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Abstract: As a major threat to aviation flight safety, it is particularly important to make accurate
judgments and forecasts of the ice accumulation environment. Radar is widely used in civil aviation
and meteorology, and has the advantages of high timeliness and resolution. In this paper, a variety
of machine learning methods are used to establish the relationship between radar data and icing
index (Ic) to determine the ice accumulation environment. The research shows the following. (1) A
linear model was established, based on the scattering rate factor (Zh), radial velocity (v), spectral
width (w), velocity standard deviation (σ) detected by 94 GHz millimeter wave radar, and backward
attenuation coefficient (β) detected by 905 nm lidar, so linear regression was carried out. After
principal component analysis (PCA), the correction determination coefficient of the linear equation
was increased from 0.7127 to 0.7240. (2) Ice accumulation was unlikely for samples that were
significantly off-center. By clustering the data into three or four categories, the proportion of icing
lattice points could be increased from 18.81% to 33.03%. If the clustering number was further
increased, the ice accumulation ratio will not be further increased, and the increased classification
is reflected in the classification of pairs of noises and the possibility of omission is also increased.
(3) Considering the classification and nonlinear factors of ice accumulation risk, the neural network
method was used to judge the ice accumulation environment. Two kinds of neural network structures
were established for quantitative calculation: Structure 1 first distinguished whether there was ice
accumulation, and further calculated the icing index for the points where there was ice accumulation;
Structure 2 directly calculated the temperature and relative humidity, and calculated the icing index
according to definition. The accuracy of the above two structures could reach nearly 60%, but the
quantitative judgment of the ice accumulation index was not ideal. The reasons for this dissatisfaction
may be the small number of variables and samples, the interval between time and space, the difference
in instrument detection principle, and the representativeness of the ice accumulation index. Further
research can be improved from the above four points. This study can provide a theoretical basis for
the diagnosis and analysis of the aircraft ice accumulation environment.

Keywords: aviation safety; icing index; radar data; linear regression; clustering analysis; neural network

1. Introduction

Common causes of aircraft icing include: (1) encountering clouds with super-cooled
water droplets during flight; (2) being contaminated prior to takeoff; and (3) encountering
high concentrations of ice crystals during flight [1]. Ice accumulation in different parts of the
aircraft can easily damage the aerodynamic characteristics or power system of the aircraft,
or cause the pilot to misjudge the flight status of the aircraft, thus causing accidents. In 1994,
American Eagle Flight 4184 crashed due to ice pack, but the investigation report noted that
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there was no significant weather report of ice pack at the time of the accident [2]. In 2009,
when Air France Flight 447 was flying over the Atlantic Ocean, the autopilot disconnected
due to ice jam in the Pitot tube, and then the pilot misjudged the flight status and made
an improper operation, resulting in the plane crash [3]. An investigation of 803 aviation
accidents in the United States between 1975 and 1988 found that these accidents were partly
or wholly related to ice accumulation on aircraft [4]. Although there are many anti-icing
and deicing devices installed on modern aircraft [5–7], air accidents caused by ice pack still
occur from time to time. Therefore, it is of great significance to establish a time-efficient
and high-resolution algorithm for judging an ice pack environment.

There are many classical icing diagnosis and prediction algorithms abroad [8–11]. The
commonly used instruments for remote sensing data inversion of aircraft ice pack include
dual-wavelength radar, weather radar, meteorological satellite, microwave radiometer,
etc. [12–14]. GOES (Geostationary Operational Environmental Satellite) is used to identify
cloud features and super-cooled water to classify ice accumulation [15,16]. Javier et al. [17]
demonstrated that the WRF (weather research and forecasting) model is capable of correctly
detecting icing associated with mountain waves. Merino et al. [18] used in-cloud micro-
physics measurements taken during 10 flights of a C-212 research aircraft under winter
conditions. Bolgiani et al. [19] studied the risk of ice accumulation near Adolfo Suárez
Madrid-Barajas International Airport based on a WRF model and satellite data. Pereira [20],
based on ECMWFs (European Center for Medium-Range Weather Forecasts), presented a
verification of different icing algorithms for two periods. Part 25: Airworthiness Standards
for Transport Aircraft of the FAA (Federal Aviation Administration) provides conditions
for atmospheric icing in Appendix C and conditions for freezing of super-cooled large
droplets in Appendix O [21].

