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Abstract: Ground based rainfall information is hardly available in most high mountain areas of
the world due to the remoteness and complex topography. Thus, proper understanding of spatio-
temporal rainfall dynamics still remains a challenge in those areas. Satellite-based rainfall products
may help if their rainfall assessment are of high quality. In this paper, microwave-based inte-
grated multi-satellite retrieval for the Global Precipitation Measurement (GPM) (IMERG) (MW-based
IMERG) was assessed along with the random-forest-based rainfall (RF-based rainfall) and infrared-
only IMERG (IR-only IMERG) products against the quality-controlled rain radar network and
meteorological stations of high temporal resolution over the Pacific coast and the Andes of Ecuador.
The rain area delineation and rain estimation of each product were evaluated at a spatial resolution
of 11 km2 and at the time of MW overpass from IMERG. The regionally calibrated RF-based rainfall
at 2 km2 and 30 min was also investigated. The validation results indicate different essential aspects:
(i) the best performance is provided by MW-based IMERG in the region at the time of MW overpass;
(ii) RF-based rainfall shows better accuracy rather than the IR-only IMERG rainfall product. This
confirms that applying multispectral IR data in retrieval can improve the estimation of rainfall com-
pared with single-spectrum IR retrieval algorithms. (iii) All of the products are prone to low-intensity
false alarms. (iv) The downscaling of higher-resolution products leads to lower product performance,
despite regional calibration. The results show that more caution is needed when developing new
algorithms for satellite-based, high-spatiotemporal-resolution rainfall products. The radar data vali-
dation shows better performance than meteorological stations because gauge data cannot correctly
represent spatial rainfall in complex topography under convective rainfall environments.

Keywords: complex terrain; Ecuador; GPM IMERG; rainfall; radar network; satellite retrieval

1. Introduction

Understanding precipitation amounts and patterns is essential for sustainable water
management and monitoring the hydrological cycle [1]. In complex mountainous regions
characterized by high spatiotemporal variability, coarse networks of operational precipita-
tion gauge stations are often lacking. The spatiotemporal variability, combined with lack of
gauge data, makes the time series and area-averaged rainfall analysis more complicated in
these regions [2]. This also applies to the complex topography of the Andes in Ecuador.
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Early satellite-based rainfall retrieval efforts estimated rainfall from geostationary
infrared (IR) data, using the indirect relationship between precipitation rate and the temper-
ature of cloud on top [3]. Hence, the algorithms and the product accuracy were limited to
the top of the cloud’s characteristics. Unlike IR, microwave (MW) sensors measure thermal
radiance from actual precipitation particles in the clouds; consequently, MW retrieval
generally provides superior precipitation information [4].

A recent result of the continuous technological improvement of low-Earth-orbiting
passive MW satellites and spaceborne radars in the MW band is the Global Precipitation
Measurement (GPM) mission [5]. GPM was launched in 2014 as post Tropical Rainfall
Measuring Mission (TRMM) [6]. Compared with TRMM, the GPM improved sensitivity to
light precipitation and distribution of rain and snow. These improvements have achieved
by a two-frequencies precipitation radar (Ku band (13.6 GHz) and Ka-band (35.5 GHz))
as well as the GPM multi-channel microwave imager (GMI) that accommodates higher
spectral resolution at frequencies of 10.65, 18.7, 23.8, 26.5, 89, 165.5, and 183.3 GHz [5,7,8].

However, several studies showed that machine learning could improved the regionally
calibrated retrievals using simply passive IR data from geostationary orbit (GEO) [3,8–13].
Compared to the passive MW and radar sensors, the GEO systems provide the high
temporal (10–30 min) and spatial (2–4 km2) resolution. It is essential to capture the short-
term characteristics of rainfall systems in the retrieval [8]

A few studies have investigated the performance of satellite-based rainfall products
over Ecuadorian areas. The Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks (PERSIANN) [14] shows low agreement with rain gauge
in daily resolution [2] in rain area detection. Manz et al. [15] investigated the performance
of the integrated multi-satellite retrievals for GPM (IMERG) [5] and TRMM multi-satellite
precipitation analysis (TMPA) [6] against gauge data with different temporal resolutions
(hourly, 3 h, and daily). In their study, IMERG showed better agreement than TMPA,
especially on the high elevation of Andes. Erazo et al. [16] reported that at high elevations
in the Andes, TRMM 3B43 Version 7 retrievals showed a higher correlation (R2 = 0.82) on
monthly compared with interpolated gauge data at a spatial resolution of 27.75 km2. The
result of the validation of the regionally developed algorithm in Ecuador, the random forest-
based rainfall (RF-based rainfall) of Turini et al. [3] with an 11 km2 resolution, obtained
a median Heike skill score (HSS) around 0.35 for daily gauge stations, meanwhile the
lower performance of the IR-only from the IMERG (IR-only IMERG) showed by HSS = 0.2.
In their method, they used the Random forest algorithm to retrieve rainfall. In this text,
the RF-based rainfall stands for the rainfall retrieval from random forest algorithm [3].
The RF-based rainfall retrieval performed in estimating the rainfall rate with correlation
coefficient (r) values 0.34 [3].

To improve satellite-based products’ overall performance, understanding the sources
of error on the highest possible temporal resolution is crucial [6,17]. Given the high spa-
tiotemporal variability of rainfall in Ecuador, spatiotemporally high-resolution validation
sources for rainfall are lacking. Therefore, as stated before, only a couple of studies have
investigated the performance of satellite-based rainfall products at higher spatiotemporal
resolution [15,18].

Different studies have found that, due to the variability of weather and climate
in complex terrain, the satellite retrievals are posed to challenges both in IR and MW
products [3,8,12,13,19]. Dinku et al. [19] evaluated the impact of topography on IR-based
Tropical Applications of Meteorology using Satellite and ground-based observation (TAM-
SAT) [20] in East Africa for 1998–2012, comprising five different countries: Uganda, Kenya,
Tanzania, Rwanda, and Burundi. In the study, the elevation varied between 1500 and
4500 m [19]. TAMSAT showed an underestimation. Dinku et al. [19] argued that the
underestimation corresponded mainly to convective and orographic rainfall during the
rainy season (March, April, and May), mostly in the windward exposition.

