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Abstract: Wind shear can occur at all flight levels; however, it is particularly dangerous at low levels,
from the ground up to approximately 2000 feet. If this phenomenon can occur during the take-off and
landing of an aircraft, it may interfere with the normal altitude change of the aircraft, causing delay
and cancellation of the aircraft, as well as economic damage. In this paper, to estimate the probabilistic
forecasts of low-level wind shear at Gimpo, Gimhae, Incheon and Jeju International Airports, an
Ensemble Model Output Statistics (EMOS) model based on a left-truncated normal distribution with
a cutoff zero was applied. Observations were obtained from Gimpo, Gimhae, Incheon and Jeju
International Airports and 13 ensemble member forecasts generated from the Limited-Area Ensemble
Prediction System (LENS), for the period December 2018 to February 2020. Prior to applying to
EMOS models, statistical consistency was analyzed by using a rank histogram and kernel density
estimation to identify the uniformity of ensembles with corresponding observations. Performances
were evaluated by mean absolute error, continuous ranked probability score and probability integral
transform. The results showed that probabilistic forecasts obtained from the EMOS model exhibited
better prediction skills when compared to the raw ensembles.

Keywords: Ensemble Model Output Statistics; low-level wind shear; probabilistic forecast; left-truncated
normal distribution

1. Introduction

Due to dangerous weather events related to wind, such as wind storm, wind shear
and turbulence, users’ complaints and economic damage caused by flight delays and
cancellations are continuously occurring [1]. In order to reduce the damage, it is necessary
to develop technologies to improve the accuracy of forecasts and warnings for dangerous
weather events occurring at airports.

The Low-Level Wind Shear (LLWS) is defined as a vector difference that is composed
of wind speed and wind direction between two wind velocities in the lower levels below
2000 feet of the surface. It signifies vertical wind shear that is determined by means of two
points at different heights in this study. The sudden LLWS can severely impact airplanes,
especially within 2000 feet above ground level because of limited vertical airspace for
recovery (ICAO, 2005). Therefore, preparing for the LLWS through wind shear forecasts at
lower levels is very important for safe operations of aircrafts.

Ensemble forecasts have the features and advantages that can provide a variety of
information, such as forecast range, diversity, probability distribution and uncertainty
in both the data and model. Therefore, the probabilistic information from the ensemble
forecasts may help to improve the safeness of aircraft operations. The Met office has
developed an ensemble forecast system by using the Met Office Global and Regional
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Ensemble Prediction System (MOGREPS) to produce a probabilistic indicator of wind
shear and convectively induced turbulence [2]. The National Centers for Environmental
Prediction (NCEP) of National Oceanic and Atmospheric Administration (NOAA) has
been making efforts to provide probabilistic information of aviation-related ensemble
products, including LLWS, using the Short Range Ensemble Forecast (SREF) system [3].
Moreover, the ensemble forecast of LLWS has tried to verify and evaluate by using the
NCEP forecast verification system [4]. Furthermore, the NCEP Very Short Range Ensemble
Forecast (VSREF) was developed to forecast aviation-weather-related products, including
LLWS, every 1 h [5]. Recently, Lee et al. [6] conducted a reliability analysis and evaluation
to verify LLWS ensemble member forecasts and local data assimilation and prediction
system analyses data based on grid points over the Jeju area.

Estimating low-level wind shear by using ensemble member forecasts generated from
Limited-Area Ensemble Prediction System (LENS) cannot guarantee accuracy of predictions
because of the inherent bias and variability within the system itself [7]. Therefore, various
statistical postprocessing techniques have been applied to calibrate the bias and variability
inherent in the ensemble models [8–10]. Among these statistical postprocessing methods,
one of the most popular methods is a probabilistic forecast that can provide probability
information by estimating a fully probability density function for the future weather
event [11–16].