Some scholars have studied the shape and severity of body ice accumulation using a
neural network algorithm [22–24]. Dong [25] proposed an ice accumulation fault detection
system based on deep learning. Li et al. [26] established the relationship between flight
conditions and aircraft ice accumulation. Kolbakir et al. [27] found that plasma brakes
could prevent the wing from icing. Zhang et al. [28] proposed a probabilistic method under
considering subjective and objective parameters uncertainties based on the Monte Carlo
method for estimating the airplane icing severity. Zhou et al. [29] presented the reach
ability analysis based on the level set method. Cao et al. [30] established an engineering
prediction method of aerodynamic derivatives based on an individual component CFD
(computational fluid dynamics) calculation and narrow strip theory. Liu et al. [31] presented
a comprehensive aircraft icing simulation tool implemented in a Navier–Stokes parallel
multi-block solver. Wang et al. [32] established a safety analysis model to quantify the
safety degree of aircraft icing under the fuzzy inputs and fuzzy state.

In conclusion, the data from various scholars’ studies on the aircraft ice accumulation
environment mainly focused on the conventional observation data, and there are few
studies based on radar data. In the past research, the authors have conducted a preliminary
qualitative study on the aircraft ice accumulation environment in China [33]. Therefore,
in this paper, based on the detection data of millimeter wave radar and Lidar, linear
regression, principal component analysis, cluster analysis, and neural network methods
are used to study the direct inversion of ice index to realize the quantitative judgment of
the ice environment by radar data. This method can improve the resolution and timeliness
of the environmental judgment of ice accumulation.

2. Materials and Methods
2.1. Data

The Science and Technology Facilities Council (STFC) at Chilbolton Observatory in
the UK is home to many meteorological and atmospheric science research observation sys-
tems. The Chilbolton Facility for Atmospheric and Radio Research (CFARR) has multiple
radar and Lidar as well as observation equipment such as radiometers at different bands,
weather sensors, rain gauges, and cloud cameras. The sources of radar data used in this
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paper include cloud radar and Lidar, among which the 94 GHz cloud radar (Galileo radar)
is located at 51.145◦ N, 1.437◦ W, and the Lidar (905 nm Vaisala CT75K Lidar Ceilome-
ter) is located at 51.145◦ N, 1.427◦ W [34]. The millimeter-wave radar data used in this
paper includes radar scattering rate factor (Zh), radial velocity (v), spectral width (w),
and velocity standard deviation (σ), and the Lidar data used was backward attenuation
coefficient (β). The website is http://data.ceda.ac.uk/badc/chilbolton/data (accessed on
1 September 2020).

The sounding data are from the Department of Atmospheric Science, University of
Wyoming (UW, http://www.weather.uwyo.edu/upperair/sounding.html, accessed on
1 September 2020). The radiosonde data of Herstmonceux Station (position: 50.90◦ N,
0.32◦ E, station number: 03882) from several stations near Chilbolton were selected as
the radiosonde data corresponding to the radar data in this paper, and the geographical
location is shown in Figure 1. According to the altitude, temperature, and relative humidity
information of the station, the ice accumulation index was calculated as the reference of
the radar data. Since the grid points of the radiosonde data and radar data do not match
perfectly, the linear interpolation method was used to interpolate the radiosonde data to the
corresponding height according to the height of each grid point in the radar data, and then
the icing index was calculated to generate training set and test set to realize the training
and test of the model. Obviously, there will be errors in linear interpolation, and the inter-
polation result may not be equal to the real temperature and humidity at the corresponding
height. This error may be greater when interpolation is interpolated outward.
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2.2. Icing Index

The ICAO (International Civil Aviation Organization) recommends using the icing
index ‘IC’:

Ic = 2(RH − 50)× T(T + 14)
−49

(1)

where RH is the relative humidity (%), T is the temperature (◦C), RH is less than 50%, or T
is outside the range of −14 ◦C to 0 ◦C, so no ice accumulation occurs. The output range of
IC is 0–100. The larger the value, the stronger the ice accretion [35].

http://data.ceda.ac.uk/badc/chilbolton/data
http://www.weather.uwyo.edu/upperair/sounding.html
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2.3. Methods

Equation (2) is used for standardized calculation:

X∗
i =

Xi − X
S

(2)

X is the sample mean, and S is the sample standard deviation. After processing, the
mean value of each variable is 0, and the standard deviation is 1. This processing can
eliminate the influence of dimension and order of magnitude on the data analysis and
algorithm model. Variables with * in this paper refer to those after standardized processing.