In this work, we aimed to validate different satellite-based rainfall products to identify
and understand sources of errors in the complex elevation of the Andes in Ecuador on a
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sub-daily time scale. Our aim was not just to compare satellite-based rainfall products
with ground measurements but also to identify the sources of the differences between the
satellite-based rainfall products and ground measurements. Therefore, in this study, we
evaluated the performance of MW-based IMERG in comparison with RF-based rainfall
and IR-only IMERG against high-spatiotemporal-resolution data from ground based radar
network and high temporal resolution of meteorological stations to characterize the impact
of climatic and topographic conditions on satellite-based rainfall products at the time of
MW overpass. We also assessed the performance of regionally trained RF-based rainfall in
Ecuador on the subdaily time scale (30 min) and high spatial resolution (2 km2) with the aim
of finding the source of possible errors for further development. Following a description
of the climatology of the study area, the satellite-based rainfall products, ground based
radar data and meteorological stations are described in Section 2.1. Section 2.2 introduces
the evaluation methodology with a focus on rain area detection and rain estimation. The
results are presented in Section 3 and discussed in Section 4. Finally, the important findings
are summarized in Section 5.

2. Materials and Methods
2.1. Data
2.1.1. Radar

In the current study, the data from two rainfall radars, which are part of the Radarnet-
Sur network in Southern Ecuador, were used. The westernmost radar system is located on
Cerro Guachaurco (3100 m above sea level (m.a.s.l) (GUAXX radar)). Another radar system
is located at 4450 m.a.s.l (to the best of our knowledge, this is the highest worldwide) on
the Paragüillas peak on the north border of the Cajas National Park in Southern Ecuador
(CAXX radar). The radars have a maximum range of 100 km2 and provide images with
spatial resolutions of 500 m every 5 min. For more information about the Radarnet-Sur
network (Figure 1a) infrastructure, please refer to Bendix et al. [21]. The coverage of radars
in this study is shown in Figure 1a.

Radarnet-Sur calibration strategies have been continuously developed since 2006. The
calibration strategy is based on a statistical procedure that uses the available rain gauge
data. The data processing and correction algorithms in this empirical calibration consisted
of four steps: (i) clutter and noise removal; (ii) atmospheric and geometric attenuation
correction; (iii) interpolation of blind sectors; (vi) application of the empirically derived
daily variable Z/R relationship. In this equation Z means radar reflectivity factor and R
stands for rainfall intensity. For more information about the calibration algorithm, please
refer to [22]. The final product from the radars used a blending technique for overlapping
areas and temporal data gaps were completed using additional data from the rain gauges.
For further information about the extended calibration strategy, please refer to [23].

The observed rainfall data from the radars were quality-controlled for detecting
possible inconsistencies and selecting high-quality data. All the scenes from the radars
were visually inspected. For this, the gauge data from the National Institute of Meteorology
and Hydrology (INAMHI) (daily), the Universidad TécnicaParticular de Loja (UTPL)
gauge network (10 min resolution), and the Cuenca University gauge network were used
as references. The scenes in which there were no rain in the radar but rain in each of
the gauges and vice versa were removed. Additionally, obviously failed recordings were
manually removed. Furthermore, we used the infrared channel IR 3.9 from GOES-16 to
detect the movement of cold clouds and radar rainfall rate. Although we have enough data
available in our observation period, electronic technical problems and other issues caused
data failure.

We delivered the final products of radar reflectivity and rainfall rate after attenuation
and clutter correction for the time period between April 2017 and the end of January
2018 (GUAXX: 16 June 2017 to 1 February 2018; CAXX: 19 April 2017 to 1 July 2017). The
reflectivity ranged from −31.5 to 91.5 dBZ with a total of 256 possible values.
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The spatial distribution of the sum of the radar rainfall for the observation period
is shown in Figure 1b. The rainfall sum, showing totals between 250 and 4492 mm. The
rainfall pattern is different over the study region, covering a climatically diverse area.
The spatiotemporal rainfall distribution in the radar coverage is generally affected by the
Andes mountains, the El Niño–Southern Oscillation (ENSO), the biannual migration of
the intertropical convergence zone (ITCZ), and also the cold von Humboldt current in
the Pacific Ocean, [15,24,25]. On the eastern sides of the Andes, the strong topographic
slopes and easterly winds result in orographic effects [26,27], which is causing the cyclical
spatiotemporal rainfall behavior and deep convection [28].

Figure 1. The distribution of (a) meteorological stations (19 April 2017 to 28 February 2018) and
spatial coverage of radars (GUAXX: 16 June 2017 to 1 February 2018; CAXX: 19th April 2017 to 1 July
2017) used in this study, (b) the radars in the study period (GUAXX: 16 June 2017 to 1 February 2018;
CAXX: 19th April 2017 to 1 July 2017). For validation purposes, we excluded the radar data in the
very near range (<10 km distance from the radar site) to avoid contamination through noise. We also
excluded the far range >50 km due to possible attenuation errors. Nevertheless, we show the rainfall
amount in the entire radar range for better illustration. The extent of study area is shown in windows
(W)-1. (c) Spatial distribution of the elevation in the radar coverage area. W-2 and W-3 rectangles
outline the extent of Figure 2a,b.

2.1.2. Meteorological Stations

A meteorological station network, comprising 21 high-temporal-resolution rain sta-
tions, was used in this study. Meteorological station data were obtained from UTPL and
University of Cuenca. Meteorological stations from UTPL and University of Cuenca pro-
vide rain data every 10 and 5 min, respectively. Daily rainfall information was acquired
from INAMHI. Meteorological station data from 19 April 2017 to 28 February 2018 were
used as validation information to examine radar quality. The high temporal resolution
meteorological stations from UTPL and the University of Cuenca are used to validate the
satellite-based products at the time of MW-overpasses. We obtained the data from all
organizations after quality checks.

The quality check for the station data from the University of Cuenca is performed
by drawing a cumulative precipitation curve that identifies abnormal records (outliers
and wrong measurements). These measurements are disregarded from the time series. In
addition, correlation to nearby stations is also performed as a double check if necessary. In
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order to maximize the quality of the measurements, regular maintenance of the stations in
the field (every three weeks or fewer) is performed. For the INAMHI data, it is checked if
daily values are between 0 and 250 mm, which is the maximum daily precipitation value
registered at a national scale.

Figure 1a shows the distribution of the meteorological stations used in this study.
It should be noted that these data are not included in the Global Precipitation Cli-

matology Center (GPCC) network and therefore not used for the gauge-calibrated final
IMERG product.

2.1.3. Integrated Multi-Satellite Retrievals for GPM

IMERG is a level 3 product which integrates all MW sensors, MW-calibrated IR
estimates, and rain gauge measurements on a global scale [29]. All MW estimates, af-
ter calibration, were subjected to the Climate Prediction Center MORPHing technique
(CMORPH) [30] to calculate the motion vectors from the IR measurements and the different
atmospheric variables from numerical models. In regions without direct PMW overpasses,
the algorithm uses the retrieved rainfall from PERSIANN-CCS [14] and GEO IR (IR-only
IMERG) to complete the gridded product. In the last step, the monthly rain data from the
GPCC were used to as a bias correction of the rainfall estimate [29].

