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Abstract: The meteorology data assimilation applications often encounter variational problems with
unknown weights, where the corresponding Euler equation is an elliptic partial differential equation.
This research focused on retrieving the weights in remote sensing data assimilation by means of
the computer-friendly form of the Green’s function obtained by eigenfunction expansion for the
boundary value problem of the static Klein–Gordon equation on a rectangular region. With the help
of the proposed retrieving method, the assimilation problem of estimating regional precipitation
with weather radar and rain-gauge is solved in the Green’s function method. Results show that
high accuracy of the proposed method makes it a good candidate for data assimilation problems in
operational use.

Keywords: Green’s function; Klein–Gordon equation; rectangle area; uniformly convergence; regional
precipitation; data assimilation

1. Introduction

In modern numerical weather prediction, data assimilation is an effective method to
improve data accuracy by fusing datasets with different precisions. Data assimilation appli-
cations often encounter variational problems, where the corresponding Euler equation is an
elliptic partial differential equation (PDE), usually a static Klein–Gordon equation (SKGE).
In applications, there are two obstacles: unknown boundary conditions, and unknown
weights. Such problems of retrieving the unknown boundary condition and weights are
generally known as inverse problems. Most previous research on these problems has
concentrated on approximating parameter estimation [1–5] to some extent. Wei, et al. (1998,
2003) calculated the weights with the matrix theory and the finite difference method of
partial differential equation [6,7].

In solving elliptic equations by Green’s functions, Melnikov (2011) constructed the
corresponding Green’s functions for the SKGE of several unbounded domains into con-
vergent series, which were more suitable for the numerical implementation [8]. Using
Fourier transformation, Aseeri et al. (2015) solved the cubic Klein-Gordon equation and
examined strong scaling of the code [9]. Vibrating systems examples were described by
Klein–Gordon equation and the correspondence between the classical and quantum set-
tings of this equation was discussed in [10]. Muravey (2015) provided explicit formulas for
the Green’s functions of an elliptic PDE in an infinite strip and a half-plane [11]. However,
due to convergence of series, the explicit Green’s function on a rectangular region remains
unsolved. Cheng, et al. (2017) found the representation in double series of Green’s function
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for SKGE on a rectangular region. Although it is uniformly convergent, the huge amount of
computing complexity along with the double series hinders the practical application [12].

Needless to say, the retrieval of the unknown weights of an elliptic PDE requires the
explicit solution based on the Green’s function, which is in the form of an infinite series.
In fact, retrieving the weights is more difficult than retrieving the unknown boundary
condition, because the weights appear in the expression of Green’s function. Considering
the approximation calculation, the infinite series of the Green’s function must be acquired
in a computer-friendly form. This is the motivation of our research.

This current work obtains a new series representation of the Green’s function for
the SKGE using eigenfunction expansion. The Green’s function is decomposed into a
singular component and a regular component. The singular component, with a logarithmic
singularity, is expressed as an explicit elementary function, which is computer-friendly
for Green’s function application. The regular component is expressed as an infinite series.
The uniform convergence of this infinite series is investigated. With help of the computer-
friendly form Green’s function, the weights are calculated by comparing the observations
in the interior region with the formula solution of Green’s function in the corresponding
positions. Real precipitation data assimilation results show that Green’s function method
is a good candidate for data assimilation problems in operational use.

2. The Data Assimilation and Its Variational Problem

In weather prediction areas, a particular physical parameter uR is provided from
remote observation. The corresponding physical quantity ũ retrieved from uR according
to the empirical formula is usually with large error. Some high-precision observation
uG in the same area can be used to improve the estimation accuracy, but the number of
high-precision observations is limited. More reasonable constraints are also needed to
improve the estimation accuracy. According to the smoothness and the dependence on
the observation, an unknown function u(x, y) is built to satisfy the following functional
extremum problem

x

Ω

[(
∂u
∂x

)2
+

(
∂u
∂y

)2
+ µR(u− uR)

2 + µG(u− uG)
2

]
dxdy = min (1)

where Ω stands for a special field, µR ≥ 0, µG ≥ 0 are weights corresponding to different
error items. In addition, the values of u(x, y) on the boundary Γ of area Ω are given by

u(x, y)|Γ = φ(x, y) (2)

For this functional extremum problem with the boundary constraint, the correspond-
ing Euler’s equation is presented as follows [13,14]:

∂2u
∂x2 +

∂2u
∂y2 − µu = û , (3)

where û = µRuR + µGuG, µ = µR + µG. This is a typical Dirichlet problem for an elliptic
equation stated on a special region. Theoretically, the elliptic equation can be solved by the
Green’s function. However, as mentioned before, the weights are usually unknown in real
data assimilation problem.

