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Abstract: The International Commission on Radiological Protection (ICRP) issued its Publication 137,
Occupational Intakes of Radionuclides: Part 3 in which the radon equilibrium factor is fixed as 0.4 for
tourist caves; however, several studies have reported a different value for the factor and its seasonal
variation has also been observed. In this study, the radon concentration, equilibrium equivalent radon
concentration and meteorological data were measured, and the equilibrium factor was evaluated in a
tourist cave, Gyokusen-do Cave located in the southern part of Okinawa Island in southwestern Japan.
Radon concentrations were measured with an AlphaGUARD and their corresponding meteorological
data were measured with integrated sensors. Equilibrium equivalent radon concentration was
measured with a continuous air monitor. The measured radon concentrations tended to be low
in winter and high in summer, which is similar to previously obtained results. By contrast, the
equilibrium factor tended to be high in winter (0.55 ± 0.09) and low in summer (0.24 ± 0.15), with a
particularly large fluctuation in summer. It was concluded that measurements in different seasons
are necessary for proper evaluation of radon equilibrium factor.

Keywords: tourist cave; radon; equilibrium factor; continuous measurement

1. Introduction

Radon (222Rn) is the second leading cause of lung cancer after tobacco smoking [1].
The decay of 226Ra in soil and rocks generates radon gas and in a closed space such as
a cave, it can be presumed that high radon concentrations will be observed due to the
stagnant air. In fact, radon concentrations of a hundred to tens of thousands of Bq m−3

have been observed in several caves around the world [2–8]. In 2017, the International
Commission on Radiological Protection (ICRP) issued Publication 137, Occupational In-
takes of Radionuclides: Part 3 in which the commission recommends a dose conversion
factor for radon progeny of 6 mSv per mJ h m−3 for indoor workplace workers who are
engaged in substantial physical activities, and for workers in tourist caves [9,10]. This
value is equivalent to 34 nSv per Bq h m−3, which is approximately four times the dose
conversion factor of 9 nSv per Bq h m−3 recommended in the United Nations Scientific
Committee on the Effects of Atomic Radiation (UNSCEAR) 2006 report. Therefore, it is
important to evaluate the effective dose for workers in tourist caves from radon.

On the other hand, it is necessary to obtain the equilibrium equivalent radon concen-
tration (EERC) for evaluating the effective dose due to radon, which cannot be evaluated
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directly from the radon concentration. Therefore, although it is best to measure the EERC
directly, its measurement is difficult. In general, the EERC is obtained by measuring radon
concentration and multiplying it by the equilibrium factor Feq, which is the ratio of the
EERC to the radon concentration. Thus, Feq is an important factor in the effective dose
calculation.

The UNSCEAR 2006 report [11] recommended using a value of Feq = 0.4 for calculating
indoor radon exposure. This value has been used in reports that evaluated the effective
dose from indoor radon concentration [12,13]. ICRP Publication 137 also recommended
using Feq of 0.4 for indoor workplaces and tourist caves [9]. The value of Feq is known
to depend greatly on the environment of a site [14,15], and this is especially important in
closed spaces such as underground mines and caves. Cigna [16] has summarized reports
on Feq in caves by 12 researchers (the number of measurements was more than 880) and
stated that the weighted average of Feq was 0.57. Chen and Harley [17] also summarized
reports on Feq in a total of 136 underground show caves, tourist mines and thermal spas
in 17 countries and noted that Feq varied from 0.10 to 0.85 and the weighted average was
0.39. Moreover, it is important to evaluate Feq in different seasons, as several studies have
reported seasonal variation [18,19].

High radon concentrations have been observed in caves in Japan, as elsewhere in the
world. Tanahara et al. [20] obtained radon concentrations ranging from 10 to 3000 Bq m−3

by a passive method using activated charcoal at Gyokusen-do Cave in Okinawa Prefecture.
Fujimoto et al. [21] reported radon concentrations obtained by a grab sampling method at
Akiyoshi-do Cave, Taisho-do Cave and Kagekiyo-do Cave in Yamaguchi Prefecture were
in the ranges of 8–1700 Bq m−3, 29–3300 Bq m−3 and 1700–3400 Bq m−3, respectively. In
addition, Fujimoto et al. obtained EERCs at the same caves in the ranges of 2–1000 Bq m−3,
22–2000 Bq m−3 and 890–1500 Bq m−3, respectively. Although Fujimoto et al. did not state
the Feq, it would be approximately 0.6 when calculated. Thus, there are several reports on
radon concentrations and EERCs in Japan; however, no report has been made on radon
concentration, EERC and Feq simultaneously, continuously and seasonally in caves. It is
therefore important to evaluate these values in various caves in Japan from the viewpoint of
radiation protection for workers. In this study, a continuous air monitor (CAM) previously
developed by Yamada et al. [22] was applied to make measurements at Gyokusen-do
Cave which is one of the famous tourist caves in Japan. This study is a starting point for
characterizing radon equilibrium factors at caves in Japan.