In this study, the latest available version of IMERG (IMERG-V06 [29]), which displayed
an overall improvement in the precipitation estimation compared with version-05 [31],
was used.

The IMERG provides rainfall estimates with the spatial resolution of 0.1° (11 km2)
in every 30 min. We focused on the final product of IMERG Version 06 (IMERG-V06),
gauge-adjusted retrievals for the study period. NASA also provided the quality index
(QI) as a variable in 30 min resolution [32]. The QI indicates the relative quality of rainfall
estimates in half-hourly IMERG products, fluctuating temporally between passive MW
(PMW) and IR-based rainfall estimates. Additionally, the time of the overpass of each MW
swath is provided in metadata with the name of ‘HQobservationTime’.

For our validation, the multi-satellite precipitation estimates with the gauge calibration
subdata set of IMERG (precipitationCal), as well as “IRprecipitation” was used. In this
study, IRprecipitation and IR-only IMERG are equivalent.

2.1.4. Random Forest-Based Rainfall

The random forest-based rainfall (RF-based rainfall) product is the regionally cali-
brated rainfall retrieval scheme developed Ecuador by Turini et al. [3]. The algorithm uses
random forest (RF) to calculate rainfall rates in surface level by means of multi-spectral IR
data from Geostationary Operational Environmental Satellite 16 (GOES-16). The algorithm
is trained based on MW-only precipitation data from IMERG-V06. The RF-based rainfall
product was implemented by (i) delineating the rain area, and (ii) assigning of the rainfall
rate at 11 km2 spatial resolution and for the time of a MW overpass. As predictors, GOES
IR bands, band combinations, geostatistical texture features calculated from the original
GOES IR bands, and ancillary data were used. Turini et al. [3] used the geostatistical texture
features to capture the clouds’ heterogeneity. They calculated the texture features using
a 5 × 5 pixel moving window method. First, for each GOES IR band, variograms (VARs),
madograms (MADs), and rodograms (RODs) and then, for each possible bands combina-
tion, cross-variograms (CVs) and pseudo cross-variograms (PCVs) were calculated. Please
refer to Schulz et al. [33] for more information about definitions and equations of texture
features. The most important features were obtained monthly for each of the steps (rain
area delineation and rainfall rate assignment) separately. The model tuning and feature
selection results showed that, in addition to the ancillary data, the information recorded
in the geostatistical texture features was the most important for rain area delineation and
rainfall rate assignment [3].

The PCV was the dominant texture feature selected in almost all months, both for rain
area delineation and rain rate assignment [3].
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After training the models, the RF-based rainfall at a high spatiotemporal resolution
(2 km2, 15 min) was estimated. In this step, the models were applied to the GOES-16
scenes where MW-IMERG was available and the following scenes until the next model was
present in Turini et al. [3]. The product is available from 19 April 2017 to 19 April 2018.

2.2. Methods

Three different validations were employed in this study to assess satellite-based
rainfall product performance. Due to the different availabilities of the slots of the products,
the period for this study ranged from 19 April 2017 to 1 February 2018 in the time slots
where radar data are available.

• The performance of the satellite-based rainfall products are investigated against the
X-band rain radar network at the time of MW overpass at a spatial resolution of 11 km2.

• The performance of the satellite-based rainfall products is investigated against the
ground based meteorological station network at the time of MW overpass at a spatial
resolution of 11 km2.

• The RF-based rainfall product is validated against the X-band rain radar network in
the temporal resolution of 30 min and spatial resolution of 2 km2.

2.2.1. Validation of Satellite-Based Rainfall Products at the Time of MW Overpass
from IMERG

The first validation was performed to investigate satellite-based rainfall products’
performance against X-band rain radar network when MW overpass sensors from IMERG
are present. This is essential since the IMERG data set has been widely used to develop
satellite-based rainfall products [8,12,13,34].

We used different subdata sets in the IMERG product. We first considered the pixels
from “precipitationCal” when the PMWs swat was available (“HQobservation”). Then,
the pixels with the “PrecipitationQualityIndex” >0.6 (which indicates the current half-hour
microwave swath data) [32] were picked out. “IRprecipitation” were also selected in the
same pixels from IMERG. This data set (IR only) was retrieved from the PERSIANN-CCS
in IMERG, which are calibrated regionally to the PMW-only measures [29]. Therefore, in
this study, we named this product “IR-only IMERG”.

To compile the most robust data set for the first validation of satellite-based rainfall
products against the radars at the time of MW overpass in IMERG, we defined the fol-
lowing criteria: (i) For temporal matching, we used “HQobservationTime” for IMERG
to determine the exact time of MW overpass in each pixel. Then, we rounded the WM
overpass time to the closest 5 min to be compatible with the temporal resolution of the
radar (every 5 min). In this step, we assumed that the RF-based rainfall and IR-only
IMERG have the same timing as the time of MW overpass. (ii) To ensure the high-quality
rainfall information from IMERG (merged MW-only precipitation estimates), we used
the “PrecipitationQualityIndex”. (iii) Sensitivity to light rain continuously degrades with
increasing distance from the radar. To only assess the near range, we applied a circular
mask with a radius of 50 km from the center of each radar. (iv) A mask for filtering the
radar data for plausibility was also applied. A value of 1 indicates reliable data from radars.
(v) There was some noise in the center of the radar due to the cross-talk from the antenna’s
side-lobes. Therefore, we omitted the inner pixels with a radius of 10 km from the center
for the validation. (vi) Due to the different spatial resolutions of the RF-based rainfall
(2 km2), radar (0.5 km2), radar quality index (0.5 km2), DEM (1 km2), and IMERG (11 km2),
the average resampling techniques in gdal [35] were used to guarantee spatial matching
between the different data sets. In our study, we used the WGS84 projection coordinate
system and all dataset were resampled to the spatial resolution of IMERG (11 km2). (vi)
The 0.5 mm/h was used as a threshold between rainy and non-rainy pixels for validation.
(vii) The pixels in the radar considered rainy (>0.5 mm/h) but has a dBZ lower than −15
were considered false and filtered out from the validation data set.
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By applying above criteria and withdraw the data pairs of the first validation against
radar on a pixel basis, a total of 117,183 pixels of radar and MW-based IMERG, RF-based
rainfall, and IR-only IMERG were made available at a half-hourly resolution for validation.

In the second validation, the overall performance of the rainfall area delineation and
rainfall rate assignment was investigated for each product against data from ground based
meteorological stations at the time of the MW overpass.