The Green’s function of a PDE depends on not only the form of the equation but
also the boundary condition. It is important to find an explicit solution of the Green’s
function [12]. In order to get an analytical expression of the corresponding Green’s function,
we consider the special situation of a rectangular area. The solution of Equation (3) has
area of

Ω = {(x, y)|0 ≤ x ≤ a, 0 ≤ y ≤ b}.
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For simplicity of discussion, in this paragraph, let k2 = µ, f = û, we discuss the
Klein–Gordon equation as follows.{

∇2u− k2u = f
u|Γ = φ

(4)

As Hilbert has shown, a boundary problem is solvable if a generalized Green’s
function is introduced. Therefore, we should find the corresponding Green’s function—
i.e., G(x, y; ξ, η)—which satisfies [13]{

∇2G− k2G = δ(x− ξ)δ(y− η)
G|Γ = 0

(5)

for any point (ξ, η) in domain Ω. Here, δ is a Dirac function.
On the other hand, if u(x, y), G(x, y; ξ, η) ∈ C2(Ω), from the Green’s function, we

have x

Ω

[
u∇2G− G∇2u

]
dxdy =

∫
Γ

(
u

∂G

∂
⇀
n
− G

∂u

∂
⇀
n

)
ds. (6)

where
⇀
n is normal vector of the boundary Γ. Let u satisfy Equation (4), substituting u into

Equation (6) gives

x

Ω

[
u∇2G− G

(
k2u + f

)]
dxdy =

∫
Γ

(
u

∂G

∂
⇀
n
− G

∂u

∂
⇀
n

)
ds.

Then, for a generalized Green’s function satisfying Equation (5), the above equation
can be simplified as

s
Ω
[
u
(
∇2G− k2G

)
− G f

]
dxdy =

s
Ω uδ(x− ξ, y− η)dxdy−

s
Ω G f dxdy

=
∫

Γ

(
u ∂G

∂
⇀
n
− G ∂u

∂
⇀
n

)
ds.

The solution of Equation (4) therefore becomes

u(ξ, η) =
x

Ω

G(x, y; ξ, η) f (x, y)dxdy +
∫

Γ
φ(x, y)

∂G(x, y; ξ, η)

∂
⇀
n

ds (7)

The next key problem is to get the solution of Equation (5), the generalized Green’s
function G(x, y; ξ, η).

It is well known that non-homogeneous boundary conditions can be transformed into
homogeneous boundary conditions. For simplicity, we assume that φ(x, y) = 0 here. Then
we get

u(ξ, η) =
x

Ω

G(x, y; ξ, η) f (x, y)dxdy =
∫ b

0

∫ a

0
G(x, y; ξ, η) f (x, y)dxdy (8)

where the Green’s function G(x, y; ξ, η), according to the Appendix A, is defined by

(x, y; ξ, η) =
2
b

∞

∑
n=1

gn(x, ξ) sin vy sin vη, v =
nπ

b
(9)

The coefficients gn(x, ξ) for x < ξ are of the form

gn(x, ξ) = 1
4hsin hha [exp(h(x− ξ − a))− exp(h(x + ξ − a))

+exp(−h(x− ξ − a))− exp(−h(x + ξ − a))]
(10)
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where h =
√

υ2 + k2. Substituting (9), (10) into (8) yields

u(ξ, η) = 2
b

∫ b
0

∫ ξ
0

∞
∑

n=1

sinhh(ξ−a)sinhhx
hsinhha sin υy sin υη f (x, y)dxdy

+ 2
b

∫ b
0

∫ a
ξ

∞
∑

n=1

sinhhξsinhh(x−a)
hsinhha sin υy sin υη f (x, y)dxdy

(11)

where f = µRuR + µGuG.

3. Retrieving the Weights by Formal Solution

Obviously, formal solution expression (8) contains unknown parameters, µR, µG.
The mechanism for retrieving is to minimize the error between the observations and the
analytical solution in the observation points. It is well known that the analytical solution
can be obtained if the Green’s function of the PDE is known. In the previous section, a
computer-friendly representation of the Green’s function is developed, the approximation
calculation of analytical solution can be implemented by directly truncating the infinite
series.