In this study, Ensemble Model Output Statistics (EMOS) was applied to low-level
wind shear in Gimpo, Gimhae, Incheon and Jeju International Airports to provide detailed
weather information and corresponding ensemble forecasts required to generate probabilis-
tic forecasts and to compare the prediction skills. The EMOS model for ensemble forecasts
was suggested by Gneiting et al. (2005). They used a single normal distribution, where the
mean is an affine function of the ensemble members, and the variance is an affine function
of the ensemble variable. Since only non-negative values and a skewed distribution are
allowed for low-level wind shear, we used a left-truncated normal distribution with a cutoff
at zero for low-level wind shear. Prior to applying EMOS model, statistical consistency
was analyzed to evaluate the reliability of the LLWS ensembles. Moreover, the prediction
skills of the probabilistic forecasts were assessed in terms of mean absolute error (MAE),
continuous ranked probability score (CRPS) and probability integral transform (PIT).

The rest of paper is organized as follows: the datasets used for the analysis and analytic
method are briefly described in Sections 2 and 3, respectively. The reliability analysis of the
raw ensembles and its corresponding analysis, prediction skills of ensemble forecasts and
probability that occur at a specific event through the estimation of the predictive probability
density function are presented in Section 4. Finally, conclusions are given in Section 5.

2. Data

For this study, the high-resolution Limited-Area Ensemble Prediction System (LENS)
is used based on the Korea Meteorological Administration (KMA) Unified Model (UM)
to conduct probability forecasting of LLWS. The LENS was developed and operational in
2015 and considered of a control member with 12 perturbed members. It has horizontal
resolution of 2.2 km with a rotated equatorial latitude–longitude coordinate system and
70 vertical levels with a top at approximately 40 km. The global Ensemble Prediction
System (EPS) of the KMA uses Ensemble Transform Kalman Filter (ETKF) to produce
24 members, including the control member [17–19]. Among these global ensemble mem-
bers, 12 perturbed members are randomly selected from global ensemble members and
used as the initial and boundary conditions for LENS [20]. The LENS ran twice a day at
00 UTC and 12 UTC out to a lead time of 72 h (3 days) over the Korea Peninsula [16].

The LLWS is defined as the difference between two winds at different levels and
assumed as linear wind shear at low level. Therefore, the ensemble forecasts of wind
components at each grid point are interpolated at interval of 100 feet from 100 to 2000 feet.
The LLWS ensemble forecasts are calculated at 19 levels.
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The definition of LLWS is as follows:

LLWS =

√(
∂u
∂z

)2
+

(
∂v
∂z

)2
(1)

where ∂z is interval of vertical level which means 100 feet. The u and v are zonal and
meridional component of wind, respectively. The unit of LLWS is knots/100 feet.

The Aircraft Meteorological Data Relay (AMDAR) data include wind and temperature
from surface to upper-level corresponding to the location of the aircraft [21]. Therefore,
the LLWS is available to obtain by using the wind data of AMDAR. For this study, LLWS
of AMDAR data obtained from the domestic aircraft for four main international airports
(Gimhae, Gimpo, Incheon, Jeju) in Republic of Korea were used as observed data to verify
the probability forecasts of LLWS. The data are calculated in the same way as LLWS
forecasts below 2000 feet during the aircraft landing.

For this study, the probability forecasts of LLWS were produced by using the ensemble
forecast data of LENS from 3 to 24 h (1 day) and analyzed with LLWS of AMDAR at each
airport, from December 2018 to February 2020. Prior to analysis, the missing values of
the ensemble forecasts and their corresponding observations for the entire period were
checked, and if either was absent, both were removed from the datasets.

First, the characteristics of the empirical distribution of ensemble member forecasts
and its corresponding observations were examined at Gimpo, Gimhae, Incheon and Jeju
International Airports for the entire period. Moreover, the reliability analysis for each inter-
national airport was conducted by using a rank histogram and reliability index to identify
the statistical consistency of ensemble member forecasts and corresponding observations.

In Figure 1, the distributions of the ensembles and observations were estimated by
using a kernel density estimation technique to examine the distributional characteristics
of LLWS for each airport. The solid black line denotes the distribution of the observed
LLWS, and the remaining colored lines denote the distributions of the 13 ensemble member
forecasts, respectively. The red dotted line represents the average of the ensembles, and the
blue dotted line represents the mean of observations.

