analysis of Single Models

It is not possible to achieve ideal results in the transient NOx emission. Taking the
transient NOx emission prediction results of bus 2 as an example, the RMSE, MAE, and
R2 of the SSA-ICEEMDAN-SVR-GRU models are increased by 52.613, 43.202, and 9.932%
respectively compared to the GRU models. Compared with the random forest model, the
RMSE, MAE, and R2 of the SSA-ICEEMDAN-SVR-GRU model are improved by 50.354,
45.727, and 9.685%, respectively.

In order to further analyze and verify the predictive ability of the SSA-ICEEMDAN-
SVR-GRU models on the instantaneous emission of NOx from two buses, Figure 6 shows
the comparison results for the five single models of Bayes, RF, SVR, LSTM, and GRU.
Combining Table 6, it can be found that the predictive ability of single models is limited
and cannot accurately capture the significant characteristics of transient NOx concentration
emissions, and the prediction error is relatively large. Single models can predict the overall
trend of changes in NOx transient emissions, but there are huge gaps between the predicted
result and the actual value. The main reason for this result is that in the actual road
operation of diesel vehicles, the road conditions are complex and changeable. The driver
needs to adjust the fuel supply and emergency braking constantly. The engine presents
an irregular and rapid change state, which directly affects diesel combustion and NOx
emissions. It is difficult for single models to capture the transient emission law of NOx,
and it is impossible to model and predict accurately.
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4.2. Comparative Analysis of SSA Single Treatment Results

After the original data is processed by SSA noise reduction, the prediction accuracy is
significantly higher than that of a single model. For example, in bus 2, the RMSE, MAE,
and R2 of SSA-GRU are improved by 18.122, 11.347, and 3.500%, respectively. However,
compared with the SSA-ICEEMDAN-SVR-GRU model, satisfactory prediction results are
still not achieved. In the transient NOx emission prediction results of bus 2, the SSA-
ICEEMDAN-SVR-GRU model is better than the RMSE of the SSA-GRU model, in which
the values of MAE and R2 increased by 42.124, 35.932, and 6.181% respectively.

Figure 7 shows the modeling results after processing the transient NOx emission
results of two buses using singular spectrum analysis. Through comparative analysis
of Figures 6 and 7, it can be found that the noise after the original sequence is reduced
by SSA and the NOx sequence shows a more obvious trend. The regularity of the NOx
transient sequence can be found more easily by using a machine learning model, and the
stability and generalization of the model can be enhanced. By comparing the first mock
exam with the SSA model, the R2 of SVR, LSTM, and GRU increased by 2.587, 3.964, and
3.533% respectively, which means that SSA can enhance the interpretability and prediction
ability of the model. Table 3 shows the influence of different values of SSA-SVR model
m on the prediction results. In the process of SSA noise reduction, if the m value is too
large, the noise in the NOx emission sequence may not be filtered completely, which will
directly affect the basic information of the NOx emission sequence; if the value of m is
too small, the correct, and useful information in the original sequence will be filtered out.
Therefore, selecting an appropriate m value to filter the transient emission data of NOx
can improve the data quality, reduce the influence of random interference, and enhance
the prediction accuracy and stability of the model. The experimental results show that
SSA noise reduction is very helpful to extract useful information from the original NOx
sequence and improve the prediction accuracy of NOx transient emission.

Figure 7. Cont.
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Figure 7. Comparison of prediction results of NOx emission of two buses using SSA ((a) comparison
of noise-reduction prediction results of bus1 SSA, (b) comparison of noise-reduction prediction
results of bus 2 SSA).

4.3. Comparative Analysis of Single Treatment Results of ICEEMDAN

The original data is decomposed by ICEEMDAN and then modeled. The predic-
tion accuracy and stability are significantly higher than the single model and the SSA
noise reduction processing model. For example, for bus 2, the RMSE, MAE, and R2 of
the ICEEMDAN-GRU model are improved by 42.44%, 32.442, and 8.58%, respectively,
compared with the single model GRU. The RMSE, MAE, and R2 of the ICEEMDAN-GRU
model are increased by 29.701, 23.795, and 4.907%, respectively, compared to the SSA-GRU
noise-reduction model SSA-GRU. Through the comparison of the above two groups, it is
found that the ICEEMDAN decomposition has a better noise-reduction effect on nonlinear
and unstable data, and it is easier to mine the internal information and characteristics of
the data. However, the dual noise-reduction SSA-ICEEMDAN-SVR-GRU model increased
the RMSE, MAE, and R2 of ICCEMDAN-GRU by 17.672, 15.927, and 1.248%, respectively.