As precipitation data uG measured by rain gauge is more accurate, we try to select the
weights that satisfy

J(µR, µG) = ∑
(ξ,η)∈ΩG

(u(ξ, η)− uG(ξ, η))2 = min. (12)

where ΩG represents the rain gauge point set. According to the knowledge of calculus, we
compute the partial derivatives as follows

∂J
∂µR

= 2 ∑
(ξ,η)∈ΩG

(u(ξ, η)− uG(ξ, η))
∂u(ξ,η)

∂µR

= 2 ∑
(ξ,η)∈ΩG

(u− uG)
[∫ a

0

∫ b
0 G(x, y; ξ, η)

∂ f
∂µR

dxdy

+
∫ a

0

∫ b
0

∂G(x,y;ξ,η)
∂µR

f dxdy
]
,

∂J
∂µG

= 2 ∑
(ξ,η)∈ΩG

(u(ξ, η)− uG(ξ, η))
∂u(ξ,η)

∂µG

= 2 ∑
(ξ,η)∈ΩG

(u− uG)
[∫ a

0

∫ b
0 G(x, y; ξ, η)

∂ f
∂µG

dxdy

+
∫ a

0

∫ b
0

∂G(x,y;ξ,η)
∂µG

f dxdy
]

where ∂ f
∂µR

= uR, ∂ f
∂µG

= uG,

∂G(x,y;ξ,η)
∂µR

= 2
b ∑ ∂gn(x,ξ)

∂µR
sin νy sin νη,

∂G(x,y;ξ,η)
∂µG

= 2
b ∑ ∂gn(x,ξ)

∂µG
sin νy sin νη

with
∂gn(x,ξ)

∂µR
= ∂gn(x,ξ)

∂h
∂h

∂µR
= ∂gn(x,ξ)

∂h
1

2h ,

∂gn(x,ξ)
∂µG

= ∂gn(x,ξ)
∂h

∂h
∂µG

= ∂gn(x,ξ)
∂h

1
2h ,

∂gn(x,ξ)
∂h = ∂

∂h

(
sinhh(ξ−a)sinhhx

hsinhha

)
= [(ξ−a) cosh h(ξ−a)+x cosh hx]hsinhha

h2sinh2ha

− (sinhha+h cosh ha)sinhh(ξ−a)sinhhx
h2sinh2ha

.
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∂gn(x,ξ)
∂µR

= ∂gn(x,ξ)
∂h

∂h
∂µR

= ∂gn(x,ξ)
∂h

1
2h ,

∂gn(x,ξ)
∂µG

= ∂gn(x,ξ)
∂h

∂h
∂µG

= ∂gn(x,ξ)
∂h

1
2h ,

∂gn(x,ξ)
∂h = ∂

∂h

(
sinhh(ξ−a)sinhhx

hsinhha

)
= [(ξ−a) cosh h(ξ−a)+x cosh hx]hsinhha

h2sinh2ha

− (sinhha+h cosh ha)sinhh(ξ−a)sinhhx
h2sinh2ha

.

Finally, the steepest descent algorithm is designed for solving J
(→

z
)
, J(µR, µG) = min.

Algorithm:

Step 1. Choose initial point
→
z
(0)

=
(

µ
(0)
R , µ

(0)
G

)
, l = 0, precise requirement ε > 0;

Step 2. Calculate ∇J
(
→
z
(l)
)

=
(

∂J
∂µR

, ∂J
∂µG

)→
z
(l)

,
→
z
(l)

=
(

µ
(l)
R , µ

(l)
G

)
. If ‖ ∇J

(
→
z
(l)
)
‖ < ε,

stop. Otherwise, let
→
d
(l)

= −∇J
(
→
z
(l)
)

;

Step 3. Let
→
z
(l+1)

=
→
z
(l)

+ λl
→
d
(l)

, find λl from J
(
→
z
(l+1)

)
= min;

Step 4. Let l = l + 1, turn to Step 2.

According to the Appendix B, convergence analysis and truncation error analysis, the
series representation of Green’s function is uniformly converged, and the calculation of
infinite series can be truncated.

4. Numerical Experiments

Simulations are conducted here to find the rate of convergence, and so investigate the
performance of the proposed Green’s function in Equation (7). Figure 1 plots G(x, y; ξ, η)
on the rectangular region (0 ≤ x ≤ 80, 0 ≤ y ≤ 60) selected from the radar detection range
for (ξ, η) equals to (40, 30). Note that G equals 0 on the boundaries of the region and tends
to −∞ when (x, y) tends to (ξ, η). The convergence performance of the Green’s function
on many points in the rectangular area is tested to perform the simulation. Results show
that all the points converge steadily to their true numerical values after a limited number
of iterations. The convergence speed of the Green’s function is much faster when (x, y) is
far from (ξ, η).
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In the following example, the Green’s function method in Equation (8) is used to
retrieve the rainfall value at some points in a rectangular area. The results are compared
with the values from the Z-I relationship. The observation data are made by Changzhou
radar at 18:38 UTC on 11 June 2016 (Figure 2). There are 624 rain gauges in the observation
area. In the data assimilation problem, the 624 rain-gauges data are used to correct radar–
retrieved rainfall. The optimal estimation weights are µR = 12, µG = 96.
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Figure 2. Radar observation and rain-gauge point position.