For Gimhae airport, the distributions among the ensemble member forecasts are
very similar. On the other hand, it can be seen that the distribution of the ensembles
has relatively small variability compared to the observed LLWS distribution. It is also
shown that the ensembles are underestimated on average compared to the corresponding
observations. This implies that the ensemble member forecasts have negative biases on
average compared to observations and have under-dispersion. It also has a value greater
than 0, due to the nature of wind, and has asymmetric and left-skewed distribution. In
the case of other airports, there is a slight difference in the distribution, but it shows
the same pattern as indicated in the Gimhae airport, which shows underestimation and
under-dispersion.

A rank histogram (RH) [22,23] was used to assess the reliability of LLWS of ensemble
forecasts and their corresponding observations at each airport. The RH is a very useful
visual tool for evaluating the reliability of ensembles and for identifying errors related to
their mean and spread.

The RH for 13 ensembles and the corresponding observed LLWS are presented in
Figure 2. In general, the RHs show similar trends and dispersions for each airport. For all
airports, RHs with high counts near the right extreme and low frequency counts near the
left extreme represents asymmetric errors in the data of the ensembles, implying ensemble
forecasts have a strong negative bias, which indicates an underestimation. Moreover, RH
has a U-shaped pattern, indicating a weak under-dispersion.
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The reliability index [24] was used to quantify the deviation of the rank histogram
from uniformity. If the ensemble forecasts and observations were obtained from the same
distribution, the reliability index should be zero. The reliability index for each airport in
Figure 2 is listed in Table 1, and their values show they are far from uniformity.

Table 1. Reliability index for airports.

Gimhae Gimpo Incheon Jeju

Reliability Index 1.2245 1.0418 1.1680 1.2322

The prediction performance was analyzed in terms of mean absolute error (MAE),
root mean square error (RMSE) and continuous ranked probability score (CRPS), using the
ensemble mean obtained from the ensemble member forecasts. The prediction skills of
the ensemble mean for each airport are given in Figure 3 and Table 2. It can be seen that
the performance of the prediction error in Gimpo airport is better than that of the other
airports; the Gimhae airport consistently shows the worst performance. The prediction
error for the ensemble mean was obtained to be small in terms of three measurements,
because both ensembles and observations were small. Even if these values are small, they
cannot be said to have good prediction performance.
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Table 2. MAE, RMSE of ensemble mean and CRPS of ensemble forecasts.

Airport
(00UTC)

Ensemble Mean Ensemble

MAE RMSE CRPS

Gimhae 0.668 0.961 0.612

Gimpo 0.420 0.594 0.372

Incheon 0.475 0.662 0.422

Jeju 0.477 0.691 0.433

3. Methodology

As 13 ensemble member forecasts simulated from LENS have negative bias and weak
under-dispersion, the statistical postprocessing method was applied to calibrate them.
Among the statistical postprocessing techniques, the most widely applied method is a
probabilistic forecast that estimates a fully probability density function for future weather
quantity and provides probability information by using it.
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There are various methods for probabilistic prediction techniques, but among them,
the Ensemble Model Output Statistics (EMOS) model was applied in order to take into
account the LLWS. Since only non-negative values and a skewed distribution are allowed
for LLWS, we use a left-truncated normal distribution with a cutoff zero for LLWS. Let a
random variable, y, have a normal distribution left-truncated at zero with location, µ, and
standard deviation, σ, denoted by Y ∼ TN

(
µ, σ2),

h
(

y|µ , σ2
)
=

1√
2πσ2

1
Φ
( µ

σ

) exp

(
− (y− µ)2

2σ2

)
, y > 0 (2)

where Φ(·) is the cumulative distribution function (cdf) of the standard normal distribution.
Let fk denote the kth ensemble member forecast of LLWS and S2

i = 1/(M− 1)

∑M
j=1 ( fij − fi)

2
denote the ith sample variance of ensemble member forecasts. Gneiting et al. [9]

suggested a heterogeneous regression model in which the variance of the error term is a
linear function of the ensemble variance as follows:

Var(εi) = c + dS2
I (3)

where c and d are positive variance coefficients. Variance coefficients c and d can be
analyzed in terms of ensemble spread and skill of the ensemble mean. Under the same
conditions, a spread-skill correlation is strong if the d is high. On the contrary, when the
spread and skill are independent of each other, it is estimated that d is low enough to be
ignored.

