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Abstract: This study presents a new modeling approach that aims for long time predictions (more
than 12 h) of ionospheric disturbances driven by solar storm events. The proposed model shall run
in an operational framework to deliver fast and precise localized warnings for these disturbances in
the future. The solar wind data driven approach uses a data base of historical solar storm impacts
covering two solar cycles to reconstruct future events and resulting ionospheric disturbances. The
basic components of the model are presented and discussed in this study, and the strengths of the
reconstruction based on historical events are presented by showing the good correlations for predicted
and observed geomagnetic activity. Initial results on the ionospheric response are discussed for all
historical events using global total electron content (GTEC) and in more detail using total electron
content (TEC) maps for two specific case studies (including the St. Patrick’s Day geomagnetic storm
during the 17 March 2015). Average root mean square error (RMSE) values of 3.90 and 5.21 TECU
are calculated for these cases confirming good results for the current configuration of the model.
Possible future improvements of the individual model parts, as well as the planned extensions and
applications are discussed in detail.

Keywords: ionosphere modeling; total electron content; space weather

1. Introduction

The complex interaction between solar wind and magnetosphere is a crucial driver
for the upper atmosphere variability [1]. The characteristics of these variations change
considerably when the solar wind is modified by interplanetary coronal mass ejections
(ICME) or co-rotating interaction regions (CIR). Thus, ionospheric perturbations can be
observed on different time scales and of different strength [2–4]. Furthermore, also spatial
variations characterized by different processes (e.g., solar wind driven plasma drifts) are
crucial [5–7]. The ionospheric disturbances can cause various problems for communication
and navigation systems (e.g., reduced positioning accuracy for global navigation satellite
system). Such disturbances need to be understood and predicted to assure the operation of
infrastructure and services that are crucial for most users [8–10].

Forecasting ionospheric disturbances due to geomagnetic storms driven by ICME or
even CIR is a major challenge that is being pursued and already carried out by various
institutions. In this study, the idea of an improved global forecast model is presented and
the basic concepts are validated. The model is able to provide 24 h forecast of ionospheric
disturbances even during significant solar storms and describes ionospheric perturbations
in high local and spatial resolution based on the observed solar wind conditions and
information from historical storm events.

The model presented here is a significant extension of the previous work completed
in the EU FP7 as project Advanced Forecast For Ensuring Communication Through Space
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(AFFECTS), where a forecast for ionospheric disturbances based on historical storm infor-
mation was implemented [11–13]. The proposed total electron content (TEC) perturbation
forecast model was realized based on empirical information and the extensive data archive
of regional TEC maps for Europe. Unlike in the approach of this study, the forecast was
based on geomagnetic indices rather than solar wind data. The approach followed a series
of similar studies on modeling ionospheric parameters at the German Aerospace Center
(DLR) Neustrelitz [14–16]. The efforts to enhance the model further are due the great need
for the improvement of empirical ionospheric forecast models, which are able to run under
real-time conditions [17–19].

In this study, an extended approach of the previous work is presented, aiming at
two crucial changes. The model is extended to global maps and the forecast leading
time is improved by prediction of TEC disturbances based on solar wind data instead of
geomagnetic indices. The basic idea for the presented model is the forecast of ionospheric
disturbances during solar storms by applying impact information from historical ICME or
CIR events with similar features. This is realized with the use of data over approximately
two solar cycles.

Another example of existing ionospheric disturbance forecast is the solar wind driven
autoregression model for ionospheric short-term forecast (SWIF), which provides predic-
tions for the critical frequency of the ionospheric F2 layer [20–22]. The model has been
validated [22] and is operational on the European Digital upper Atmosphere Server (DIAS)
providing ionospheric forecasts. However, the SWIF approach is performed only for certain
stations and differs fundamentally in the calculation of predictions. Nevertheless, SWIF is
an option for future comparisons with the model proposed in this study. Other approaches
based on machine learning or neural networks (e.g., [23,24]) may also be considered for the
model evaluation compared to other approaches.

For figures and analyses, whenever possible in this study, the St. Patrick’s Day
geomagnetic storm during the 17 March 2015 is used as an example because the behavior of
this event has been discussed in various studies [25–28] and thus the underlying processes
are well understood. Other storms are used especially for the analyses of the event
reconstruction to avoid larger data gaps.

2. Data

Solar wind data, geomagnetic indices, and total electron content (TEC) maps are
applied in this study and are required for the model. A brief introduction to the different
measurements is given in this section.

2.1. Solar Wind Measurements

Features of the solar wind are measured by the National Aeronautics and Space
Administration (NASA) satellite missions Advanced Composition Explorer (ACE) and
Deep Space Climate Observatory (DSCOVR). The data of the instruments on board these
satellites are provided in real-time and are used by different institutions to monitor and
forecast space weather events [29,30]. ACE and DSCOVR were launched 25 August 1997
and 11 February 2015 orbiting the L1 Lagrangian point since then.

The solar wind electron, proton, and alpha monitor (SWEPAM) on board ACE mea-
sures the solar wind plasma electron and ion fluxes at minutely resolution [31]. The
same parameters are measured by the Faraday cup and electron spectrometer on board
DSCOVR [32]. In addition, the magnetic field experiment (MAG) on board ACE and
the magnetometer on board DSCOVR measure the six magnetic field vectors of the inter-
planetary magnetic field (IMF). ACE data are provided through the NASA ACE Science
Center [33,34] and DSCOVR data are provided through the National Oceanic and At-
mospheric Administration’s National Centers for Environmental Information [35]. Both
datasets are available in real-time.