A rectangular region of 80× 60 km2 (Figure 3) and 103 rain gauges inside it are chosen
to perform the Green’s function method. Because it is a rectangular region, using partial
derivative to replace directional derivative, we get the curve integral on the four boundaries
by difference method. Assuming boundary condition equals the radar observation, rainfall
of every rain-gauge point in the rectangular region is obtained by the Green’s function
method.

Atmosphere 2021, 12, x FOR PEER REVIEW 7 of 14 
 

 

 

Figure 3. Rectangular Region (80 × 60 km2). 

In practical application, if the number of rain gauges is insufficient, virtual observa-

tions on positions without rain gauges can be obtained by linear interpolation. In our ex-

periment, there are few rain gauges near the bottom of the rectangular area. At (50, 50), 

for example, the observed value 0.953 is obtained by interpolation of five nearby observa-

tion points (42, 55), (47, 41), (57, 46), (50, 45) and (53, 48), which can be used for subsequent 

parameter estimation or comparative analysis. 

In the calculation, 75 rain gauges are selected to estimate the weights, and the re-

maining quarter of the rain gauges are used for comparative analysis. The results show 

that the retrieved values possess better correlation properties of the rain-gauge observa-

tions than radar observations (Figure 4). Correlation coefficient has grown from 0.6149 to 

0.7844. Most retrieved values of the 103 points are closer to the rain-gauge observations 

than the values from Z-I relationship of radar and rainfall. Under the condition of optimal 

weights selection, the rainfall field obtained by variational inversion has higher accuracy. 

In this case, Z-I relationship is Z = 296*I1.24 in which Z is the radar reflectivity, I is the 

rainfall 𝑢𝑅. Table 1 shows some of these values. 

 

Figure 4. 10 min rainfall from different methods. 

Figure 3. Rectangular Region (80 × 60 km2).



Atmosphere 2021, 12, 1602 7 of 13

In practical application, if the number of rain gauges is insufficient, virtual observa-
tions on positions without rain gauges can be obtained by linear interpolation. In our
experiment, there are few rain gauges near the bottom of the rectangular area. At (50, 50),
for example, the observed value 0.953 is obtained by interpolation of five nearby observa-
tion points (42, 55), (47, 41), (57, 46), (50, 45) and (53, 48), which can be used for subsequent
parameter estimation or comparative analysis.

In the calculation, 75 rain gauges are selected to estimate the weights, and the remain-
ing quarter of the rain gauges are used for comparative analysis. The results show that
the retrieved values possess better correlation properties of the rain-gauge observations
than radar observations (Figure 4). Correlation coefficient has grown from 0.6149 to 0.7844.
Most retrieved values of the 103 points are closer to the rain-gauge observations than the
values from Z-I relationship of radar and rainfall. Under the condition of optimal weights
selection, the rainfall field obtained by variational inversion has higher accuracy. In this
case, Z-I relationship is Z = 296 ∗ I1.24 in which Z is the radar reflectivity, I is the rainfall uR.
Table 1 shows some of these values.
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Table 1. Interior point values. Pos is interior point coordinates (unit: km). Obs is rain-gauge
observation in 10 min (unit: mm). Rad is radar observation on the point (unit: dBz). Rtr is retrieved
data by Z-I relationship of radar and rainfall (unit: mm). Joi is the joint value by the Green’s function
method (unit: mm).

Pos (17, 47) (59, 21) (62, 58) (78, 36) (67, 44) (50, 28) (28, 22) (52, 25)