PCA is a commonly used dimensionality reduction algorithm for high-dimensional
data. Its idea is to construct a new hyperplane, that is, a linear combination of existing coor-
dinates to express all samples. The eigenvalues and eigenvectors of the covariance matrix
were solved, the eigenvalues were sorted from largest to smallest, and the eigenvectors
corresponding to the first q eigenvalues were taken as the solutions of the PCA [36].

The clustering algorithm used in this paper was the K-means algorithm. In this
algorithm, K clustering centers are selected to cluster all samples into K classes, and
the sum of the distances between each sample and its clustering center is calculated to
describe the closeness of the samples around the mean vector in the cluster. When sum is
the minimum, this clustering method is considered to be reasonable. Since it is difficult
to find the optimal solution directly, the iterative method is adopted. Given K centers
of the primary election, the iterative method is used to gradually generate the optimal
solution [37].

Neural networks can be used for regression and classification to build possible re-
lationships between inputs and outputs. The most fundamental component of a neural
network is the neuron model. The neuron receives input signals from N neurons in the
previous layer, and the signals are transmitted through weighted connections. The total
input value received by the neuron is compared with the threshold value and processed
through the “activation function” set by the network to obtain the output signal. Many
such neurons are connected according to a certain hierarchical structure to obtain the neural
network [38].

2.4. Feasibility Analysis

Since the discussion in this paper was mainly based on cloud radar data, the relation-
ship between cloud radar data and radiosonde data was first analyzed to illustrate the
feasibility of using cloud radar data to judge ice accumulation. Statistics were conducted
on whether the radar measured data and whether the grid point was interpolated to obtain
ice accumulation. The results are shown in Table 1.

Table 1. Correspondence between cloud radar data and icing.

Data Type Sample Size Sample Proportion

Class 0 (Lack of Radar Data, no Risk of Icing) 5379 73.48%
Class 1 (Lack of Radar Data, Risk of Icing) 431 5.888%

Class 2 (with Radar Data, Risk of Icing) 284 3.880%
Class 3 (with Radar Data, no Risk of Icing) 1226 16.75%

According to the statistics in Table 2, among the total 7320 samples, only 431 samples
had an ice accumulation risk, which is not reflected in the radar data. Meanwhile, consid-
ering the geographical deviation of Chilbolton and Herstmonceux and the interference
of interpolation on the sounding data, the data volume of such samples may be even
smaller in the real situation. This indicates that it is meaningful to establish the relationship
between radar data and icing index to judge ice accumulation.
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Table 2. Correlation coefficient matrix.

IC Zh* v* w* σ* β*

IC 1 0.4429 0.1959 0.5262 0.0834 −0.1005
Zh∗ 0.4429 1 −0.3858 −0.0933 −0.5473 −0.2310
v∗ 0.1959 −0.3868 1 0.0163 0.5585 0.1874
w∗ 0.5262 −0.0933 0.0163 1 0.4268 0.3043
σ∗ 0.0834 −0.5473 0.5585 0.4268 1 0.6059
β∗ −0.1005 −0.2310 0.1874 0.3043 0.6059 1

3. Contributions of Radar Data to Icing Index

The 0 h data collected by Galileo’s cloud radar and Lidar in November 2003 consisted
of 192 altitudes per day for 26 days. Among them, cloud radar and Lidar obtained data,
and a total of 48 data points with icing were obtained according to interpolation. These
48 samples are the training set discussed in this section.

First, variables were standardized according to Equation (2). After standardization,
the correlation coefficients between dependent variables and independent variables and
between independent variables are given in Table 2.

The linear equation between the icing index and five standardized variables
was established:

IC = 30.7516 + 15.6657Zh∗ + 10.1979v∗ + 14.5997w∗ + 2.6934σ∗ − 6.7355β∗ (3)

According to the data in Table 2, the icing index was more closely correlated with
the reflectivity factor and spectral width, but it could also be seen that these data had
strong autocorrelation and a large amount of information overlap. The principal com-
ponent analysis method was used to process the data below, and the obtained variance
contribution of variables and the correlation coefficient between the converted variables
and ice accumulation index are given in Table 3, while the maximum absolute value of
the autocorrelation coefficient between the new independent variables was also <10−15,
suggesting that each variable does not contain overlapping information.