For this study, in particular, the proton density np, proton speed vp and the North–
South IMF direction Bz will be analyzed as they describe the variations during ICME, as
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well as CIR. Although np and vp describe the general strength of an event, the strength of the
southward magnetic field (negative Bz) is an important measure for the geoeffectiveness of
ICME [36,37]. This has to be considered especially during strong geomagnetic activity [38].
In addition, two derived parameters will be used. The dynamic pressure pd will be
calculated as

pd =
1
2
· np · v2

p (1)

combining the two solar wind features. Bz is then included by introducing the effective
pressure pe with a relative scale of Bz according to

a =
Bz − Bz0

k
. (2)

This scale is combined with pd according to

pe =
pd

ea + 1
. (3)

This logistic function (or Fermi function), which was proposed in a previous study [12],
is parameterized with the upper boundary Bz0 and a scaling factor k, which have been set
to −10 nT and 0.01 nT in this study. By introducing this parameter, it is possible to evaluate
the three measured values as one time series. This alternative allows a simplified version
of the model approach.

2.2. Geomagnetic Indices

The disturbance storm time (Dst) describes the strength of the ring current and pro-
vides a reliable measurement for the impact of geomagnetic storms [39]. The ring current
occurs when charged particles of the solar wind enter the inner magnetosphere and move
along the geomagnetic field lines in a westward direction around Earth. The magnetic
field of this ring current impacts the field strength on Earth’s surface. This impact is
described with Dst and provided at hourly resolution through the World Data Center
for Geomagnetism in Kyoto [40–42]. Geomagnetic activity described by Dst is corre-
lated with the strength of solar wind features and, thus, can be predicted based on their
measurements [43–47].

The K index describes the disturbances in the horizontal component of Earth’s mag-
netic field and is therefore another measurement for geomagnetic activity [48–50]. The
global Kp index is provided at 3-hourly resolution by the German Research Centre for
Geosciences in Potsdam [51]. Similar to Dst, geomagnetic activity described by Kp is
correlated with the strength of solar wind features and can be predicted based on their
measurement [52,53].

2.3. Global TEC Maps

Global TEC maps are provided by the International Global Navigation Satellite System
(GNSS) Service (IGS) for different analysis centers [54]. Since maps with high sampling rate
of at least 1 h are required, the Universitat Politècnica de Catalunya (UPC) rapid high-rate
solution (UHR) maps are applied in this study. These maps are provided by NASA through
the Crustal Dynamics Data Information System [55]. The European Space Agency (ESA)
rapid high-rate solution (EHR) maps and the IGS combined (IHR) maps would also be
suitable for the analysis, but in general the IGS data products are only a temporary solution.
In the future DLR TEC maps with even higher sampling rate will be applied during the
real-time operation of the model.

TEC is preferred over other ionospheric parameters (e.g., critical frequency of the F2
layer), because it can be provided as TEC maps with global coverage in near real-time. In
addition, TEC is an integral measurement of the ionosphere’s electron density (equivalent
to the ionospheric range error) that is of interest for most users and provided in established
space weather services [56].
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2.4. Reference Events

The basis for this study and the proposed forecast is a comprehensive list of historical
events (ICME and CIR) that have caused ionospheric disturbances. The list compiled
for this purpose is based on various sources. A large number of events can be taken
from literature (e.g., [57–60]). Other events are selected manually, with Kp (≥5) and Dst
(≤−50 nT) assumed to be indicators of IMCE and CIR. The compiled list is presented in
Figure 1 showing a total of 593 events.

Figure 1. Reference events are shown from 1998 to 2018. Blue lines mark events that are taken from
literature and red lines mark events that are selected based on geomagnetic indices. The black dots
mark the number of events each month. A total of 593 events is included.

The number of events each month indicates a dependence on the solar cycle 23 and 24
and thus a representative set of events can be assumed. On the other hand, the number of
events that can be used in the analysis is much smaller than the total because data gaps
(within 24 h of the onset time) prevent some periods from being evaluated for both solar
wind data and TEC maps. Nevertheless, the proposed analysis includes a sufficient number
of events.

3. Modeling Approach

Data assimilation of ongoing observations with dynamical models is a powerful
tool for space weather predictions [61] and can be achieved with Kalman filtering [62] or
extended Kalman filtering and ensemble Kalman filtering [63,64]. These approaches require
a known model. In cases without a model dynamics can be reconstructed using the delay
coordinate method, the so-called Takens filtering [65]. The combination of both approaches
has been introduced as Kalman–Takens filtering [66,67]. This method realizes a model-free
filter which applies Kalman filtering and data-driven Takens modeling [66]. The otherwise
required model is replaced with dynamics from the delay coordinate method [66]. The
idea of the model presented in this paper is inspired by these approaches, which do not
rely on a dynamic model, but differs significantly in its non-continuous calculations and
static observation sequences, that are used for the reconstruction.

The proposed forecast in this study is only performed if significant changes in the
solar wind are observed. This splits the forecast into two steps: identification of events
in solar wind features and TEC reconstruction based on past ionospheric disturbances.
The first part is realized comparable to Takens filtering with static delays referencing the
past events and a chosen observation function. The TEC reconstruction is realized with
corresponding differential TEC (dTEC) entries for these past events. Thus, the precise
prediction of the event onset time and the observation function are the crucial parts of the
forecast. The details and current development status of the components of the forecast are
presented in the following sections, which describe in more detail solar wind monitoring,
event reconstruction, dTEC data archive, and quiet as well as storm condition TEC forecast.