Figure 8 shows the comparison results of modeling and comparison of the original
NOx emission sequences of two buses after ICEEMDAN processing. Figures 6–8 are com-
pared and analyzed. The original sequence of NOx emissions is processed by ICEEMDAN
and then modeled and predicted. The predicted result is closer to the experimental value,
and more accurate prediction results can be obtained under high-load and high-speed
conditions of diesel vehicles. Combining Table 6, it is found that the prediction performance
of the model processed by ICEEMDAN is higher than that of SSA noise reduction. For
example, in the GRU model of bus 2, the RMSE of the SSA-GRU model is 18.122% higher
than that of the GRU model, and the ICEEMDAN-GRU is 42.441% higher than the GRU.
This improvement is mainly due to the fact that ICEEMDAN decomposes the transient
NOx emission sequence into multiple subsequences with different frequency fluctuations.
From Table 4, it is found that these subsequences have lower sample entropy, that is, they
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have lower sample entropy. The complexity of the model can better capture the changing
law of the sequence, thereby improving the predictive ability.
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The comparison of the dual noise-reduction differential model SSA-ICEEMDAN-
SVR-GRU with the single model and single-processing model shows that the prediction
accuracy of the model proposed in this paper is higher than other models. Among them,
a single model has the worst performance. This is because the originally collected NOx
emission sequence contains a lot of noise and a variety of fluctuating frequencies. A
single model cannot learn its laws well and accurately. After the noise of the original
NOx emission sequence is reduced by SSA, the noise in the sequence is significantly
reduced, the model can better capture the sequence information, and the accuracy of the
model is improved. The original data is directly processed by ICEEMDAN, which can
obtain better prediction results. However, because ICEEMDAN directly decomposes the
original sequence, the subsequence is less complex than the original sequence, and the
sampling results of different frequencies are distributed in different subsequences, which
is easier to find than the law but does not filter the noise, so the prediction accuracy is
still insufficient. After the noise of the original sequence is reduced by SSA, ICEEMDAN
is used to decompose, and the accuracy of the model is further improved. At the same
time, the complexity of subsequences is analyzed through sample entropy, and SVR is
used to replace low-complexity subsequences, which reduces the calculation cost and
prediction time while maintaining model stability and prediction accuracy. Therefore, the
SSA-ICEEMDAN-SVR-GRU model proposed in this paper is a prediction method with
excellent performance. By comparing different models, using SSA to reduce the noise
of the transient NOx emissions for diesel vehicles, and ICEEMDAN decomposition can
effectively improve the prediction accuracy of the model.

5. Conclusions

This research proposes a differential model SSA-ICEEDMAN-SVR-GRU with dual
noise reduction to improve the prediction of transient NOx emissions of diesel vehicles.
In the proposed SSA-ICEEDMAN-SVR-GRU model, SSA is used for noise reduction,
ICEEMDAN is used to decompose the data, and sample entropy is used to calculate the
subseries complexity, using a differentiation model depending on the complexity. The
proposed model is validated with data from two buses and compared with five single
models, three SSA processing models, and three ICEEMDAN processing models. Based on
the comparison of three sets of experiments, the following conclusions are drawn:

(1) After noise reduction by SSA, the prediction model is established. The accuracy is
higher than that of a single model. It shows that SSA can remove the outliers in the
original sequence. It also shows that noise has a great influence on the prediction
results of NOx transient emissions of diesel vehicles.

(2) Using ICEEMDAN to process the original data and then modeling, the prediction
accuracy is significantly improved, indicating that ICEEMDAN’s decomposition
method can effectively extract the trend law and useful information of the original
sequence, which helps the model learn its internal laws and improve the performance
of the model.

(3) After comprehensively considering SSA noise reduction and ICEEDAN decomposi-
tion, the combined model SSA-ICEEMDAN-SVR-GRU has the best prediction per-
formance. The results show that double noise reduction has better prediction perfor-
mance than the single-processing method in improving the accuracy of transient NOx
emission prediction.

(4) The use of SVR in the low-frequency sequence instead of the GRU model with
higher computational cost can reduce the prediction time and maintain the prediction
performance of the model.

Overall, the SSA-ICEEMDAN-SVR-GRU model proposed in this paper helps to ana-
lyze the diesel vehicle’s NOx emissions on actual roads, replacing physical NOx emissions
sensors with virtual NOx emissions sensors, etc., to provide transient NOx emissions for
diesel vehicles A new method.
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The model proposed in this paper shows excellent performance in the prediction of
NOx transient emissions from diesel vehicles. In the future, we will consider the method
proposed in this paper to predict other pollutants of diesel vehicles, such as HC, PM, CO,
etc., to reduce the cost of experimental measurement and experimental complexity.
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