Table 3. Variable contribution and transformation matrix.

Variable X1 X2 X3 X4 X5

Contribution 48.7108% 22.1684% 13.1940% 12.1635% 3.7633%
Coefficient 0.0358 0.3731 −0.3005 0.7156 0.0203

It can be found in Table 3 that X1, which had the largest variance contribution, had
very little correlation with the ice accumulation index, which may indicate that X1 mainly
represents a large amount of noise contained in radar data. In general, all new variables
with a cumulative contribution rate of 85% are selected after principal component analysis.
Therefore, the expressions of X1, X2, X3 and X4 are given below:

X1 = −0.4300Zh∗ + 0.4103v∗ + 0.3044w∗ + 0.6000σ∗ + 0.4405β∗ (4)

X2 = 0.3825Zh∗ − 0.5184v∗ + 0.6799w∗ + 0.0273σ∗ + 0.3492β∗ (5)

X3 = 0.3296Zh∗ − 0.0355v∗ − 0.5909w∗ + 0.0204σ∗ + 0.7352β∗ (6)

X4 = 0.7078Zh∗ + 0.6648v∗ + 0.1794w∗ + 0.0666σ∗ − 0.1429β∗ (7)

Considering the variance contribution and correlation coefficient, the following three
linear regression equations were established:

IC = 30.7516 + 0.5410X1 + 8.3538X2 − 8.7225X3 + 21.6289X4 (8)
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IC = 30.7516 + 8.3538X2 − 8.7225X3 + 21.6289X4 (9)

IC = 30.7516 + 21.6289X4 (10)

Table 4 shows the test statistics of the four regression equations:

Table 4. Test statistics.

R2 R2 F p s2

Equation (3) 0.7433 0.7127 24.3171 2.06 × 10−11 159.6470
Equation (8) 0.7428 0.7189 31.0531 3.54 × 10−12 156.1843
Equation (9) 0.7416 0.7240 42.0839 5.51 × 10−13 153.3960
Equation (10) 0.5120 0.5014 48.2668 1.09 × 10−8 277.0431

Through the calculation of F statistics, the hypothesis test of α = 0.001 under the
corresponding degree of freedom was passed, that is, there was a 99.9% confidence that
the linear relationship of the above four formulas was significant. In terms of statistics,
Equation (3) had the largest coefficient of determination, Equation (9) had the largest
corrected coefficient of determination and the smallest p value and error variance, and
Equation (10) had the largest F value. This statistic can illustrate the following points:

(1) It is significant to use principal component analysis to process data in this study;
(2) Although the variable X1 contains a lot of information, introducing X1 into the linear

regression will reduce the correction determination coefficient and linear significance
of the equation, and increase the error variance, so it is reasonable not to introduce X1,
which also confirms that X1 mainly represents the noise in the radar data; and

(3) Although the correlation coefficient of X2 and X3 is small, and the opposite value of
their correlation is similar, it will cause the loss of a lot of the main information in the
sample if they are removed.

4. Qualitative Classifications of Radar Data

As can be seen from Table 1, for the samples with radar data, only 18.81% of them
had icing risk, while 81.19% had no icing risk, indicating that those with and without
ice accumulation should be separated as far as possible to reduce the false alarm rate.
Millimeter wave has a better ability of penetrating clouds, but Lidar detection is easily
affected by clouds and aerosols and may cause errors [39–41]. In the discussion in Section 3,
it was found that the velocity standard deviation had little correlation and contribution to
the icing index. Meanwhile, in order to increase the number of training samples, millimeter-
wave radar data were used in the discussion of the following paper. In this part, the
method of cluster analysis adopted was based on the three variables of Zh, v, and w. A
total of 1510 daily 0 h data were collected by the Galileo cloud radar in November 2003.
First, these 1510 groups of variables were standardized. As shown in Figure 2, cluster
analysis was conducted on the standardized variables, which were grouped into two to
seven categories, respectively.

After many experiments, it was proven that the algorithm was convergent, regardless
of how the initial clustering center was selected. The final clustering center was the same.
For the convenience of illustration, we arranged the clustering centers in the order as
shown in Table 5, and named them from category A to category G.