3.1. Solar Wind Monitoring

ACE and DSCOVR instruments provide continuously solar wind and IMF parameters
of which np, vp, and Bz are used for the proposed forecast. In addition, the calculated
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parameters pd (see Equation (1)) and pe (see Equation (3)) are analyzed. The identification
of relevant solar storms is realized by two procedures, where both approaches can be
applied to single parameters or any combination of parameters.

The first approach uses static thresholds for each parameter to classify moderate and
strong events. The thresholds are summarized in Table 1. These values are based on
the previous implementation in AFFECTS, but are intended to be adjusted to the current
solar cycle in future analyses since the previous analysis was based on a smaller set of
historical storm events. An example calculation of threat levels is shown in Figure 2 for the
St. Patrick’s Day geomagnetic storm.

Table 1. Threshold for moderate (1) and strong (2) events according to solar wind and interplanetary
magnetic field parameters.

Parameter Threshold 1 Threshold 2

Proton density np 40 cm−3 60 cm−3

Proton speed vp 800 km·s−1 1000 km·s−1

North-South IMF Bz −15 nT −50 nT
Dynamic pressure pd 10 nPa 50 nPa
Effective pressure pe 2 nPa 3 nPa

Figure 2. Proton density np (a), proton speed vp (b), North–South IMF direction Bz (c) and calculated
threat levels (d) are shown from 16 March 2015 to 20 March 2015 covering the St. Patrick’s Day
geomagnetic storm. The threat levels of np (dotted line), vp (dash–dotted line), Bz (dashed line) and
effective pressure pe (solid line) cover the shock, sheath and magnetic cloud of the event.

This ICME driven super storm was a significant event during the solar cycle 24 [26].
For np, there are larger data gaps during the period shown, but for the other parameters
a continuous calculation can be performed. Similar situations may occur at any time, so
the evaluation of single parameters and their combinations is implemented. For example,
the rounded up mean threat level Tc of all threat levels T according to

Tc = d
1
k

k

∑
i=1

Tie (4)
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is an approach that detects a threat when the majority of parameters k exceeds the thresh-
olds. Despite the missing parameter, the event is well bound by the threat levels and
an onset time (during the shock) can be identified. The sheath and magnetic cloud as
described in other studies [26] are covered with the threat levels as well.

The second approach does not apply thresholds on absolute scales and instead relies on
the calculation of multiple simple moving averages (SMA). This method is only appropriate
for np, vp, pd, and pe. Bz is excluded due to the quasi-stationary behavior [68] which is
observed for the majority of intervals. For each parameter a number s of SMA with time
window w and weight v defines the mean SMAc as

SMAc(x) =
1
s

s

∑
i=1

SMA(x; wi, vi) =
1
s

s

∑
i=1

vi
wi

n

∑
j=n−wi+1

xj. (5)

The time windows and weights may be optimized using a longer time frame or may
be defined with a set of values based on expected variations. Finally, the difference of a
parameter and corresponding SMAc is calculated according to

dx = x− SMAc(x) (6)

providing a relative scale that can be applied to detect events. Similar to the thresholds
for the absolute values, those for the relative scale must also be optimized for the current
solar cycle in future analyses (e.g., using simulations of the solar cycle based on solar flux
measurements). The example for vp in Figure 3 is calculated with two equally weighted
time windows of 1 and 27 d.

Figure 3. Proton speed vp (a) and difference dvp between vp and multiple moving averages (b) are shown from 16 March
2015 to 20 March 2015 covering the St. Patrick’s Day geomagnetic storm. The moving averages with windows of 1 d
(magenta) and 27 d (red), as well as their mean (blue) are shown with the dotted line.

The resulting difference shows a much more distinct trend of the event even in this
simple and not optimized configuration. In addition, this approach allows to detect
storm conditions below the thresholds defined in Table 1. Both presented approaches are
potential options for operating the forecast and can be further developed in the future.
Other solutions may also be introduced to the framework.

3.2. Event Reconstruction

The detection of an event triggers the actual forecast process. For this, a past event
from the reference list must be assigned to the current solar wind conditions. In general, this
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calculation requires the start time of the event t0, the last time step tn and all measurements
x in this period per parameter k (sampling rate of 1 h). Thus, an input vector Ik is defined as

Ik = (xt0 · · · xtn). (7)

Furthermore, a matrix Ak over 24 h with all reference events E is stored. All entries up
to the last time step tn are selected from this matrix according to

Bk = Ak,t0···tn =

xE1,t0 · · · xE1,tn
...

. . .
...

xEm ,t0 · · · xEm ,tn

 (8)

and this new defined matrix Bk is used to calculate the best fitting event. Before the
main process, there is the option to apply another function to the data, which performs a
cumulative processing of the measurements according to

xt = f (xt, xt−1). (9)

The maximum may be applied as this specific function to only consider the increases
of a parameter over time. The use of such a function generally depends on the method
chosen to establish the fitting event. There are two methods implemented to realize this.