2. Materials and Methods
2.1. Measurement Site and Methods

Gyokusen-do Cave (26◦08′ N, 127◦45′ E) is located in the southern part of Okinawa
Island, in southwestern Japan (Figure 1). This area has a subtropical oceanic climate, the
annual average precipitation is more than 2000 mm, the annual average temperature is
approximately 22 ◦C and the temperature rarely exceeds 35 ◦C because of the surrounding
sea [23]. Gyokusen-do Cave was discovered in 1967 and opened to tourists in April 1972. It
is now a part of the tourist attraction called “Okinawa World” and is visited by one million
people a year. Gyokusen-do Cave is a limestone cave situated in a 120-m-thick body of
Ryukyu limestone; its total length reaches 5000 m, of which approximately 900 m is open
for tourism [24,25].

In this study, radon concentrations, EERC and meteorological data, which consisted
of temperature, relative humidity and atmospheric pressure, were measured in the middle
of the old entrance to Gyokusen-do Cave (Figures 2 and 3) in January 2017 and July 2017.
This was selected as the measurement site since the old entrance is the main route for
ventilation in the cave [23]. Radon concentrations were measured with a pulse ionization
chamber (AlphaGUARD, Saphymo GmbH, Frankfurt, Germany) in the diffusion mode at
a height of 0.75 m. The corresponding meteorological data were measured with integrated
sensors of the AlphaGUARD. The measurement interval for the chamber was set to 60 min.
EERC was measured with the CAM [22] at a height of 1 m. The measurement interval of
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the CAM was set to 60 min, and the flow rate was set to 10 L min−1. The AlphaGUARD
and the CAM were placed next to each other. The measurement period was about 24 h for
the January measurement and about 48 h for the July measurement.
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Feq was calculated by dividing the obtained EERC by the measured radon concentra-
tion. In addition, for the uncertainty of radon concentration, only the uncertainty for the
counts obtained by AlphaGUARD (k = 1) was adopted. For the uncertainty of EERC, the
uncertainty of potential alpha energy concentration (PAEC) and of conversion factor were
taken into account from Equation (3) described below. Finally, the uncertainty of Feq was
combined from the uncertainty of radon concentration and of EERC.

2.2. Evaluation Method of EERC Using the CAM

The International Commission on Radiation Units and Measurements (ICRU) defines
two equations for calculating EERC: one is based on individual concentration of short-lived
radon progeny, and the other is based on PAEC [26]. In these equations, EERC is defined
as the concentration of radon in air, in equilibrium with its short-lived decay products,
which would have the same potential alpha energy concentration as the existing non-
equilibrium mixture [11]. PAEC is defined as the time integral of the potential alpha energy
concentration in air to which an individual is exposed over a given time period [11] and an
algorithm for calculating PAEC was given by Tokonami et al. [27]. It was adopted here in
the evaluation of EERC.

When radioactive aerosol particles generated by natural radionuclides are measured
using the CAM, three peaks from alpha particles due to radon and thoron progeny are
observed (Figure 4). It is necessary to evaluate the counts of 218Po and 214Po because the
PAEC calculation algorithm by Tokonami et al. uses these counts. Therefore, regions of
interest (ROIs) were set to include each peak as shown in Figure 4, and the counts of 218Po
and 214Po were evaluated from Equations (1) and (2).

N218Po =
NROI–1 − NROI–2 × CR214Po→ROI–1 − NROI–3 × CF

ηCh–218Po
(1)