For comparison with the meteorological ground based station network, we only
considered pixels with a minimum number of three gauges (see Figure 2). Tang et al. [36]
underline that gauge networks with limited numbers of gauges in each pixel leads to
underestimation of the performance of satellite-based rainfall products. This is because the
point observations of gauges cannot represent pixel-based precipitation. Therefore, for this
validation the stations from University of Cuenca with the temporal resolution of 5 min
(Ana Davis, Zona Militar Davis and Balzay) and from UTPL (UTPL Militar, UTPL Tecnico
and UTPL Villonaca) with the temporal resolution of 10 min are considered.

Figure 2. Location of pixels with a minimum number of three gauges for (a) the University of Cuenca
gauge network and (b) the UTPL gauge network. In Figure 1a, W-2 and W-3 rectangles outline the
extent of (a) and (b), respectively.

To generate the dataset for ground truth validation of the three satellite-based products
against the gauge network, we proceeded as follows: (i) for temporal matching, we used
“HQobservationTime” for IMERG to determine the exact time of MW overpass in each pixel.
Then, we rounded the WM overpass time to the closest 5 min to be compatible with the
temporal resolution of the radar (every 5 min). In this step, we assumed that the RF-based
rainfall and IR-only IMERG have the same timing as the time of MW overpass. (ii) To
ensure the high-quality rainfall information from IMERG (merged MW-only precipitation
estimates), we used the “PrecipitationQualityIndex”. In the next step (iii), the spatial
matching were done using the average resampling techniques in gdal [35] to resample the
products to the spatial resolution of IMERG (11 km2). (iv) The threshold of 0.5 mm/h was
used to distinguish between rainy and non-rainy events. (v) After selecting pixels, the
arithmetic mean rainfall from station data was computed in these pixels, given that every
pixel includes three stations at minimum.
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2.2.2. Validation of RF-Based Rainfall Products in Native Resolution

In the third validation, we investigated the general behavior RF-based rainfall in
rainfall area delineation and rainfall estimation in the native spatial resolution (2 km2)
and every 30 min in the entire study area for the study period. To prepare the data set for
this validation strategy, we defined the following criteria: (i) In our study, area, subscale
convective rainfall systems in the transition zones and valleys [37] are dominant. To
understand satellite-based rainfall products’ capability to capture these events, we kept the
original spatial resolutions of the RF-based rainfall, 2 km2; (ii) to minimize the uncertainties
caused by the potential temporal offset between RF-based rainfall products, the radar
and RF-based rainfall were aggregated in time to 30 min. For the temporal aggregation
of the radar and the RF-based rainfall, we considered a unit conversion between mm/h
and mm/30 min. (iii) We used a threshold of 0.2 mm/30 min to distinguish between
rainy and non-rainy pixels for validation; (iv) equal to the first validation strategy, the
pixels of the radar considered rainy (>0.2 mm/30 min) at a dBz lower than −15 dBz were
considered false and were removed from the validation data set. (v) We omitted the inner
pixels within a radius of 10 km2 from the center; (vi) a mask for filtering the radar data for
plausibility was also applied. (vii) In the next step, the RF-based rainfall was aggregated
for the observation period in 1 h, 3 h, and daily for evaluation against the radar.

2.2.3. Validation Metrics for Rainfall Area Delineation and Rainfall Estimate

We considered all pixels from the validation data set in each validation strategy for
the validation of rainfall area delineation. First, we calculated the cross-table’s respective
satellite-based rainfall products in comparison with the radar as a reference. Therefore we
calculated the misses (M), hits (H), false alarms (F), and correct negatives (C). We define hit
when the satellite-rainfall product and the radar are both raining in the same location. A
miss occurs when the satellite-rainfall product is not raining but the radar shows rain, a
false alarm holds when the satellite-rainfall product is raining but the radar is not and a
correct negative is when both, the satellite-rainfall product and radar are showing cloudy
but not rainy conditions (Figure 3).

Figure 3. Schematic view of how H, M, and F were designated in the rain area validation. The dry
pixels are shown in white, and the rainy pixels are shown in grey. The standard approach defines
M (F) when a rainy pixel in the radar (satellite-based rainfall product) is related to a dry pixel in
the satellite-based rainfall product (radar) at the same time. In the temporal event-based approach
(fourth row), the M (F) in the vicinity time of hits are defined as a reduction (continuous) in the event
duration. Thus, the terms Duration+ (Duration-) are described. True misses and true false alarms are
the errors occurring simultaneously or in the same pixel, respectively [17].

We also defined temporal and spatial events. Schematic images of temporal and
spatial events are illustrated in Figures 3 and 4, respectively.

Temporal events were defined to check the time lag effect of satellite scanning. You
et al. [38] stressed this aspect for PMW observation. Later, Maranan et al. [17] investigated
the time lag effect in IMERG, where false alarms were reduced through the temporal shift
in IMERG relative to surface observations.
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Figure 4. Schematic view of how hits, misses, and false alarms are designated in the rain area
validation. The dry pixels are shown in white, and the rainy pixels are shown in grey. The standard
approach defines M (F) when a rainy pixel in the radar (satellite-based rainfall product) is related to a
dry pixel in the satellite-based rainfall product (radar) at the same time. In the spatial event-based
approach (second row), the M (F) in the neighboring pixels are defined as a spatially drifted miss
(false alarm) of the event. The errors simultaneously and in the same pixel are called true misses and
false alarms, respectively.

We calculated the probability of detection (POD), false alarm ratio (FAR), and Heike
skill score (HSS) as validation metrics from the H, M, F, and C.

To evaluate the accuracy of estimated rainfall from each satellite-based rainfall product,
we used the mean absolute error (MAE), root mean square error (RMSE) and mean error
(ME), and their normalized counterparts. These metrics were calculated when it was rainy
for both radar and satellite-based rainfall products. Table 1 shows the detailed equations
and the range of these metrics.

Table 1. List of validation metrics used in this study for rain area delineation and rain estimate.