The first method will only be briefly mentioned in the context of this study, as this
selection method is much more restrictive and, therefore, not specific enough with the
given number of reference events. The method is based on the interpretation by lookup
tables and thus the processing of selected information before the comparison of solar wind
parameters. Such features include season, solar activity level (characterized by the solar
radio flux index F10.7), geomagnetic indices and geometrical quantities (e.g., declination).
However, this leads quite soon to a reduced set of fitting candidates based on the recently
available historical events (e.g., assigning the season reduces the set of fitting reference
events to approximately 25 ± 5%). With each further parameter this amount decreases
and thus, the current situation of the solar wind has only a secondary role. This is not
preferable and complicates the evaluation of the model results.

The second method does not rely on expert knowledge and calculates the best fitting
event based on a nearest neighbor approach that takes np, vp, Bz, and pe into account. This
is accomplished by calculating the distance d for each combination of reference event with
the current event as

dE,t = d(BE,t, It) = ||BE,t − It||. (10)

The result for each combination is either the distance at the last time step

dE = dE,tn (11)

or the mean distance from onset to last time step

dE =
1
n

n

∑
i=1

dE,ti . (12)

Finally, the best fitting event EF with the smallest distance is selected according to

EF → E, dE = min(dE1 · · · dEm). (13)

To estimate how much better EF compared to other entries performs (mean distance
d calculated with d according to Equations (11) or (12) including all reference events),
a quality parameter q is defined as

qEF = 1−
dEF

d
. (14)
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This parameter is not a measure of the overall quality of the forecast, but allows to
estimate how well the selected reference event describes the observed conditions and to
what extent other reference events could be assigned. An additional parameter can be
calculated using the observed and predicted trend (e.g., Pearson’s correlation, Spearman’s
correlation, or cosine similarity are appropriate parameters to evaluate the assigned pre-
diction). The quality of the forecast is further described by the number of time steps at
which the selected reference event changes. The number of changes depends strongly on
the chosen method (see Equations (11) and (12)) and is a measure of the forecast stability.

The proposed process is evaluated in three steps: by use of the quality parame-
ters, comparison between observed and predicted Kp, as well as comparison between
observed and predicted GTEC. Furthermore, four configurations of the algorithm are
investigated. The configurations NNtn and NNt0···tn perform the nearest neighbor (NN in
configuration name) approach without applying a function (see Equation (9)) for the last
(see Equation (11)) and all time steps (see Equation (12)). Both configurations are extended
to NNMtn and NNMt0···tn by applying the maximum (M in configuration name) for np,
vp, and pe and the minimum for Bz according to Equation (9). This configuration only
considers increases (decreases in case of Bz) and produces a constant time series otherwise.
The analysis is based on the prediction of each reference event from the set of possible
candidates (all other 592 reference events) with the four defined algorithms, excluding the
event to be reconstructed. This is performed for each hourly time step of the stored 24 h
time windows.

Each data point in the first row of Figure 4 represents one of the reference events and
the best-fitting event according to the proposed approaches (excluding itself from the set
of potential candidates). Thus, the resulting variability of the quality (see Equation (14))
describes how well events are selected using the different approaches. The second row of
Figure 4 shows the number of changes between time steps and summarizes the distribution
for all data points (size of dots). The estimated mean quality in Figure 4a,b is constant
(approximately 0.87) due to the chosen method adjusting the best fitting event during
that time step. However, this causes the selected reference event to change continuously,
and the number of changes in Figure 4e shows that this happens for most of the events at
each time step. This behavior is not desirable as it prevents a stable prediction. As shown
in Figure 4f, the problem can be significantly reduced (more than 50%) by applying the
maximum (minimum) without having a significant impact on the quality of the selection.
The application of such a simple function has already resulted in a major improvement of
the results. Thus, this option is definitely a useful addition to the core algorithm.

The estimated mean quality in Figure 4c,d is decreasing during the first time steps but
then stabilizes (approximately at 0.75 and 0.79). The quality for NNt0···tn and NNMt0···tn

is lower than for NNtn and NNMtn , because a time series is matched instead of a single
data point. The quality in Figure 4c,d does not decrease indefinitely as the most significant
changes in events are observed at some of the first time steps (e.g., shock of IMCE). These
deviations determine the correlation and if, for example, no secondary shock occurs,
then the model reaches a stable state. In the other case, the model would adjust further.
The number of changes in Figure 4g,h show as well the impact of applying the maximum
(minimum) to the time series. The number of changes is significantly decreased in Figure 4h
but also the prediction quality is slightly improved in Figure 4d.



Atmosphere 2021, 12, 1684 9 of 24

Figure 4. Quality of the selected reference event (a–d) and number of changes (e–h) are shown for the forecasts of each
reference event (excluding itself from the set of potential candidates) for different configurations of the algorithm (columns).
The dots in the plots of the first row mark the quality of each forecast (different colors) during that time step. The dots in the
plots of the second row mark the number of changes that occur for each forecast and size of these dots is equivalent to the
number of forecasts. The dashed line and the gray area are the corresponding means and standard deviations.

As explained, these parameters do not provide any information about the quality
of the TEC forecast (e.g., compared to other models) and instead describe how well the
selected forecast compares to all other candidates in the reference list. These parameters
are also useful to calibrate the stability and sensitivity of the model.