The predictive distribution of EMOS model for LLWS is as follows:

h
(
yi
∣∣b0 + b1 fi,1 + · · ·+ b13 fi,13, c + dS2

i
)

=
1√

2π
(
c + dS2

i
) 1

Φ

µb0 + b1 fi,1 + · · ·+ b13 fi,13√
c + dS2

i

 exp

(
− (y− b0 − b1 fi,1 − · · · − b13 fi,13)

2

2
(
c + dS2

i
) )

, y > 0 (4)

where bk denotes the regression coefficients of ensemble member forecasts, and c and d are
the nonnegative variance coefficients.

The CRPS (Continuous Ranked Probability Score) [23,25] estimation is used to estimate
the regression coefficients and variance coefficients based on the training datasets. The
CRPS is defined as follows.

crps(F, y) =
∫ ∞

−∞
[F(t)− H(t− y)]2dt (5)

where H(·) is the Heaviside function, which is 1 if the argument is positive and zero
otherwise. Thorarinsdottir and Gneiting [11] showed the closed form of CRPS in Equation
(5) for the truncated normal distribution, TN

(
µ, σ2). In this case, we tried to estimate

regression and variance coefficients that minimize the CRPS:

minb0,b1,··· ,b13, c, d
1
n ∑n

i=1

√
c + dS2

i Φ(vi)
−2
[

ZiΦ(Zi){2Φ(Zi) + Φ(vi)− 2}+ 2φ(Zi)Φ(vi)−
1√
π

Φ
(√

2vi

)]
(6)

where vi =
b0−b1 fi,1+···+b13 fi,13√

c+dS2
i

, Zi =
yi−b0−b1 fi,1+···+b13 fi,13√

c+dS2
i

, and φ(·) and Φ(·) are the proba-

bility density function and the cumulative distribution function of the standard normal
distribution, respectively.

Since the estimated regression coefficients can be said to reflect general prediction
skill on ensemble members compared with other ensemble members during the training
period, they were estimated to be non-negative regression coefficients. For the computation
optimization, we used the Broyden–Fletcher–Goldfarb–Shanno algorithm as implemented
in R [26].
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4. Results

A training period should be chosen to estimate the regression and variance coefficients
of homogeneous and non-homogeneous regression (or EMOS) models, respectively. Since
the wind characteristics are affected by the season, we tried to predict the low-level wind
shear for each season to take this into account. The training and test periods for each season
are given in Table 3. In order to estimate the regression and variance coefficients from the
predictive probability density function for each season, we set two months as the training
period, and the remaining is used as the test period.

Table 3. Training and test periods for each season.

2018 2019 2020

12 1 2 3 4 5 6 7 8 9 10 11 12 1 2

train test train test train test train test train test

2018/2019 DJF 2019 MAM 2019 JJA 2019 SON 2019/2020 DJF

Prior to applying the probabilistic forecast model, reliability (or statistical consistency)
of the ensemble forecasts was examined by using rank histogram and reliability index
to identify the ensemble and the corresponding observations. If the rank histogram is
consistent with a uniform distribution, then we may conclude that the observation and the
ensemble forecasts could have derived from the same distribution.

The verification rank histogram and reliability index by season at Gimhae airport
are given in Figure 4 and Table 4, respectively. In Figure 4, the first figure is the rank
histogram for the entire period of Gimhae airport, and the remaining five figures are the
rank histograms for each season. It can be seen that the rank histogram for entire period
and rank histogram for each season have similar patterns. The rank histogram shows that
the ensemble forecast has a consistent negative bias, which implies an underestimation,
such that the ensembles are generally less than observations. Moreover, the rank histogram
is U-shaped, thus verifying that ensemble forecasts have under-dispersion, which indicates
that the dispersion of ensembles is less than that of the corresponding observations.

The reliability index is used to quantify the deviation of the rank histogram from
uniformity. The reliability index is defined by the average of the absolute difference of
the observed relative frequency and true relative frequency in each bin. If the ensemble
forecasts and the corresponding observations may have the same distribution, the reliability
index should be zero. The reliability indexes for Figure 4 are presented in Table 4. From
Table 4, it can be seen that they are almost the same values, and it is far from uniformity.
Therefore, it would need to require statistical post-processing to calibrate the ensembles.