N214Po =
NROI–2 − NROI–3 × CR212Po→ROI–2

ηCh–214Po
(2)
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Here, Ni is the counts of i–radionuclide or ROI–i, CRi→ROI–j is the ratio of the counts
in the ROI of i–radionuclide to the counts of i–radionuclide in ROI–j (i.e., the contribution
ratio of i–radionuclide to ROI–j), and ηCh–i is the percentage of i–radionuclide measured in
ROI of i–radionuclide to all energies (i.e., channel efficiency). In addition, when calculating
the counts of 218Po in the environment that includes thoron progeny, 212Bi is observed in
the ROI of 218Po because the alpha energy of 212Bi (6.05 MeV) is almost equal to that of
218Po (6.00 MeV). As a result, the 218Po counts are overestimated. It is necessary to estimate
the counts of 212Bi from the counts of 212Po, which is a decay product of 212Bi and is in
radioactive equilibrium, and subtract it from the counts of ROI–1. Therefore, the third term
of the numerator of Equation (1) includes a subtraction from the counts of ROI–1 for the
estimated counts of 212Bi which are obtained by multiplying the counts of ROI of 212Po (i.e.,
ROI–3 in Figure 4) by the ratio of the counts of 212Po and the counts of 212Bi (conversion
factor: CF).
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Next, the counts of 218Po and 214Po calculated by Equations (1) and (2), respectively,
were used to evaluate the PAEC, CP (eV m−3), as reported by Tokonami et al. [27]. Finally,
the calculated CP was substituted into the following equation to evaluate the EERC, Ceq
(Bq m−3) [26].

Ceq =
CP

3.47× 1010 (3)

Here, the constant in the denominator is the conversion factor between EERC and
PAEC (eV Bq−1) as defined by the ICRU.

It should be noted that each of the parameters required for calculation of PAEC was
evaluated by an experiment using a radon chamber and a thoron chamber at the Institute
of Radiation Emergency Medicine, Hirosaki University, Japan [28], and by the method of
energy spectrum acquisition by Tamakuma et al. [29].

3. Results
3.1. January 2017 Measurement

The results of measuring radon concentrations, EERC and meteorological data in
January 2017 (i.e., winter) are shown in Figure 5. The radon concentrations in the cave
fluctuated in the range of 32–118 Bq m−3 with an arithmetic mean of 51 Bq m−3. The EERC
fluctuated in the range of 18–55 Bq m−3 with an arithmetic mean of 28 Bq m−3. From
these results, Feq varied from 0.35 to 0.72 with an arithmetic mean (±standard deviation)
of 0.55 ± 0.09. The error bars in Figure 5 indicate the respective uncertainties (k = 1). The
relative standard uncertainties of radon concentration were 14–19%; the relative combined
standard uncertainties of EERC and Feq were around 2% and approximately 12–16%,
respectively. The contribution of standard uncertainties of radon concentration is more
than 90% of the combined standard uncertainties of Feq.
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3.2. July 2017 Measurement

The results of measuring radon concentrations, EERC and meteorological data in July
2017 (i.e., summer) are shown in Figure 6. The radon concentrations in the cave fluctuated
in the range of 29–3232 Bq m−3 with an arithmetic mean of 568 Bq m−3. The EERC
fluctuated in the range of 2–1069 Bq m−3 with an arithmetic mean of 183 Bq m−3. From
these results, Feq varied from 0.05 to 0.63 with an arithmetic mean (±standard deviation)
of 0.24 ± 0.15. The error bars in Figure 6 indicate the respective uncertainties (k = 1). The
relative standard uncertainties of radon concentration were approximately 6–40%; the
relative combined standard uncertainties of EERC and Feq were approximately 1–15% and
5–30%, respectively. The contribution of standard uncertainties of radon concentration is
more than 75% of the combined standard uncertainties of Feq.
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4. Discussion

In both measurement seasons, the variation of the radon concentrations measured by
AlphaGUARD and the variation of the EERCs measured by CAM were in relatively good
agreement. The remarkable increase and decrease in radon concentrations and EERCs
are considered to be due to the cave air ventilation, based on the meteorological data.
Ooka et al. [23] reported that the system of cave air ventilation differed greatly between
winter and summer. In winter, air is flowing from the lower entrance to the upper and
old entrances (cf. Figure 3) with active ventilation, and there is large inflow of air from
outside the cave. Contrarily, in summer, although the air flows from the upper and old
entrances to the lower entrance, ventilation is poor and the air is stagnant. Considering
this report together with the results in this study, it appears that radon concentration
increases with increasing relative humidity in winter (especially immediately after the
start of measurement) because the high humidity air in the cave flows from the middle of
the cave to the upper and old entrances. The radon concentration is not high, however,
because it is diluted by outside air containing low radon concentration, due to the active
ventilation in the cave. During summer, radon concentration increases with increasing



Atmosphere 2021, 12, 1648 7 of 10

relative humidity, as well as in winter. The radon concentration also seems to increase
when the temperature drops. It is assumed that since the temperature of the air in the cave
is approximately 25 ◦C and the air in the outside is approximately 30 ◦C, the air is flowing
from inside the cave to the measurement point. Although some of the above assumptions
can be considered as valid based on the limited meteorological data and the previous
report data, one of the limitations of this study is that the cave air ventilation was not fully
observed due to the lack of meteorological instruments at multiple points. In addition,
since the measurement site is the middle of the old entrance to cave, the meteorological
data might be affected by the external environment of the cave.