A first estimation of the forecast quality is calculated by comparing observed and
predicted parameters. The geomagnetic index Kp is analyzed because it strongly depends
on the latitude [69] and thus describes the influence of the solar wind also spatially. Since
global TEC maps for the analyzed period are not yet available at the required sampling
rate, the global mean TEC (GTEC) across all grid points (latitudes Φ and longitudes Λ)
according to Equation (15) from the final combined solution (IGS) maps is used in this
study (sampling rate of 2 h).

GTEC =
1

|Φ| · |Λ|

|Φ|

∑
i=1

|Λ|

∑
j=1

TECi,j (15)

After the GTEC calculation, the required sampling rate of 1 h is obtained by applying
linear interpolation. The analysis with GTEC is expected to be related to geomagnetic
indices [70] and thus to solar wind features, but the lack of latitudinal separation is expected
to create interference of different spatial variations.

Figure 5 shows the difference of Kp and GTEC at the third time step past the onset time
with scatter plots (the time step is chosen arbitrarily within the first phase of the storm). The
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correlation of observed and predicted Kp is moderate for all configurations of the model
approach at this time step. NNt0···tn performs better than the other configurations, but the
difference is insignificant. All configurations are capable of recreating the geomagnetic
effects in the first hours of an event. The correlation of observed and predicted GTEC is
weak with NNt0···tn performing the best. Configuration NNtn is considerably worse than
the others. Continuously adjusting to the last time step increases the probability of missing
a crucial feature in the solar wind resulting in weak correlation.

Figure 5. The scatter plots show the correlation of observed and predicted values for dKp (a–d) and dGTEC (e–h) according
to the different configurations of the forecast algorithm (columns). The trend line (red dashed line) and correlation coefficient
are shown for each combination.

The analysis of the correlation is extended by calculating each time step. The resulting
correlation time series are shown in Figure 6.

The correlation of Kp in Figure 6a is moderate and strong after the first few hours
for all configurations. The most significant difference between configurations is observed
after approximately 12 h. Although configurations NNtn and NNt0···tn show a decrease in
correlation from this point on, the correlation for NNMtn and NNMt0···tn is approximately
constant. This suggests that the maximum (or minimum) of solar wind features is crucial
for the duration of geomagnetic effects, and therefore the approaches that prioritize these
maxima (minima) perform better in the recovery phase of an event. The mean correlation
based on Kp for NNtn , NNMtn , NNt0···tn and NNMt0···tn is 0.64, 0.70, 0.64, and 0.66, respec-
tively. These correlations are good considering that these are only first results and a Kp
nowcast is not taken into account.

The correlation of GTEC in Figure 6b is weak for all configurations and has much
stronger deviations. The results indicate that either the model algorithm or configuration
needs to be improved, or that GTEC is not appropriate due to the lack of separation of
spatial features (dTEC variations in different regions). This can only be resolved with
the help of analyses based on TEC maps in the future. NNMtn and NNMt0···tn generally
perform better showing again the importance of the maximum (minimum). The mean
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correlation based on GTEC for NNtn , NNMtn , NNt0···tn , and NNMt0···tn is 0.13, 0.25, 0.12,
and 0.21, respectively.

Figure 6. Correlation of observed and predicted values for Kp (a) and GTEC (b) are shown for
different model configurations. The results for the configuration without (solid line) and with (dotted
line) applying a maximum function are shown for the model approach based on the last time step
(red line) and whole time series (black line).

Figure 7 shows an example reconstruction for the geomagnetic storm during 14
December 2006. Several of the configuration aspects discussed are seen in detail. For
example, the reconstructed trend of Bz according to NNtn in Figure 7i shows the ongoing
change of the selected reference event and how this results in a good fit. However, this
trend also shows that the variations do not fit before the selected time step. The observed
deviations are stronger than in any other configuration. For NNMtn (e.g., see Figure 7j)
the number of changes is reduced to 2 and a very good fit for all parameters is calculated.
This shows once again that the reconstruction of an event is improved by applying the
maximum (minimum) function (see Equation (9)). NNt0···tn and NNMt0···tn have a similar
improvement with a reduced number of changes (especially in the second half of the
24 h period). The improvement is less significant for these configurations though, since
NNt0···tn shows without the applied function a small number of changes and a good fit
for all parameters. In conclusion, NNMtn , NNt0···tn and NNMt0···tn predict np, vp, Bz, and
pe for the geomagnetic storm during 14 December 2006 well, and only a small number of
adjustments is required. A stable forecast, that is able to account potential variations, is
realized on this basis.
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Figure 7. Proton density np (a–d), proton speed vp (e–h), North–South IMF direction Bz (i–l) and effective pressure pe (m–p)
are shown for the geomagnetic storm during 14 December 2006. The observed (solid black line) and the predicted periods
(solid red line; red dots mark starting point of selected reference events) are shown for the different configurations of the
forecast algorithm (columns). The overall trend of each selected reference event is shown with the dashed gray line.