Obs 1.2 0.7 1.8 2.7 2.3 0.9 0.2 0.6

Rad 30 27 47 35 38 31 11 30

Rtr 1.2322 0.9353 3.2013 1.6780 3.5835 0.9404 0.1644 0.7484

Joi 0.2224 0.1274 5.2259 0.5629 0.9826 0.2678 0.0065 0.2224

5. Conclusions

This study solves the data assimilation problems of two kinds of data, uR and uG,
through a variational model. In order to retrieve the weighting parameters µR, µG from
some of the observations in the interior region, the computer-friendly form of the Green’s
function is obtained by eigenfunction expansion for the boundary value problem of the
static Klein–Gordon equation on a rectangular region. Convergence analysis in Appendix B
proves that the series representation of Green’s function is computer-friendly, and can be
used to approximate computations by a direct truncation.
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The numerical experiment’s result shows that the series representation of Green’s
function converges steadily and rapidly. The Green’s function method is used to retrieve
the weights and assimilate precipitation data from weather radar and rain-gauges in the
experiments. Results show that the Green’s function method is a good candidate for data
assimilation problems in operational use.
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Appendix A. The Green’s Function for the SKGE Stated on a Rectangular Region

For the elliptic two-dimensional SKGE
(
∇2 − k2)u(x, y) = f (x, y) , (x, y) ∈ Ω, the

corresponding homogeneous boundary condition is
{

u(x, 0) = u(x, b) = 0
u(0, y) = u(a, y) = 0

. Focusing on

the Dirichlet problem set up on a rectangle Ω = {(x, y)}|0 ≤ x ≤ a, 0 ≤ y ≤ b , we study
the following series representation of its Green’s function

(x, y; ξ, η) =
2
b

∞

∑
n=1

gn(x, ξ) sin vy sin vη, v =
nπ

b
. (A1)

The coefficients g(x, ξ) for x < ξ are of the form

gn(x, ξ) = 1
4hsin hha [exp(h(x− ξ − a))− exp(h(x + ξ − a))

+exp(−h(x− ξ − a))− exp(−h(x + ξ − a))]
(A2)

where h =
√

υ2 + k2. In fact, it is not difficult to find that

gn(x, ξ)|x=0 =
exp(−h(ξ + a))− exp(h(ξ − a)) + exp(h(ξ + a))− exp(−h(ξ − a))

4hsin hha
6= 0

and gn(x, ξ)|x=0 → ∞ as h→ ∞ , which yields the non-computer-friendly series represen-
tation. However, we find that the correct form is as follows.

gn(x, ξ) = sin hh(ξ−a)sin hhx
hsin hha

= 1
4hsin hha [exp(h(x + ξ − a))− exp(h(x− ξ + a))

+exp(−h(x + ξ − a))− exp(−h(x− ξ + a))]

(A3)

The following focuses on deducing Equation (A3). Substituting Equation (A1) into
the SKGE gives the coefficient function gn(x, ξ) satisfying the differential equation

g′′ n(x, ξ)−
(

v2 + k2
)

gn(x, ξ) = δ(x− ξ) (A4)

with homogeneous boundary condition gn(0, ξ) = 0, gn(a, ξ) = 0. For x equal to anything
but ξ, g′′ n(x, ξ)−

(
v2 + k2)gn(x, ξ) = 0. Therefore,

gn(x, ξ) =

{
c1 exp(hx) + c2 exp(−hx) , x < ξ
d1 exp(h(x− a)) + d2 exp(−h(x− a)), x ≥ ξ
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To determine the above constants c1, c2, d1, d2, integrate differential Equation (A4)

from ξ − ε to ξ + ε, where ε is infinitesimal. The result is dgn
dx

∣∣∣ξ+ε

ξ−ε
= 1. Integrating again

gives gn|ξ+ε
ξ−ε = 0. That is, gn(x, ξ) as a function of x is continuous at x = ξ, but its first

derivative jumps by +1 at that point, leading to

c1 exp(hξ) + c2 exp(−hξ) = d1 exp(h(ξ − a)) + d2 exp(−h(ξ − a))

and

d1 exp(h(ξ − a))− d2 exp(−h(ξ − a))− (c1 exp(hξ)− c2 exp(−hξ)) = 1/h.

Considering the homogeneous boundary conditions gives
{

c1 + c2 = 0
d1 + d2 = 0

, from

which
c1 = 1

2h
sin hh(ξ−a)

sin hhξcos hh(ξ−a)−sin hh(ξ−a)cos hhξ

= 1
2h

sin hh(ξ−a)
sin hha

and
d1 = 1

2hcos hh(ξ−a)
sin hh(ξ−a)cos hhξ

sin hhξcos hh(ξ−a)−sin hh(ξ−a)cos hhξ

= sin hh(ξ−a)cos hhξ
2hcos hh(ξ−a)sin hha = 1

2h
sin hhξ
sin hha

Hence,

gn(x, ξ) =


sin hh(ξ−a)sin hhx

hsin hha , x < ξ

sin hhξsin hh(x−a)
hsin hha , x ≥ ξ

. (A5)