Radon concentrations were lower in winter (an arithmetic mean of 51 Bq m−3) and
higher in summer (an arithmetic mean of 568 Bq m−3). This seasonal variation is similar
to the results of past measurement of radon concentrations in Gyokusen-do Cave [20].
In addition, similar seasonal variations have been reported in many caves around the
world [2,6,7,30–33]. Tanahara et al. [20,34] and Shiroma et al. [24] have proposed their
own mechanisms as the cause of this seasonal variation. The former attributed the lower
radon concentration in winter to the active cave air ventilation. Contrarily, the high radon
concentration in summer was attributed to the poor cave air ventilation and the stagnant
air. Ooka et al. [23] measured the cave air ventilation using carbon dioxide and determined
that it was active in winter and less active in summer, which supports the mechanism
proposed by Tanahara et al. [20,34]. Shiroma et al. [24] thought that the atmospheric radon
concentration in the cave might have been supplied by dripping water from the limestone
cave, and that the radon concentration in dripping water had the same seasonal variation
as the atmospheric radon concentration.

Feq is higher in winter (0.55 ± 0.09) and lower in summer (0.24 ± 0.15). These values
differ from the ICRP recommendation in caves of Feq = 0.4 [9]. Many studies in caves around
the world have similarly reported that the Feq evaluated differed from the recommended
Feq [18,19,35–37], however, and Chen and Harley [17] concluded that the recommended
Feq value should be used with the understanding that its variability in actual caves can be
more than ±50%. On the other hand, the arithmetic mean (±standard deviation) of the
respective measurements for summer and winter is 0.33 ± 0.20, and the annual average
from the seasonal average is 0.40. Therefore, it might be close to the ICRP recommendation
value if considered as an annual average, however, it is difficult to conclude from only
results of this measurement due to the insufficient number of samples. In addition, a wide
range of daily variations was observed for Feq in this study, and similar daily variations
have been observed in other studies making continuous measurements of Feq [38,39].

The seasonal variation of Feq observed in this study corresponds with that reported by
Jovanovič [18] for Medvejek Cave and other caves. Moreover, the seasonal variation of Feq
is known to show an opposite trend to that of radon concentrations. Vaupotič [19] reported
the following results from measurements in the Postojna Cave: Feq became lower with
increasing radon concentration; and the unattached fraction of short-lived radon decay
products in the atmosphere of the cave was high in summer and relatively low in winter.
The results of this study agree with the first point. Regarding the second point, several
researchers have reported that the relationship between the unattached fraction and Feq
was negatively correlated and followed a log-normal distribution [40–42]. Therefore, it
can be presumed that the seasonal variation of Feq observed in this study is related to
the variation of the unattached fraction of atmospheric radon progeny in the cave. It is
concluded from these results that measurements in different seasons are necessary for
proper evaluation of Feq, and it would be even better to measure the unattached fraction
and the aerosol concentration which strongly affects the unattached fraction in order to
identify the source of variation in Feq.

It should be noted that this measurement has been conducted in a short period of
time (1–2 days) and at a single location which in the middle of the old entrance to cave.
When conducting detailed investigation, it would be important to carry out long-term
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measurement more than one week and to conduct measurements at multiple points in the
cave, from the viewpoint of representativeness of the monitoring data.

5. Conclusions

This article described the results of measurements of radon concentration and the
equilibrium equivalent radon concentration (EERC), and the evaluation results of equi-
librium factor, Feq, in a tourist cave, the Gyokusen-do Cave located in the southern part
of Okinawa Island, Japan. The measurements were carried out for two periods, in winter
(January 2017) and in summer (July 2017). Although the evaluated equilibrium factor was
different from the ICRP recommendation for it in caves, the same is true for many studies
in caves around the world. In addition, the equilibrium factor was found to be higher in
winter (0.55 ± 0.09) and lower in summer (0.24 ± 0.15), with particularly large fluctuation
in summer. It was not possible to determine the cause of the seasonal variation of the
equilibrium factor only from the measurement items in this study. Moreover, although the
trends of radon concentration, EERC and Feq, were able to be roughly estimated from the
data obtained in this study, one of the limitations of this preliminary study is that a large
enough number of samples necessary for representativeness of the monitoring data were
not able to be collected. Therefore, the authors suggest that long-term measurements at
multiple points in the cave in different seasons are necessary for proper evaluation of Feq.
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