3.3. dTEC Archive

In the archive, np, vp, Bz, pd, and pe, as well as dTEC maps and TEC maps are stored
in a 24 h window for each reference event. The data have a shared sampling rate (for this
study 1 h) for direct use in the forecast process. The solar wind data are stored for the
calculation of the fitting event to the current situation and the TEC maps are stored for the
reconstruction of the event progression. The dTEC maps at each time step t (sampling rate
of 1 h) are calculated according to

dTECt = TECt −CMA(TECt) = TECt −
1
27

13

∑
i=−13

TECt+24i. (16)

The centered moving average (CMA) is calculated here for the same time of day
over a time window of 27 d. The starting time t0 is the onset time of the reference event.
Additionally, a 2-dimensional Gaussian filter can be applied to ensure better processing



Atmosphere 2021, 12, 1684 13 of 24

and interpretability for the forecast. The filtered dTEC is calculated for each coordinate
with latitude φ and longitude λ according to the Gaussian kernel G as

G(φ, λ, dTEC; σ) =
1

(
√

2π · σ)3
e−

φ2+λ2+dTEC2

2σ2 . (17)

The standard deviation σ controls the smoothing factor of the Gaussian filter.
In Figure 8, the calculated dTEC and filtered dTEC during the St. Patrick’s Day

geomagnetic storm at 17 March 2015 14:00 UTC are shown. The filter removes certain
components of the spatial variations and reduces the range of values. This is desirable only
up to a certain degree for an accurate forecast. On the other hand, the filtered map can be
better superimposed on the quiet condition forecast to retrieve the storm condition forecast.
This eliminates strong gradients and artifacts which otherwise negatively influence the
forecast quality. Both TEC and dTEC maps are stored in the archive, so that it is also
possible to provide a forecast based on relative values ∆TEC according to

∆TECt =
dTECt

CMA(TECt)
· 100% =

TECt −CMA(TECt)

CMA(TECt)
· 100% (18)

For this alternative no quiet condition forecast is required and ∆TEC would be de-
livered at each time step as the corresponding prediction. This approach was already
implemented in the framework of the EU FP7 AFFECTS project [12].

Figure 8. dTEC map (a) and filtered dTEC map (b) during the St. Patrick’s Day geomagnetic storm at 17 March 2015 14:00
UTC. The standard deviation σ of the Gaussian filter is arbitrarily set to 3 TECU.

Figure 9 shows dTEC, as well as ∆TEC, during the St. Patrick’s Day geomagnetic
storm for 24 h from the onset time 17 March 2015 03:00 UTC (recorded interplanetary shock)
at a selected mid-latitude location.

Both calculated trends reflect the results of various studies investigating the iono-
spheric response to this event [25,27,28] showing the impact of a positive ionospheric storm
followed by a negative ionospheric storm during the recovery period. Figure 9 shows also
that the impact of the Gaussian filter has no significant impact on the time series. The
defining variations of the event are unchanged despite the elimination of spatial artifacts
(see Figure 8). The root mean square error (RMSE) between unfiltered and filtered dTEC is
2.88 TECU (2.21%) for all grid points during the 24 h period (see Figure 9). Nevertheless,
the applied filter has to be optimized in the future. In addition, each event may obtain a
specific filter configuration, if that approach proves to be beneficial.
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Figure 9. dTEC (black) and ∆TEC (red) during the St. Patrick’s Day geomagnetic storm from 17
March 2015 03:00 UTC to 18 March 2015 03:00 UTC at geographic latitude 52.5◦ N and geographic
local time 12 h. Shown are unfiltered values (dashed line) and filtered values (dotted line).

3.4. Quiet Condition Forecast

The forecast for climatological changes in the ionosphere is calculated using the same
time window of 27 d as dTEC (covering a single solar rotation). A time window of 81 d as
used in various solar flux proxy models would also be an option. However, this is rather
uncommon for processing TEC. The quiet condition forecast (qTEC) at each time step t
(sampling rate of 1 h) is calculated using a SMA according to

qTECt = SMA(TECt−24) =
1
27

−1

∑
i=−27

TECt+24i. (19)

Thus, dTEC (reference events) and qTEC (observed event) refer to different time
frames with respect to the onset time (see Equation (16)). The use of CMA would be the
optimal solution in both cases (accounting for the enveloping ionospheric trend), but this
is obviously not possible for a real-time qTEC calculation.

Figure 10 shows CMA and SMA during the St. Patrick’s Day geomagnetic storm at 17
March 2015. The difference between the two maps is insignificant (e.g., the mean value
for CMA and SMA is approximately 26.76 and 26.31 TECU). There are also no apparent
differences in the spatial distribution. Therefore, the results are good considering that
qTEC is only the background model.

Figure 10. Centered moving average (CMA) TEC map (a) and simple moving average (SMA) TEC map (b) during the St.
Patrick’s Day geomagnetic storm at 17 March 2015 14:00 UTC.
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3.5. Storm Condition Forecast

The storm condition forecast (fTEC) is provided either directly through dTEC maps
(see Equation (16)), ∆TEC maps (see Equation (18)) or through combination of these maps
with the background model according to Equations (20) and (21).

fTECt = qTECt + dTECEF (20)

fTECt = qTECt · (∆TECEF + 100%) (21)

The selected reference event EF (see Equation (13)) can change over time resulting in
continuous updates of the forecast (see Figure 7).