This yields the desired Green’s function G(x, y; ξ, η) on the rectangle Ω = {(x, y)}|
0 ≤ x ≤ a, 0 ≤ y ≤ b in the form

(x, y; ξ, η) =


2
b

∞
∑

n=1

sin hh(ξ−a)sin hhx
hsin hha sin vy sin vη, x < ξ

2
b

∞
∑

n=1

sin hhξsin hh(x−a)
hsin hha sin vy sin vη, x ≥ ξ

. (A6)

In order to prove the convergence, rewrite the branch of the function gn(x, ξ), which
is valid for x < ξ, in the form

gn(x, ξ) = 1
h

sin hh(ξ−a)sin hhx
sin hha − exp(h(x+ξ−2a))

2h

+
[

exp(h(x+ξ−2a))
2h − exp(v(x+ξ−2a))

2v

]
+

exp(v(x+ξ−2a))
2v

= Hn(x, ξ) + Mn(x, ξ) +
exp(v(x+ξ−2a))

2v

(A7)

where
Hn(x, ξ) = 1

h
sin hh(ξ−a)sin hhx

sin hha − exp(h(x+ξ−2a))
2h ,

Mn(x, ξ) =
exp(h(x+ξ−2a))

2h − exp(v(x+ξ−2a))
2v .

This lets Equation (A1) be transformed into the following expression

(x, y; ξ, η) = 2
b

∞
∑

n=1
Hn(x, ξ) sin vy sin vη + 2

b

∞
∑

n=1
Mn(x, ξ) sin vy sin vη

+ 1
b

∞
∑

n=1

exp(v(x+ξ−2a))
v sin vy sin vη

(A8)
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with

∞
∑

n=1

exp(v(x+ξ−2a))
v sin vy sin vη

= 1
2

∞
∑

n=0

exp(v(x+ξ−2a))
v cos v(y− η) 1

2

∞
∑

n=0

exp(v(x+ξ−2a))
v cos v(y + η)

= 1
4π

[
ln 1−2 exp(c(x+ξ−2a)) cos(y+η)+exp(2c(x+ξ−2a))

1−2 exp(c(x+ξ−2a)) cos(y−η)+exp(2c(x+ξ−2a))

] (A9)

where c = π/b. Substituting Equation (A9) into Equation (A8) then gives the new series
representation of the Green’s function for the Dirichlet problem set up for the SKGE on the
rectangle Ω:

G(x, y; ξ, η) = 2
b

∞
∑

n=1
Hn(x, ξ) sin vy sin vη + 2

b

∞
∑

n=1
Mn(x, ξ) sin vy sin vη

+ 1
4π

[
ln 1−2 exp(c(x+ξ−2a)) cos(y+η)+exp(2c(x+ξ−2a))

1−2 exp(c(x+ξ−2a)) cos(y−η)+exp(2c(x+ξ−2a))

]
, x < ξ

(A10)

The representation of G(x, y; ξ, η) valid for x ≥ ξ can be derived from Equation (A10),
by interchanging the variables x and ξ in the first of the two series only, because the second
series is invariant to the swap.

Appendix B. Convergence Analysis and Truncation Error Analysis

For the effective computational implementation of the representation in Equation
(A10), we study the two series separately in the following paragraphs. First, consider the
series ∑∞

n=1 Hn(x, ξ) sin vy sin vη. As it is difficult to prove directly the uniform convergence
of the first of the two series in Equation (A10), decompose the series into two parts, one
of which is a complete summation. Indeed, the complete summation can remove the
disadvantage affecting the uniformly convergent criterion. This is the basic idea of the
uniformly convergent proof of the infinite series. Elementary algebra shows

Hn(x, ξ) = 1
h

sin hh(ξ−a)sin hhx
sin hha − exp(h(x+ξ−2a))

2h

=
2sin hh(ξ−a)sin hhx−exp(h(x+ξ−2a))sin hha

2hsin hha

= 1
4hsin hha [(exp(h(ξ − a))− exp(−h(ξ − a)))(exp(hx)− exp(−hx))

− exp(−h(x + ξ − 2a))(exp(ha)− exp(−ha))]

= 1
4hsin hha [− exp(h(x− ξ + a))− exp(−h(x− ξ + a))

+ exp(−h(x + ξ − a)) + exp(h(x + ξ − 3a))]

= 1
2h(1−exp(−2ha)) [− exp(h(x− ξ))− exp(−h(x− ξ + 2a))

+ exp(−h(x + ξ)) + exp(h(x + ξ − 4a))]

=
exp(−h(x+ξ))−exp(h(x−ξ))