Name Metrics Equation Range Optimum

Probability of detection POD = H
H−M

(
0,1
)

1

False alarm ratio FAR = F
F−C

(
0,1
)

0

Heike skill score HSS = 2(H×C−F×M)
(H−M)(M+C)+(H+F)(F+C)

(
0,1
)

1

Mean absolute error MAE = 1
n ∑n

i=1 |Pi −Oi| - -

Normalized mean absolute er-
ror

NMAE =
1
n ∑n

i=1 |Pi−Oi |
1
n ∑n

i=1 Oi
- -

Root mean square error RMSE =
√

∑n
i=1(Pi−Oi)2

n - -

Normalized root mean square
error

NRMSE =

√
∑n

i=1(Pi−Oi)
2

n
1
n ∑n

i=1 Oi
- -

Mean error ME = 1
n ∑n

i=1(Pi −Oi) - -

Normalized mean error NME =
1
n ∑n

i=1(Pi−Oi)
1
n ∑n

i=1 Oi
- -
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3. Results
3.1. Validation Metrics for Satellite-Based Rainfall Products at the Time of MW Overpass against
X-Band Rain Radar Network
3.1.1. Rain Area Delineation

The frequency of occurrence of the cross-table components formed on all available
MW overpass timing (n = 51,384) is presented in Figure 5. Less than 5% of the MW overpass
times in either radar or satellite-based rainfall products contain rainfall and a total of 0.73%,
0.58%, and 0.39% are hits for MW-based IMERG, RF-based rainfall, and IR-only IMERG,
respectively. Successively, false alarms dominated the error with a fraction of 2.53% for
MW-based IMERG, 2.08% for RF-based rainfall, and 2.24% for IR-only IMERG. All three
product show reasonable agreement with the radar at the time of MW overpass Table 2.
All products have a high FAR (0.78 for MW-based IMERG and RF-based rainfall, and 0.85
for IR-only IMERG).

Figure 5. Standard cross-table approach for all available MW overpass times for the validation of
rain area delineation for (a) IR-only IMERG, (b) RF-based rainfall, and (c) MW-based IMERG. Note
that the correct negative fraction extends to 100%.

Table 2. The rain area delineation performance of satellite-based rainfall over the MW overpass time
compared to ground radar network.

Satellite-Based Rainfall Products POD FAR HSS

MW-based IMERG 0.74 0.78 0.33
RF-based rainfall 0.58 0.78 0.31
IR-only IMERG 0.39 0.85 0.2

Overall, MW-based IMERG exhibits relatively better performance (HSS = 0.33), RF-
based rainfall performs somewhat the same as MW-based IMERG (HSS = 0.3), whereas
IR-only IMERG performs the worst (HSS = 0.2). This shows the higher potential of using
multispectral GEO data (RF-based rainfall) compared with only one IR channel rainfall
retrieval, as is the case for IR-only IMERG [3,8,12,13].

Figure 6 reveals the spatial performance of the satellite-based rainfall products at the
time of MW overpass during the study period. Figure 6c,f,i shows the spatial distribution of
HSS for MW-based IMERG, IR-only IMERG, and RF-based rainfall, respectively. The HSS
share similarities in the spatial distribution for all products, with the maximum occurring
at the north and northeast of the study region (0.4–0.7 for MW-based IMERG, and 0.4–0.8
for IR-only IMERG and RF-based rainfall). However, in the northwestern part of the region,
the ability to capture precipitation is almost lost due to the lower POD and higher FAR
(0.7–1 for MW-based IMERG, IR-only IMERG, and RF-based rainfall) in all the products.
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The GUAXX radar performs better in terms of POD in general but with a relatively higher
FAR (0.6–1 for MW-based IMERG, and 0.7–1 for IR-only IMERG and RF-based rainfall), and
this phenomenon illustrates that the products have difficulties in capturing the rainfall in
these region (HSS of 0.1–0.6 for MW-based IMERG, 0.1–0.3 for IR-only IMERG, and 0.1–0.6
for RF-based rainfall). Please note that the time periods of available data for GUAXX and
CAXX are different.

Figure 6. Spatial distribution of the validation metrics for rain area delineation at the time of MW
overpass. (a) POD, (b) FAR, and (c) HSS showing the matrics for MW. The variables were calculated
for MW-based IMERG. (d) POD, (e) FAR, and (f) HSS illustrating the performance of IR-only IMERG.
(g) POD, (h) FAR, and (i) HSS showing the RF-based rainfall performance. The variables were
calculated for each grid point of the validation data set over the stated period. For better illustration,
we show the results up to 75 km distance from the center of each radar.

Figure 7 provides an overview of the validation metrics of the three satellite-based
rainfall products for rain area delineation, along with the altitude. All products have a
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high FAR and a convincing POD. The performance at a terrain elevation of approximately
0–1500 m.a.s.l is relatively lower for all of the three products with HSS of 0.2–0.29 for MW-
based IMERG, 0.1–0.22 for IR-only IMERG, and 0.2–0.25 for RF-based rainfall. The rain
area delineation performance increased until 3000 m.a.s.l. At 0–750 m.a.s.l, the RF-based
rainfall (HSS = 0.25) performs the best of all products.

Figure 7. Boxplot of the validation metrics for rain area delineation over the MW overpass time. The
performance of (a) MW-based IMERG, (b) IR-only IMERG, and (c) RF-based rainfall along elevation.
Boxes show the 25th, 50th, and 75th percentiles. Whiskers extensions are to the maximum data value
between the 75th and 25th percentiles. Diamonds indicate outliers.

Figure 8 provides an overview of the rain area delineation performance, along with
different rainfall rates. In all products, rainfall rates lower than 2 mm/h have the highest
FAR. With increasing rainfall rate, the performance of all products increases until 6 mm/h.
For a rain rate of more than 6 mm/h, the products perform steadily. Altogether, the graph
confirms (i) the poor rain area delineation performance at lower rainfall rates in Ecuador,
and (ii) the WM-based IMERG shows the best performance with different rain rates in
Ecuador, followed by RF-based rainfall.
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Figure 8. The rain area delineation performance over the MW overpass time and at 11 km2 for
different rainfall rates for (a) MW-based IMERG, (b) RF-based rainfall, and (c) IR-only IMERG.

3.1.2. Rainfall Estimation

Table 3 exhibits the ability of satellite-based rainfall products to estimate rainfall at the
time of MW overpass. RF-based rainfall shows the best performance compared with the
two other products. All three products underestimate rainfall, indicated by their negative
ME and NME.
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Table 3. The rainfall estimation performance of satellite-based rainfall over the MW overpass time compared to the ground
radar network.

Satellite-Based Rainfall Products RMSE (mm/h) NRMSE MAE (mm/h) NMAE ME (mm/h) NME

MW-based IMERG 2.96 0.82 1.86 1.35 –1.48 –1.07
RF-based rainfall 2.47 0.8 1.66 1.16 –1.34 –0.93
IR-only IMERG 4.65 1.27 2.5 1.63 –2.13 –1.39

The scatter plots in Figure 9 illustrate how the rainfall rate at the time of MW over-
pass is distributed for each of the satellite-based rainfall products against the radar. Only
pixels with hits are considered, therefore the number of hits (n) differs for each product
(Figure 9a,d,g). The overall variability in all the products is high, which might be due to
issues in timing or/and rainfall estimation (Figure 9a,d,g) [17]. Overall, IR-only rainfall
shows the best correlation line close to 1:1. The regression line also indicates the under-
estimation by RF-based rainfall. MW-based IMERG and IR-only rainfall overestimate
the rainfall rate. Figure 9b,e,h shows the rainfall rate for each product against radar in
quantile–quantile (Q–Q) plots.