The forecast according to NNMtn and NNMt0···tn for the geomagnetic storm during 14
December 2006 favors the reference event during 15 September 2005 (assigned to 67% and
17% of the time steps). The forecast according to this reference event and Equation (20) is
shown in Figure 11. Both observed and predicted dTEC (see Figure 11a,b), show an TEC
enhancement in the Northern and Southern hemisphere between approximately 180◦ W to
90◦ W. The spatial distribution is different in shape and the observed dTEC in the Southern
hemisphere is stronger. Nevertheless, the major features are retrieved. The derived ∆TEC
maps (see Figure 11b,c) show the increase in both hemisphere as well, but other features are
also present. The observed ∆TEC shows strong enhancements (up to 150%) in the Northern
hemisphere at approximately 60◦ N between 90◦ W to 90◦ E. These features (on Earth’s
night side) is less pronounced (up to 60%) for the predicted ∆TEC. Since TEC tends to take
on rather small values at these latitudes and during the night, these changes do not make
a significant difference to the absolute values, but nonetheless they indicate areas where
ionospheric disturbances are likely to occur. The TEC observations during the event (onset
13:00 UTC, time step 12 h) and final forecast (see Figure 11b,c) have a good agreement
regarding absolute values and as expected, a TEC increase in both hemispheres is retrieved.
The spatial distribution due to the differences in dTEC is also present in the TEC forecast.

The difference of observed and predicted TEC in Figure 12d shows the discussed,
inaccurate features. The TEC enhancement above and below the Equator on Earth’s day
side, as well as the high latitudes in the Northern hemisphere are underestimated by the
forecast. Nevertheless, the forecast is good considering that the RMSE is 5.53 TECU. These
features are even more pronounced in following time steps (during maximum impact).
However, the difference decreases during the last time step in Figure 12f. The strength of
the occurring event was underestimated by the model. This error can be reduced during
periods using the same reference event by applying the observed difference during the last
available time step to the future time steps as

fTEC′t = fTECt + fTECn − TECn, t > n. (22)

Figure 13 shows the adjusted difference maps (based on results in Figure 12) according
to Equation (22) using the difference of 3 h before each time step. The spatial variations
are not entirely removed, but they are minimized and the RMSE values are better at
every time step (e.g., the underestimated TEC above and below the Equator in Figure 12f
is compensated in Figure 13f). This improvement obtains better over time and makes
especially the short-term predictions (few hours) more accurate. Nevertheless, the initial
forecast and the forecasts covering more than 12 h are still dependent on the reliable
reconstruction based on reference events.

Figure 14 shows the difference maps according to Equation (22) for the St. Patrick’s
Day geomagnetic storm at 17 March 2015. These results are calculated based on vp and Bz,
since np and pe are not available due to the data gaps of np in that period (see Figure 2).
The critical time period with the strongest variations is again about 15 h after the observed
shock (see Figure 14e). The difference is also much stronger than in the first example (see
Figure 13e), but still the calculated RMSE values are good (maximum RMSE of 7.49 TECU).
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Figures 12–14 show that good RMSE values can be achieved, but this parameter alone
is not enough to describe the quality of the forecast. Especially the spatial distribution
of the TEC variations is a crucial criteria to describe the benefit of the approach. These
spatial features have to be categorized and analyzed in detail for the realization of the
proposed model.

Figure 11. Observed (a,c,e) and predicted (b,d,f) maps are shown for dTEC (a,b), ∆TEC (c,d) and TEC (e,f) for the
geomagnetic storm during 14 December 2006 at the time step 12 h after the onset 13:00 UTC. The map projection is focused
on the day side of Earth at this time.
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Figure 12. The difference between observed and predicted TEC for the geomagnetic storm during 14 December 2006 is
shown at the time step 3 (a), 6 (b), 9 (c), 12 (d), 15 (e) and 18 (f) h after the onset 13:00 UTC. The corresponding root mean
square errors are 2.21, 3.70, 3.76, 5.53, 8.78 and 7.58 TECU.



Atmosphere 2021, 12, 1684 18 of 24

Figure 13. The difference between observed and predicted TEC (adjusted by applying the difference map of the previous
step) for the geomagnetic storm during 14 December 2006 is shown at the time step 3 (a), 6 (b), 9 (c), 12 (d), 15 (e) and 18 (f)
h after the onset 13:00 UTC. The corresponding root mean square errors are 2.21, 2.83, 3.46, 4.58, 5.57 and 4.77 TECU.
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Figure 14. The difference between observed and predicted TEC (adjusted by applying the difference map of the previous
step) for St. Patrick’s Day geomagnetic storm at 17 March 2015 is shown at the time step 3 (a), 6 (b), 9 (c), 12 (d), 15 (e) and
18 (f) h after the onset 3:00 UTC. The corresponding root mean square errors are 5.71, 3.22, 5.47, 4.13, 7.49 and 5.26 TECU.

4. Discussion

The presented ionospheric forecast model is based on the idea to use information
from historical solar storm events to provide a detailed spatial and regional forecast of
expected ionospheric disturbances. In respect to the first historical event based empirical
model, developed within the AFFECTS project [12], several aspects have been added
in the presented model in order to significantly enhance such forecast. The area of the
predictions was extended from maps of the European region to global maps, which requires
a more comprehensive evaluation of the results. Further, the proposed model is based
largely on the analysis of solar wind data and is not using geomagnetic indices as the
implemented model as part of AFFECTS. However, this may be added again in the future
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to make the forecast more accurate as solar storms progress. The most crucial difference is
in the methods applied in both approaches. The proposed reconstruction from historical
reference events (instead of applying a mean trend) in this study allows to analyze the
spatial distribution in much more detail and even the consideration of secondary shocks and
their respective impacts can be covered. The proposed corrections based on observed TEC
during an event (see Figures 12 and 13) may be applied to geomagnetic data as well. Thus,
the proposed procedure would match the three data sets (solar wind data, geomagnetic
indices, and TEC maps) continuously to reconstruct the best-fitting event overall.