2h(1−exp(−2ha))

+
exp(h(x+ξ−4a))−exp(−h(x−ξ+2a))

2h(1−exp(−2ha))

=
exp(−h(x+ξ))−exp(h(x−ξ))

2h + H′n(x, ξ),

where

H′n(x, ξ) = 1
2h(1−exp(−2ha)) [exp(h(x + ξ − 4a))− exp(−h(x− ξ + 2a))

+exp(−h(x + ξ + 2a))− exp(h(x− ξ − 2a))]
. (A11)
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and
∞
∑

n=1

exp(−h(x+ξ))−exp(h(x−ξ))
2h sin vy sin vη

= − 1
4

∞
∑

n=1

exp(−h(x+ξ))−exp(h(x−ξ))
h [cos v(y + η)− cos v(y− η)]

= 1
8c

[
ln 1−2 exp(c(x−ξ)) cos(y+η)+exp(2c(x−ξ))

1−2 exp(c(x−ξ)) cos(y−η)+exp(2c(x−ξ))

− ln 1−2 exp(−c(x+ξ)) cos(y+η)+exp(−2c(x+ξ))
1−2 exp(−c(x+ξ)) cos(y−η)+exp(−2c(x+ξ))

]
.

Then the Green’s function in the form of Equation (A10) can be rewritten as

(x, y; ξ, η) = 1
4π

[
ln 1−2 exp(c(x+ξ−2a)) cos(y+η)+exp(2c(x+ξ−2a))

1−2 exp(c(x+ξ−2a)) cos(y−η)+exp(2c(x+ξ−2a))

+ ln 1−2 exp(c(x−ξ)) cos(y+η)+exp(2c(x−ξ))
1−2 exp(c(x−ξ)) cos(y−η)+exp(2c(x−ξ))

− ln 1−2 exp(−c(x+ξ)) cos(y+η)+exp(−2c(x+ξ))
1−2 exp(−c(x+ξ)) cos(y−η)+exp(−2c(x+ξ))

]
+ 2

b

∞
∑

n=1
H′n(x, ξ) sin vy sin vη + 2

b

∞
∑

n=1
Mn(x, ξ) sin vy sin vη

(A12)

To explore the convergence of ∑∞
n=1 H′n(x, ξ) sin vy sin vη and analyze its truncation

errors requires estimation of the asymptotic property of the common term H′n(x, ξ).
As 0 ≤ x < ξ ≤ a, we have

|H′n(x, ξ)| =
∣∣∣ 1

2h(1−exp(−2ha)) [exp(h(x + ξ − 4a))− exp(−h(x− ξ + 2a))

+exp(−h(x + ξ + 2a))− exp(h(x− ξ − 2a))]|

=
∣∣∣ exp(−ha)

2h(1−exp(−2ha)) [exp(h(x + ξ − 3a))− exp(−h(x− ξ + a))

+exp(−h(x + ξ + a))− exp(h(x− ξ − a))]|

≤ exp(−ha)
2h(1−exp(−2ha)) [exp(h(x + ξ − 3a))− exp(−h(x− ξ + a))

+exp(−h(x + ξ + a))− exp(h(x− ξ − a))]

≤ 2 exp(−ha)
h(1−exp(−2ha)) = O

(
1

h exp(ha)

)
, h→ ∞.

Hence, |H′n(x, ξ) sin vy sin vη| ≤ 2 exp(−ha)
h(1−exp(−2ha)) . The uniform convergence of the se-

ries ∑∞
n=1

2 exp(−ha)
h(1−exp(−2ha)) , from the series convergence criterion, clearly leads to the uniform

convergence of the series ∑∞
n=1 H′n(x, ξ) sin vy sin vη.

In order to compute approximately the Green’s function, analyze the modulus of its
remainder. ∣∣∣∣ ∞

∑
n=N+1

H′n sin vy sin vη

∣∣∣∣ ≤ ∞
∑

n=N+1

2
(1−exp(−2ha))h exp(ha)

≤ 2
(N+1)(1−exp(−2(N+1)a))

∞
∑

n=N+1

1
exp(na)

=
2 exp(−(N+1)a)

(N+1)(1−exp(−2(N+1)a))(1−exp(−a))

Hence, the series ∑∞
n=1 H′n(x, ξ) sin vy sin vη converges uniformly, and can be accu-

rately computed by a direct truncation. The above estimate helps to find an approximate
value of the truncating parameter N required to attain a desired accuracy.
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Consider secondly the convergence of ∑∞
n=1 Mn(x, ξ) sin vy sin vη, and the analysis of

the modulus of its remainder,

|RN(x, y; ξ, η)| =
∣∣∣∣ ∞

∑
n=N+1

[
exp(h(x+ξ−2a))