Figure 9. Comparison of rainfall rates estimated by the radar and satellite-based products.
(a,d,g) Scatter plot with radar rainfall rates (x-axis) and microwave-based IMERG, IR-only IMERG,
and RF-based rainfall rates (y-axis), respectively. Only pixels with hits are considered. The parame-
ters n show the total number of hits. (b,e,h) Quantile–quantile (Q–Q) plot of the radar (x-axis) and
microwave-based IMERG (y-axis), IR-only IMERG (y-axis), and RF-based (y-axis) rainfall rates. The
10th, 50th, and 90th percentiles are illustrated. (c,f,i) The distribution of cumulative rainfall rate for
the contingency table of each satellite-based product. The radar rain rate is displayed in black as a
reference.

The Q–Q plot ignores the corresponding time steps in order to underline the dif-
ferences between the radar and each product in a more comprehensive manner [17]. In
MW-based IMERG (Figure 9b) the rainfall rate is almost evenly distributed up to 5 mm/h,
the positive values for MW-based IMERG at higher rainfall rates are more evident. The dis-
tribution of the rainfall rate between radar and IR-only IMERG shows more discrepancies
(Figure 9e). IR-only IMERG shows negative biases until the 90th percentile and shows high
positive bias for the higher rainfall rates. RF-based rainfall is distributed relatively even
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for all rainfall rates, with a slight negative bias between 3 and 5 mm/h. Overall, IR-only
IMERG and MW-based IMERG are unable to model the most extreme rainfall rates. For
extreme rainfall rates, RF-based rainfall shows better performance. The cumulative distri-
bution of the rainfall rates for hits and the other contingency table elements is compared in
Figure 9c,f, i, for MW-based IMERG, IR-only IMERG, and RF-based rainfall, respectively.
In MW-based IMERG (Figure 9c) and RF-based rainfall (Figure 9i), around 60% of the FARs
is equal to or less than 1 mm/h. This is also true for IR-only IMERG (Figure 9f). The FAR is
also shown for higher rainfall rates in the RF-based rainfall product. This underlines that
the algorithm is flawed for low-intensity rainfall in these products [17]. The misses show
the same distribution as the radar’s distribution for all three products.

Figure 10 provides an overview of the validation metrics of the three satellite-based
rainfall products for rain estimation along with altitude. MW-based IMERG and IR-only
IMERG have difficulty estimating rainfall at lower elevations (0–500 m.a.s.l), which is
shown by the extension of the boxplot for NRMSE and NMAE in this elevation range.
RF-based rainfall has relatively lower values of NRMSE, NMAE, and NME at an elevation
of 0–500 m.a.s.l. With increasing elevation, the rain estimation performance is relatively
moderate until 2500 m.a.s.l. For high terrain elevations of approximately 2500–4000 m.a.s.l,
all products show a significant uncertainty, mainly in NME. All the products underestimate
the rainfall rate at high elevation (2000–4000 m.a.s.l).

Figure 10. Boxplot of the validation metrics for rain estimation at the MW overpass time. The
performance of (a) MW-based IMERG, (b) IR-only IMERG, and (c) RF-based rainfall are shown along
with elevation. Boxes show the 25th, 50th, and 75th percentiles. Whiskers extensions are to the
maximum data value between the 75th and 25th percentiles. Diamonds indicate outliers.
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3.2. Validation Metrics for Satellite-Based Rainfall Products at the Time of MW Overpass from
IMERG against Meteorological Stations

Table 4 summarizes the performance of satellite-based rainfall products for rain area
delineation against meteorological stations at the time of MW overpasses for the pixel in
W-2 (Figure 2a) and W-3 (Figure 2b).

Table 4. Rain area delineation performance of satellite-based rainfall products at the time of MW
overpass compared to the meteorological station network. Pixel W-2 and W-3 are shown in Figure 2a
and Figure 2b, respectively.

Pixel Number Satellite-Based Rainfall Products POD FAR HSS

W-3 MW-based IMERG 0.33 0.83 0.21
W-3 RF-based rainfall 0.25 0.83 0.19
W-3 IR-only IMERG 0.17 0.89 0.12
W-2 MW-based IMERG 0.29 0.82 0.19
W-2 RF-based rainfall 0.35 0.78 0.24
W-2 IR-only IMERG 0.23 0.82 0.19

The validation scores show the superior performance of the IMERG-MW-based and
RF-based rainfall products in comparison to IMERG-IR-only in W3. W2 shows a slightly
better performance for RF-based rainfall while IR-only IMERG and MW-based IMERG
are more or less the same. Still, all of the products overestimate precipitation area. These
behaviors are similar to the validation of the rainfall products at the MW overpass time
against the X-band rain radar network (Table 2). However, the validation scores indicate a
lower performance of the satellite-based rainfall products by using the radar data compared
to higher scores by using the station data. This is not surprising, since a low number of the
gauges in a pixel (3 gauges in 11 km2) is not representative for the spatial distribution of
rain. Therefore, the assessment of satellite-based rainfall products against a low number of
gauges in each pixel underestimates their performance [36].

Table 5 shows the satellite-based rainfall products’ ability to estimate the rainfall at
the time of MW overpass against ground truth data. The behavior of satellites is different
in two pixels. In W-2, IR-only IMERG shows the best performance compared to the other
two products. Meanwhile, in W-3, the RF-based rainfall capture the rain estimate more
accurately compared to other products. In general, all of the products overestimate rainfall
slightly (positive ME).

Table 5. Rainfall estimation performance of satellite-based rainfall over the MW overpass time compared to ground radar
network.

Pixel Number Satellite-Based Rainfall Products RMSE
(mm/h) NRMSE MAE

(mm/h) NMAE ME
(mm/h) NME

W-3 MW-based IMERG 1.10 1.03 0.96 0.91 0.83 0.78
W-3 RF-based rainfall 0.48 0.45 0.85 0.80 0.83 0.78
W-3 IR-only IMERG 3.32 3.11 3.27 3.07 0.83 0.80
W-2 MW-based IMERG 1.03 0.87 0.68 0.57 0.68 0.57
W-2 RF-based rainfall 1.11 0.94 1.05 0.89 0.60 0.71
W-2 IR-only IMERG 0.68 0.58 0.49 0.41 0.77 0.67

3.3. Validation Metrics for RF-Based Rainfall Products in Native Resolution
3.3.1. Rain Area Delineation

Using the analysis techniques described in Section 2.2.3, the ability of RF-based rainfall
to estimate rainfall in comparison with the radar at 2 km2 spatial resolution and 30 min
temporal resolution is shown in Figure 11 (n = 1,048,575). Less than 3% of the time steps
in either radar or RF-based rainfall contain rainfall including 0.31% of hits (Figure 11a).
The errors are dominated by false alarms at 1.57%. The decomposition of misses using
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the temporal event-based approach shows that almost 12% of the misses occur in the
coincidental timing from radar precipitation (Figure 11b, Duration −, yellow bar; Duration
+, black bar), whereas the spatially drifted misses are not recognizable (Figure 11d). Almost
4% of the overestimation occurs by overestimating event duration (Figure 11c), and 8.5%
by overestimating events in the neighboring pixel (Figure 11e).