The verification rank histogram and reliability index by season at Gimpo airport are
given in Figure 5 and Table 5, respectively.

Table 4. Reliability index for Gimhae airport.

Gimhae Entire
Period

2018–19
DJF

2019
MAM

2019
JJA

2019
SON

2019–20
DJF

Reliability
Index 1.2245 1.1335 1.2642 1.3649 1.1718 1.1658
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Table 5. Reliability index for Gimpo airport.

Gimpo Entire
Period

2018–19
DJF

2019
MAM

2019
JJA

2019
SON

2019–20
DJF

Reliability
Index 1.0418 1.0386 1.0585 1.0971 0.9700 0.9811

The verification rank histogram and reliability index by season at Incheon airport are
given in Figure 6 and Table 6, respectively.
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Table 6. Reliability index for Incheon airport.

Incheon Entire
Period

2018–19
DJF

2019
MAM

2019
JJA

2019
SON

2019–20
DJF

Reliability
Index 1.1680 1.2167 1.1266 1.1472 1.1836 1.1690

The verification rank histogram and reliability index by season at Jeju airport are given
in Figure 7 and Table 7, respectively. The rank histogram and reliability index at Gimpo,
Incheon and Jeju airports show similar results to those mentioned at Gimhae airport,
although the degree varies per airport and season. As previously mentioned, negative
bias and under-dispersion were found in all airports and seasons. Therefore, a statistical
post-processing method based on a non-homogeneous regression model (or EMOS) was
applied to adjust and correct the biases in the Ensemble Prediction System.

First, we compared the estimated variance coefficients to see if the EMOS model for
LLWS is appropriate. Figure 8 gives time series of estimated variance coefficients, c and d,
for the same season (2019 MAM) and projection time at each airport. In Figure 8, the yellow
line and purple line are the estimate c and d for projection time, respectively. As shown
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in the figure, it can be seen that the d values are relatively large compared to c values,
implying that the non-homogeneous regression model or EMOS model is more suitable
than the homogeneous regression model. For different seasons and projection times, the
results were similar to those mentioned above.

The prediction skills of the ensemble mean, multiple linear regression (MLR) and
EMOS with a truncated normal distribution (TNEMOS) were compared in terms of MAE
and CRPS, according to each season. The prediction errors of the ensemble mean, MLR
and TNEMOS forecasts based on test datasets are given in Figure 9. It is seen that the
prediction errors of MLR and TNEMOS forecasts have improved compared to the ensemble
mean, although they are slightly different depending on the seasons and the airports. In
addition, TNEMOS forecasts show better overall prediction performance than MLR in
terms of MAE and CRPS. MLR forecasts can be estimated negative values due to the nature
of the multiple regression model. These characteristics are illustrated by a box plot of the
MLR given in Figure 10. In Figure 10, it can be seen that some of the estimates obtained by
using MLR have values less than zero. When estimating probabilistic forecasts for weather
variables with positive values, such as LLWS, it is not desirable to apply the multiple linear
regression (MLR) model as it is. This is because the theoretical properties allow for the
estimation of the real (or negative) values. Therefore, it shows that it is important to apply
a model that reflects the characteristics of the data when applying a probabilistic forecast
model.
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Figure 8. Variance coefficients for same season and projection time at each airport. (a) Gimhae
International Airport (2019 MAM, projection time = 24 h). (b) Gimpo International Airport (2019
MAM, projection time = 24 h). (c) Incheon International Airport (2019 MAM, projection time = 24 h).
(d) Jeju International Airport (2019 MAM, projection time = 24 h).
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For 2019 MAM of IIA and 2019 SON of GIA in Figure 10, it can be seen that TNEMOS
forecasts are generally expected to be similar on average, but the variability is slightly
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smaller than the observations. In particular, since a number of outliers are occurring in
the observations, predicting these outliers is one of the most important issues. If it is not
possible to predict the case of high wind, the damage is bound to increase. Therefore, it
can be seen that there is a limit to estimating these outliers, because the ensembles are
too underestimated to predict such extreme values. However, it can be seen that outliers
are estimated by the TNEMOS model and can provide very useful information compared
to ensemble mean for predicting extreme values. It can also be seen that correcting for
variability is more difficult than correcting bias. As shown in the figure, we can see that the
ensembles are estimated to be relatively small compared to the observations and differ from
the distributional characteristics of observations in general. On the other hand, TNEMOS
forecasts tend to follow the distributional pattern of observations to some extent, albeit
somewhat difference from observations, showing overall improved prediction performance
over ensembles. Other airports and seasons showed similar patterns.