The calculated RMSE in Figures 13 and 14 have mean values of 3.90 and 5.21 TECU
(maximum values of 5.57 and 7.49 TECU), which corresponds to an ionospheric range error
(L1 band) of 0.63 and 0.84 m (0.90 and 1.21 m). These error levels are acceptable for most
users and are very promising results for the strong storm conditions examined. In addition,
even the strongest observed differences of approximately 30 TECU (ionospheric range
error of 4.86 m) are a considerable improvement in respect to a climatological forecast.

The operational implementation of the model will update continuously during solar
storm forecasts and provide the most recent calculation time (e.g., during the change of the
selected reference event). During such an update, the forecast is calculated again for the
whole period (covering already passed time steps). Thus, a consistent forecast is provided
in real-time. The stability and reliability of these forecasts can be estimated using the quality
of the event selection and number of occurred changes (see impact on historical events in
Figure 4), but a measure of the overall accuracy of the forecast must also be defined for
an operational service. The calculated RMSE (see Figures 12–14) is also considered as a
performance parameter for the accuracy of continued forecasts.

5. Conclusions and Outlook

The TEC forecast model presented in this study does not attempt to describe both
quiet and storm conditions, but can be operated on top of a climatological TEC forecast
allowing much more detailed predictions of the temporal and spatial storm impact on
the ionosphere. The model is activated with solar wind conditions during times of solar
activity when ionospheric disturbances are expected. The model selects from a large data
base of ionospheric storms at each time step the most appropriate historical event and can
significantly limit the predictable variations. The accuracy and precision of the model is,
therefore, given by the TEC response to geomagnetic activity driven by past ICME and
CIR events.

The detection of such events is implemented with a set of thresholds (applied to
solar wind and IMF measurements) and the model forecast is triggered according to the
pre-defined threat levels (see Figure 2). In the proposed approach, the selection of fitting
reference events is realized using a nearest neighbor approach that is executed in different
configurations and continuously updated based on the measurements. The continuous
evaluation of the actual event with the pool of available reference events with each other
is performed for these configurations (see Figures 4 and 7) and moderate to good as well
as weak correlations are retrieved for Kp and GTEC (see Figure 5), respectively. The
correlation of Kp mainly confirms the event selection results, whereas GTEC results are
more difficult to interpret since these values combine all the spatial variations of TEC
(including negative and positive responses).

The presented example forecast of a reference event shows how the spatial distribution
of TEC is reconstructed (see Figure 11). Although the general variations are described
in both hemispheres, there are significant differences especially in the transition regions
between high and low TEC values. This particularly affects the equatorial region, for which
additional improvements need to be implemented in the future (e.g., TEC distribution
along the geomagnetic Equator). Nevertheless, the difference map in Figures 13 and 14
present very promising results.

The introduced modeling approach aims for long time predictions (more than 12 h) of
ionospheric disturbances due to solar storms. This is important, since long-term predic-
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tions of regional and spatial ionospheric disturbances are crucial for users of satellite based
navigation, communication, and remote sensing services. The inclusion of the impact of
solar storms on the ionosphere based on real-time data has not yet been satisfactorily com-
pleted in existing empirical and physical ionosphere forecast models. The forecast model
presented here compares all available historical storm information to predict the most
probable impact of future solar storm. In addition, the model is continuously improving by
increasing its historical event data base with every upcoming solar storm.

In the future, the solar wind monitoring will be extended by the option of analyzing
relative values in order to detect ICME or CIR during periods of strong solar wind activity.
Both the current and planned approach will use an optimized setup of thresholds for the
last two solar cycles and will be operated in parallel as part of the model. In addition,
the filtering in the model (see Equation (17)) will be adjusted, since the existing solution
does not reflect the value range of the initial TEC maps. An appropriate scaling or a
different filtering method will solve this problem.

The main part of the further analysis will be the comprehensive evaluation of the
TEC response during each reference event. The results of this analysis will be used to
decide whether the proposed method (nearest neighbor) satisfies the requirements or
whether certain selection criteria need to be added (e.g., season). In addition to the spatial
distribution, the temporal evolution of the reference events also has a crucial role, which is
why the comparison will also be performed covering all time steps (24 h time window).
Based on this evaluation, further changes will be applied and sensitivity as well as stability
of the model will be set accordingly.

In the future, additions to the model that incorporate further data are of main focus.
These additions to the model would progressively improve the forecast with each time step
and be more independent of the observed solar wind conditions. Each selection based on
one of the measurements (solar wind measurements including IMF data, geomagnetic in-
dices and global TEC maps) could be weighted according to the passed time and attributed
importance for the forecast. For this, however, these data must be available with sufficient
time in advance.

Longer lead times for the forecast may be achieved by analyzing further in situ
measurements, such as considering the velocity and acceleration of CME calculated based
on images from Large Angle and Spectrometric Coronagraph on-board the Solar and
Heliospheric Observatory [71]. However, this also requires forecasting climatological
changes in the ionosphere for longer time periods and thus increases significantly the
complexity of the model and its evaluation. This also has to be considered in regard to the
defined scope of the model for a real-time service.

In addition, different methods for assigning historical storm events may be analyzed
to implement approaches that achieve better accuracy and efficiency than the current
implementation. Furthermore, solar storms occurring in the future will be integrated into
the data base granting a continuous improvement of the forecast capabilities.
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