Figure 11. (a) Standard contingency table approach for all available RF-based rainfall products for both radars at 2 km2 and
30 min. Note that the correct negative fraction extends to 100%. (b,c) The temporal event-based approach of the contingency
table was evaluated in the M and F subsets, respectively. (d,e) The spatial event-based approach of the contingency table
was evaluated in the M and F subsets, respectively. The numbers in the bars show the percentage.

The performance is summarized in Table 6. As expected, a noticeable result is the
high FAR of 83%, showing that 83% of rainy events are false alarms. This is almost similar
behaviour as for RF-based rainfall at the MW overpass in 11 km2 temporal resolution
(Table 2). By applying the algorithm in 2 km2 spatial and 30 min temporal resolution, the
ability of rain detection by RF-based rainfall has reduced compared to the RF-based rainfall
in MW-overpasses and at 11 km2 spatial resolution (HSS = 0.31).

Table 6. Performance evaluation of RF-based rainfall at rainfall area delineation for 2 km2 spatial
and 30 min temporal resolution.

Satellite-Based Rainfall Products POD FAR HSS

RF-based rainfall 0.28 0.83 0.20

3.3.2. Rain Estimation

Table 7 summarizes the performance of RF-based rainfall in estimating rain at 2 km2

spatial and 30 min temporal resolution. The RF-based rainfall shows better performance in
estimating rainfall at higher resolution compared with lower resolution (Table 3).

Table 7. Performance evaluation of RF-based rainfall for rainfall estimation 2 km2 spatial and 30 min temporal resolution.

Satellite-Based Rainfall Products RMSE (mm/h) NRMSE MAE (mm/h) NMAE ME (mm/h) NME

RF-based rainfall 2.39 1.07 1.72 0.77 0.51 0.22

Focusing on hits, Figure 12 shows the rain estimation retrieval ability of RF-based
rainfall in comparison with the radar. The scatter plot in Figure 12a shows the distribution
of the half-hourly rain rates. The rain rates illustrates high variability, suggesting problems
in rain estimation retrieval and/or timing. This is also shown in Figure 9g at the time of
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MW overpass. Figure 12b shows the Q–Q plot for RF-based rainfall. The overall estimation
of the rainfall is placed along the 1:1 line to the 90th percentile. However, the curve deviates
towards the left after the 90th percentile, showing an overestimation of rain intensities
in the outliers. Figure 12c decomposes the results in more detail. Overall, RF-based
rainfall is unable to detect the most extreme rainfall rates, as reported by Turini et al. [3].
The cumulative distribution of rainfall rates for hits, misses, radar, and false alarms are
compared in Figure 12a. Around 60% of false alarms and misses are less than or equal to
1 mm/h. This is also true for 60% of event-based (temporally and spatially) false alarms
Figure 12d. The event-based misses are evenly distributed over the different rainfall rates.

Figure 12. Comparison of rain rates estimated by the radar and RF-based rainfall at 2 km2 and 30 min. (a) Scatter plot with
radar rainfall (x-axis) and RF-based rainfall (y-axis). Only the pixels with hit are considered. (b) Q–Q plot of radar (x-axis)
and RF-based rainfall rates (y-axis). The 10th, 50th, and 90th percentiles are illustrate. (c) The distribution of cumulative
rainfall rate for the contingency table. (d) The distribution of cumulative rainfall rate based on the event-based (spatial and
temporal) contingency table.

3.4. Validation Metrics for RF-Based Rainfall Products at Different Temporal Resolutions

To validate the results of rain area delineation and rain estimation in different temporal
resolutions, Figure 13a,b presents the validation metrics with the radar for the whole study
region and observation period. The results show the best agreements regarding rain area
delineation in daily resolution (POD 0.68, HSS 0.4, and FAR 0.6).

The rain estimation indices for RF-based rainfall do not show a significant improve-
ment for the different temporal resolutions. The NME suggests the overestimation of
precipitation by RF-based rainfall at lower resolution (after 3 h) and an underestimation at
higher temporal resolutions. Note that in this step, we considered rainfall at a rate of more
than 0.5 mm/h as rainy.
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(a) (b)

Figure 13. Comparison of the validation metrics between the radar and RF-based rainfall at 2 km2

and 30 min, 1 h, 3 h, and daily. The performance of RF-based (a) rain area delineation and (b) rain
estimation is shown for different temporal resolutions.

4. Discussion

In Section 3.1, satellite-based rainfall products at the time of MW overpasses from
IMERG were assessed using radar data. We evaluated the satellite-based products in grid
cells at the time of MW overpasses and a spatial resolution of 11 km2.

The verification scores for rain area delineation revealed that the MW-based IMERG
has superior performance in estimating rain area (POD = 0.74, HSS = 0.33). RF-based
rainfall, which is trained based on MW-based IMERG, has slightly lower performance
compared to MW-based IMERG data (HSS = 0.31). IR-only IMERG performed the worst in
Ecuador. This is in line with the findings of Kolbe et al. [12], Kolbe et al. [13], Turini et al. [8],
and Turini et al. [3]. It shows that multispectral GEO data has more potential than using
one IR channel only for rainfall retrieval.

The frequent false alarm is one of the most noticeable issues identified in the present
study. This agrees well with the result of IMERG-V06 validation in the west African forest
zone [17] and confirms the previous investigation of IMERG-v05 by Manz et al. [15] in the
Andes region. In our study, around 60% of the false alarms were related to rain rates less
than 1 mm/h for all products (Figure 9), which was found to be the dominant rainfall
intensity in this region of the world [39]. We also note that the radar potentially underes-
timated rainfall [40–43]. This was also reported elsewhere for the radars in Ecuador [23].
In MW-based IMERG and RF-based rainfall, with increasing the rainfall rate, the FAR
decreases while POD does not change (Figure 8).