One of the visual tools for examining how well probabilistic forecasts are estimated
is PIT (Probability Integral Transformation). PIT is a continuous random variable trans-
formed by its own cumulative distribution function, which always has a standard uniform
distribution. That is, the probabilistic forecasts estimated from the predictive probability
density function have a good degree of prediction when the values transformed through
the prediction cumulative probability distribution have a standard uniform distribution.

At each airport, a rank histogram for all data before applying a probabilistic forecast
technique for a given verification period and a PIT histogram for all forecasts after applying
TNEMOS are given to Figure 11. First, in the case of the rank histogram of Gimhae
International Airport, it has a strong negative bias and shows a weak under-dispersion. The
probabilistic forecast technique allows us to examine how much this trend and variability
have improved through the PIT histogram. The PIT histogram of the estimated forecasts
from the TNEMOS model shows that, although it does not have a completely uniform
pattern, the trend and variability are generally calibrated rather than the rank histogram of
the test period. In Gimpo, Incheon and Jeju International Airports, although somewhat
different depending on airports, PIT histograms show generally even patterns, showing
improved prediction performance over ensembles, and the probabilistic forecast technique
provides useful ways to improve the accuracy and reliability of aviation variables.

Probabilistic forecast has an advantage of providing information about uncertainty,
as it provides a way to quantify and predict the risk associated with weather prediction.
That is, probabilistic forecasts are provided in the form of a predictive probability density
functions for future weather quantities or events, so that the degree of occurrence of events
of interest can be provided through the information of probability.

From the probabilistic forecast model for LLWS, we can estimate the predictive proba-
bility density function through Equation (3) for a given training period. From the estimated
predictive probability density function, the probability of occurrence of a specific event of
interest and 80% credible intervals are used to investigate a degree of prediction.

In Figure 12, the predictive PDF and 80% credible intervals for the projection time
5 h on 17 February 2020, at Jeju International Airport are given. The thin curve is the
predictive PDF of LLWS, and the dots represent the ensemble member forecasts. The black
vertical line is the verifying observation, the blue vertical line is the ensemble mean, the red
vertical line is the TNEMOS forecast and the gray dotted lines are 80% credible intervals.
The purple dots represent the ensemble member forecasts. As shown in the figure, the
ensemble mean is included in the lower bound of 80% credible intervals, but it can be seen
that the ensemble mean is predicted to be smaller than the observation. However, we can
see that the TNEMOS forecast is predicted to similar to the observation. The yellow area of
the predictive PDF shows how likely it is that a specific intensity of the LLWS will occur. In
the figure, the probability of LLWS being more than 2 knots is 2.7%, indicating that this is
unlikely to happen.
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The predictive PDF and 80% credible intervals for the projection time 3 h on
22 February 2020 at Gimhae International Airport are given in Figure 13. In the figure, it
can be seen that the ensemble member forecasts (purple dots) were simulated very small
from LENS, and due to this effect, the ensemble mean was estimated to be 0.725. On the
other hand, the observed LLWS was 3.86, showing a considerable difference. In this case,
ensemble member forecasts were underestimated, and there is a limit to predicting LLWS
by using the ensemble mean. Both the observation and probabilistic forecast of LLWS are
contained in the 80% credible intervals, but the ensemble mean is located outside the lower
bound of the credible intervals, which means that the degree of prediction is poor. The
probability that the predicted LLWS is more than a certain threshold of 2 knots is 75.3%,
which is highly likely to occur.

Since the probability information that occurs above a certain threshold from the
predictive PDF is provided together with the forecast, it can explain to what extent or scale
the prediction occurs, thus providing more available information to forecasters and users
who utilize it.

As noted above, probability information obtained from the predictive PDF can account
for uncertainty by providing additional information about the probability of occurrence
compared to deterministic forecasts, thus providing useful information for aircraft opera-
tion and management.