Atmosphere 2021, 12, 1534 7 of 14
Atmosphere 2021, 12, x FOR PEER REVIEW 7 of 14 
 

 

  

(a) 2 categories (b) 3 categories 

  

(c) 4 categories (d) 5 categories 

  

(e) 6 categories (f) 7 categories 

Figure 2. Radar data clustering analysis. From (a–f), the number of clusters increases from two to seven, respectively. In 
(a), red is category A and green is category B. After the number of categories is increased, the color and category number 
remain unchanged, and the newly added color is a new category (category C to category G). 

After many experiments, it was proven that the algorithm was convergent, regardless 
of how the initial clustering center was selected. The final clustering center was the same. 
For the convenience of illustration, we arranged the clustering centers in the order as 
shown in Table 5, and named them from category A to category G. 

  

Figure 2. Radar data clustering analysis. From (a–f), the number of clusters increases from two to seven, respectively. In
(a), red is category A and green is category B. After the number of categories is increased, the color and category number
remain unchanged, and the newly added color is a new category (category C to category G).



Atmosphere 2021, 12, 1534 8 of 14

Table 5. Cluster analysis results.

Class Number Clustering Centroid Coordinates

2 A: −0.0641, 0.1995, −0.2051 B: 0.8320, −2.5901, 2.6630

3 A: −0.9357, 0.5370, −0.4123 B: 0.8336, −2.6728, 2.6869 C: 0.6812, −0.0907, −0.0173

4
A: −0.9288, 0.5410, −0.4338 B: 0.3101, −0.0073, 1.8097 C: 0.7175, −0.1236, −0.2475

D: 1.0626, −3.3536, 2.4532

5
A: −0.9272, 0.5579, −0.4562 B: 1.0696, −0.7167, 6.1073 C: 0.7279, −0.1161, −0.2576

D: 1.0190, −3.3857, 2.2587 E: 0.1607, −0.0542, 1.4754

6
A: −0.9137, 0.5984, −0.4645 B: 1.0696, −0.7167, 6.1073 C: 0.7347, −0.0896, −0.2614

D: 1.0795, −3.4246, 2.3176 E: −0.5444, −0.9664, 1.0476 F: 0.9914, 0.8563, 1.7943

7

A: −0.9137, 0.5984, −0.4645 B: 0.9658, 0.0421, 5.9582 C: 0.7347, −0.0896, −0.2614

D: 1.0688, −3.4310, 2.2907 E: −0.5444, −0.9664, 1.0476 F: 0.9914, 0.8563, 1.7943

G: 1.4486, −2.6048, 5.9101

The classification results were compared with the icing index corresponding to the
sample to discuss the proportion of the samples with icing risk in each category. The
statistical results are shown in Table 6.

Table 6. Risk proportion of each type of sample icing.

Class Number

Ratio of Icing Risk (Number of Samples with Icing Risk/Total Number of
Samples in This Category)

Class A Class B Class C Class D Class E Class F Class G

2 284/1402 0/108
3 65/646 0/104 219/760
4 67/641 1/136 216/654 0/79
5 67/629 0/10 215/646 0/77 2/148
6 61/617 0/10 215/641 0/74 8/107 0/61
7 61/617 0/7 215/641 0/73 8/107 0/61 0/4

It can be seen from Table 6 that ice accumulation information was mainly contained in
Class A and Class C, but it was difficult to extract obvious features, and impossible to show
ice accumulation for samples that deviated significantly from the center value. According
to Table 7, when the number of classifications increased from two to three, the proportion
of ice accumulation risk of newly generated Class C reached 28.82%; when the number
of classifications increased to four, the proportion of ice accumulation risk of Class C was
further increased to 33.03%, but there was already one missing sample in Class B. With
the further increase in the number of classifications, overfitting began to appear. Further
classifications only improved the classification of noise and increased the possibility of
omission. To sum up, it is more appropriate to take the classification number of clustering
samples as three or four categories.

Table 7. Statistics of judgment results of icing accretion.