The results of the topography-based evaluation indicated the high detection accuracy
of MW-based IMERG and RF-based rainfall in different topographical regions. Moreover,
the highest errors occurred for coastal areas and foothills (0–1500 m.a.s.l) and high moun-
tains regions (>3000 m.a.s.l) compared to the other topographical regions. All the products
experienced challenges in estimating rainfall at high elevation in the Andes (Figure 10).
In Ecuador, high-elevation areas and volcanoes have two issues for rainfall retrieval al-
gorithms: (i) They are regularly covered by ice, which generates errors in MW-based
IMERG [29,44]; (ii) the drizzle on the high elevation is hard to be captured by MW and IR
channels. This conclusion is in agreement with the findings of study conducted by Prakash
et al. [45], who assessed the performance of IMERG products in monsoon-dominated
regions in India. Their results showed that IMERG was affected by the orographic process,
which leads to higher errors in mountainous areas. Another study by Kim et al. [46] re-
vealed the disadvantage of IMERG products over mountainous and coastal regions. Similar
results were obtained by Turini et al. [3] in Ecuador for RF-based rainfall. They argued that
because of local topography, the subscale convective rainfall systems probably could not
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be captured by GOES data and IMERG [3,37]. Altogether, at the elevation of 0–750 m.a.s.l,
RF-based rainfall showed the best performance of all products (Figures 7 and 10).

Concerning rainfall rate validation, the overall variability in all the products is high,
suggesting rainfall rate estimation and/or timing issues. Different studies discuss a possi-
ble time lag between the satellite-based rainfall products and the ground-based rainfall
measurements as a source of degrading validation results [17,38,47–49]. The time lag is de-
fined as the time shift when satellite observation and surface precipitation rate from ground
data obtain to their optimum correlation. This time lag might be due to the time it takes
for the precipitation detected by the satellite to reach the ground [17,47]. You et al. [38]
related the precipitation time from GMI to the environmental temperature and storm top
height. They found that when the storm is taller, the lag time increases to obtain the
optimum correlation between the GMI and ground truth data. This is due to the long way
of raindrops from the storm top to the gauge.

Ignoring the corresponding time steps in the Q–Q plots shows that the MW-based
IMERG and RF-based (Figure 9b,h) rainfall rates are distributed up to 5 mm/h evenly. The
positive values in MW-based IMERG at higher rainfall rates are more evident. Conversely,
the rainfall rate distribution between the radar and IR-only IMERG shows more discrepan-
cies (Figure 9e). The validation of satellite-based rainfall products against the gauges show
lower consistency (Table 5). However, in the term of rain area delineation (Table 4), the
RF-based rainfall product shows better performance than IMERG-IR-only, which confirms
the potential to use multispectral GEO data.

The validation of satellite-based rainfall show a slight overestimation of rainfall totals
for all products (Table 5).

It should be noted that the evaluation of satellite-based products against only a few
gauges has high uncertainties [8,36], especially in areas with high small-scale precipita-
tion variability in mainly convective environments, like the Ecuadorian Andes, where
point based observations at weather stations cannot properly represent the spatial rainfall
distribution.

The validation of RF-based rainfall retrieval at high spatiotemporal resolution for all
the available rain events is shown in Table 6. The RF-based rainfall is calibrated locally for
Ecuador. The importance of local calibration, which involves determining relevant climatic
parameters, including the selection of appropriate temperature thresholds for clouds and
a local correlation systematic biases that may not have been adjusted in global products,
have been mentioned in different studies [50–52].

RF-based rainfall for 2 km2 and 30 min shows a lower HSS compared to the RF-based
rainfall for 11 km2 at the time of MW overpass. This was expected because the errors
at higher temporal resolutions may cancel each other out following the aggregation to
a lower temporal resolution [50]. However, in terms of rainfall estimation, RF-based
rainfall performs better at higher spatial resolution (Table 3). This result needs to be
interpreted with caution, since the rainfall events at the time of MW overpasses differ from
the validation of the RF-based rainfall at 2 km2 and 30 min.

An event-based analysis was then used to investigate the source of error in the RF-
based rainfall product. Shifting the RF-based rainfall backward by one to two time steps
(i.e., 30 min) resulted in the more accurate detection of rainfall around 10% (Figure 11b) by
lowering the misses. RF-based rainfall rates are lower than their counterparts in radar, as
shown in Figure 12d. We speculate that this lag appears due to the lag time between the
time of MW overpass and the GOES-16 scan time. The RF-based rainfall algorithm relies
on the precipitation information from MW-based IMERG and IR data from GOES-16.

However, RF-based rainfall also has a high FAR. The event-based spatial analysis
reduced the FAR by 8.5% (Figure 11e), but the challenge remains the same. High FAR
values occur for all the different types of rain with different intensities (Figure 12c,d). The
reason for the high FAR in RF-based rainfall might be (i) the high amount of FAR from
MW-based IMERG in Ecuador (Table 2), which is used as a reference for calibrating of
RF-based rainfall; (ii) A bias in IR retrievals that classify cold cloud pixels as rainy. They
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experience difficulties in defining the correct rainfall cloud and profile, thus producing
error in statistical-physical rainfall algorithms.

By increasing the temporal resolution of the RF-based rainfall product, the perfor-
mance of the product increased. However, the FAR (60% in daily resolution) remains a
main challenge.

5. Conclusions

In this study, we evaluated and compared the performance of different satellite-
based rainfall products over the Pacific coast and Andes of Ecuador. A mesoscale quality-
controlled rain radar network was used as the rainfall reference. Statistical comparison
indices were used to analyze the performance and to describe different aspects of the
satellite-based rainfall products. The first validation was performed at 11 km2 spatial
resolution and at the time of MW overpass for MW-based IMERG, RF-based rainfall, and
IR-only IMERG products. Based on the validation, MW-based IMERG and RF-based rainfall
provided better rainfall estimates in Ecuador than IR-only IMERG during MW overpasses.
The distribution of the evaluation metrics spatially shows the impact of topography and
the complex climate zonations in the study region. High precipitation values were better
captured by the MW-based IMERG and the RF-based rainfall algorithms. The frequent
false alarms are one of the most important issues in all products; FAR decreases with
an increasing rainfall rate. Future studies on the lag time are therefore required in order
to elucidate the high FAR in the satellite-based products. In the third validation, we
investigated regionally calibrated RF-based rainfall products for Ecuador. RF-based rainfall
is trained by MW-based IMERG. Although the product shows convincing results at a MW
overpass of 11 km2, the performance decreased by increasing the resolution to 2 km2 spatial
and 30 min temporal resolution. Furthermore, RF-based rainfall is trained to the available
microwave-only data from IMERG. Consequently, due to the low temporal resolution of
the data from MW satellites, some rainfall events might not have been considered [8].
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