Atmosphere 2021, 12, 1643 16 of 18
Atmosphere 2021, 12, x FOR PEER REVIEW 18 of 20 
 

 

 

Gimhae Obs Ensemble Mean TNEMOS 

Forecast 3.86 0.725 3.748 

P(LLWS > 2)   0.753 

Figure 13. Predictive probability density function of LLWS for Gimhae International Airport. The black vertical line is the 
verifying observation, the blue vertical line is the ensemble mean, the red vertical line is the TNEMOS forecast and the 
gray dotted lines are 80% credible intervals. The thin curve is the predictive PDF of LLWS, and dots represent the ensemble 
member forecasts. 

Since the probability information that occurs above a certain threshold from the pre-
dictive PDF is provided together with the forecast, it can explain to what extent or scale 
the prediction occurs, thus providing more available information to forecasters and users 
who utilize it. 

As noted above, probability information obtained from the predictive PDF can ac-
count for uncertainty by providing additional information about the probability of occur-
rence compared to deterministic forecasts, thus providing useful information for aircraft 
operation and management. 

5. Conclusions 
The prediction of LLWS of Gimpo, Gimhae, Incheon and Jeju International Airports, 

using ensemble member forecasts generated from LENS, showed that the degree of per-
formance was undesirable, due to the bias and dispersion inherent in the system. There-
fore, statistical postprocessing techniques are needed to calibrate them. 

In this study, we applied the EMOS model, which is one of the statistical postpro-
cessing methods, and it provides a fully predictive density probability function for LLWS 
to reduce bias and dispersion. Since the non-negative values and an asymmetric distribu-
tion are allowed for LLWS, we used a left-truncated normal distribution with a cutoff at 
zero for LLWS as the predictive probability density function. In addition, since the prop-
erties or patterns of wind change according to the seasons, the probabilistic forecasts ac-
cording to the seasons were estimated. 

The results of the comparisons between the raw ensembles and probabilistic forecasts 
revealed that probabilistic forecasts exhibited better prediction skills in terms of MAE, 
CRPS and PIT for all seasons. Therefore, the system error and dispersion owing to the 
limitations and the uncertainty of its model can be reduced significantly by applying the 
EMOS model. Moreover, probability information obtained from the predictive PDF can 

Figure 13. Predictive probability density function of LLWS for Gimhae International Airport. The black vertical line is the
verifying observation, the blue vertical line is the ensemble mean, the red vertical line is the TNEMOS forecast and the gray
dotted lines are 80% credible intervals. The thin curve is the predictive PDF of LLWS, and dots represent the ensemble
member forecasts.

5. Conclusions

The prediction of LLWS of Gimpo, Gimhae, Incheon and Jeju International Airports,
using ensemble member forecasts generated from LENS, showed that the degree of perfor-
mance was undesirable, due to the bias and dispersion inherent in the system. Therefore,
statistical postprocessing techniques are needed to calibrate them.

In this study, we applied the EMOS model, which is one of the statistical postprocess-
ing methods, and it provides a fully predictive density probability function for LLWS to
reduce bias and dispersion. Since the non-negative values and an asymmetric distribution
are allowed for LLWS, we used a left-truncated normal distribution with a cutoff at zero
for LLWS as the predictive probability density function. In addition, since the properties or
patterns of wind change according to the seasons, the probabilistic forecasts according to
the seasons were estimated.

The results of the comparisons between the raw ensembles and probabilistic forecasts
revealed that probabilistic forecasts exhibited better prediction skills in terms of MAE,
CRPS and PIT for all seasons. Therefore, the system error and dispersion owing to the
limitations and the uncertainty of its model can be reduced significantly by applying
the EMOS model. Moreover, probability information obtained from the predictive PDF
can account for uncertainty by providing additional information about the probability
of occurrence compared to deterministic forecasts, thus providing useful information for
aircraft operation and management.

The bias and uncertainty were quantified by estimating probabilistic forecasts to
provide more reliable and accurate information of LLWS according to the seasons. However,
it can be seen that the prediction skills have room for improvement, due to the training
period, seasons, ensemble models, etc. Although this study focused only on EMOS with a
left-truncated normal distribution, further improvements in ensemble calibration can be
provided by comparative study of models reflecting various other distributions or other
techniques.
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