2h − exp(v(x+ξ−2a))
2v

]
sin vy sin vη

∣∣∣∣
≤
∣∣∣∣ ∞

∑
n=N+1

[
exp(h(x+ξ−2a))

2h − exp(v(x+ξ−2a))
2v

]∣∣∣∣
The inequality regarding the truncation error is obtained as follows

|RN(x, y; ξ, η)| < b
π

{
[1− exp(k(x− ξ))]

∞

∑
n=N+1

1
n

exp
(nπ

b
(x− ξ)

)
+ k

b
π

∞

∑
n=N+1

1
n2

}
. (A13)

Evidently,
∞

∑
n=N+1

1
n2 <

∫ ∞

N+1

1
x2 dx =

1
N + 1

(A14)

and
ln(1 + x) < x, x < 1. (A15)

Inequalities (A13)–(A15) allow estimation of the truncation error term:

|RN(x, y; ξ, η)| < b
π

{
[1− exp(k(x− ξ))]

∞
∑

n=N+1

1
n exp

( nπ
b (x− ξ)

)
+ k b

π

∞
∑

n=N+1

1
n2

}
< b

π

{
[1− exp(k(x− ξ))] ln

[
1 + exp

(
π
b (x− ξ)

)]
exp

(
Nπ

b (x− ξ)
)
+ kb

(N+1)π

}
< b

π

{
[1− exp(k(x− ξ))] exp

(
(N+1)π

b (x− ξ)
)
+ kb

(N+1)π

}
.

Obviously, the above inequality is dependent on the variables. To prove the uniform
convergence and obtain a uniform estimation requires further estimation of the right side
of the above inequality. Therefore, consider the extremum property of the function

ψ(θ) = [1− exp(kθ)] exp
(
(N + 1)πθ

b

)
, (θ < 0).

It is not difficult to find that the stationary point is θ = 1
k ln
(

(N+1)π/b
(N+1)π/b+k

)
and the

corresponding maximum is

ψmax =
kb/(N + 1)π

1 + kb/(N + 1)π
exp

[
− (N + 1)π

b
1
k

ln
(

1− kb
(N + 1)π + kb

)]
.

When N is sufficiently large, we have

ψmax < kb/(N+1)π
1+kb/(N+1)π exp

[
− (N+1)π

b
1
k

(
kb

(N+1)π+kb −
(

kb
(N+1)π+kb

)2
/2
)]

< kb/(N+1)π
1+kb/(N+1)π exp

[
−1 + kb

2(N+1)π+2kb

]
< kb

(N+1)π .

Substituting the above inequality into inequality (A13) gives

|RN(x, y; ξ, η)| < b
π

[
kb

(N + 1)π
+

kb
(N + 1)π

]
=

2kb2

(N + 1)π2 . (A16)

Hence, the truncation error term converges to zero, and the function ∑∞
n=1 Mn(x, ξ) sin vy sin vη

converges uniformly. The resulting uniform estimator of function ∑∞
n=1 Mn(x, ξ) sin vy sin vη

is advantageous to the approximate calculation.
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Then we find that the two series in Equation (A10) converge uniformly and can
be accurately computed by a direct truncation. The above estimation can provide an
appropriate value of the truncating parameter N required to attain a desired accuracy.

G(x, y; ξ, η) = 2
b

∞
∑

n=1
gn(x, ξ) sin vy sin vη

= 1
4π

[
ln 1−2 exp(c(x+ξ−2a)) cos(y+η)+exp(2c(x+ξ−2a))

1−2 exp(c(x+ξ−2a)) cos(y−η)+exp(2c(x+ξ−2a))

+ ln 1−2 exp(c(x−ξ)) cos(y+η)+exp(2c(x−ξ))
1−2 exp(c(x−ξ)) cos(y−η)+exp(2c(x−ξ))

− ln 1−2 exp(−c(x+ξ)) cos(y+η)+exp(−2c(x+ξ))
1−2 exp(−c(x+ξ)) cos(y−η)+exp(−2c(x+ξ))

]
+ 2

b

N
∑

n=1
H′n(x, ξ) sin vy sin vη + 2

b

N
∑

n=1
Mn(x, ξ) sin vy sin vη + O

(
1
N

)
(A17)

Similarly, interchanging the variables x with ξ in the first series gives the representation
of G(x, y; ξ, η) valid for (x ≥ ξ).
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