Neural Network Structure 1 Neural Network Structure 2

COR 49.80% 76.52%
WRO 50.20% 23.48%
FOH 37.06% 56.88%
FAR 62.94% 43.12%
DFR 0% 7.97%
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5. Quantitative Judgment of Icing Index

According to the previous discussion, linear regression has good significance, but
cannot judge whether there is ice accumulation. The clustering algorithm can improve the
ice accumulation proportion, but the effect is not obvious. The difficulty of this problem
lies in the following two points: first, it is necessary to distinguish whether there is an ice
accumulation risk at this point, and it is necessary to further calculate the icing index only
for points with ice accumulation risk; second, ice accumulation is a complex nonlinear
problem, and the linear equation given by linear regression is difficult to fully reflect the
nonlinear relationship between the physical quantities. A neural network approach has
the advantage of solving these two difficulties. Therefore, two kinds of neural network
structures were designed, as shown in Figure 3.
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Figure 3. Calculation of icing index based on neural network. Structure 1 takes the Zh, v, and w as input to judge whether
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Here, the training set was 0 h data in November 2003, and the test set was 0 h data in
November 2008. The results were calculated respectively according to the linear model
and two kinds of neural network structures. All neural networks adopted the BP (back
propagation) neural network, which is divided into three layers. Except for the input
layer and output layer shown in Figure 3, the hidden layer had 30 neurons. If the network
calculation times reaches 10,000 times, no iteration will be performed, and other parameters
are default values. The statistics and analysis of the results include the following two parts.
First, the statistical algorithm can judge whether there is ice accumulation or not, aiming at
the grid point of data detected by millimeter wave radar. We defined the following four
kinds of results as: A is the “observation that may be ice, may actually think ice”; B is the
“observation that can’t be ice, may actually think ice”; C is the “observation that may be
icing, actually thought impossible to ice”; and D is the “observation that impossible to ice,
actually thought impossible to ice”. The second is the quantitative error of the Icing Index.

The following statistics are defined [42]:
Correct rate

COR =
A + D

A + B + C + D
× 100% (11)

Error rate

WRO =
B + C

A + B + C + D
× 100% (12)

Hit rate

FOH =
A

A + C
× 100% (13)
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Empty rate

FAR =
C

A + C
× 100% (14)

Non-response rate

DFR =
B

B + D
× 100% (15)

The results of the test are presented in Table 7 and Figure 4.
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As can be seen from Table 7 and Figure 4, the two networks had similar results. From
the judgment of ice accumulation, both could achieve almost or more than 50% of the
judgment accuracy, the error was mainly an empty report, and the possibility of missing
reports was controlled to a very low level. Linear regression and two kinds of neural
networks had poor effects on the quantitative determination of index, and it is difficult to
provide an accurate icing index. We provide a reasonable explanation of this problem in
the next section.

6. Discussions
6.1. The Correspondence between Radar Data and Sounding Data

According to Table 1, 5.888% of the data lacked correspondence, and this phenomenon
was more obvious in Figure 5.
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As shown in Figure 5, due to the mismatch between radar data and sounding data,
some data lacked correspondence. There are two reasons for this mismatch. First, there is a
certain distance between Chilbolton and Herstmonceux, so there is a certain difference in
the atmospheric environment between the two places, resulting in the mismatch. Second,
the millimeter-wave radar, Lidar, and radiosonde used in this paper had some differences
in the detection principles. The radar was set up on the ground or on the top of the building
to carry out measurement and inversion by means of remote sensing. Restricted by the
band they use, the objects of detection are different. Millimeter-wave radars mostly detect
cloud particles [39], while Lidars are susceptible to aerosols near the ground [40,41]. Most
radiosondes are set up on balloons or rockets for direct detection [43,44].

6.2. Cause Analysis of Test Results

The changes in various weather processes and the overall climate environment may
bring significant influences in a short time, which is reflected in the rapid changes in the
microphysical characteristics of liquid water content, particle size, rainfall rate, and so on.
In this study, due to the limitation of the data volume of CFARR, data in the same month
of two years were selected for training and testing, but the temperature and humidity
environment of these two months were different to some extent.

As can be seen from Figure 6, compared with the average temperature and average
relative humidity in November 2003 and November 2008, the temperature and relative
humidity in 2008 were significantly lower than those in 2003 at a height below 5 km.
The temperature was about 2–3 ◦C lower, and the relative humidity was about 5–10%
lower. Combined with Figure 5, the icing index also changed significantly within a month.
The icing threat in November 2003 was relatively more stable, and was strongest in late
November 2003. In the early part of November 2008, when the air humidity was higher,
the icing index was higher, so the corresponding liquid water content may increase, while
the humidity was significantly lower in the late part of November 2008, and the icing
index was smaller. The millimeter-wave radar also did not detect the corresponding clouds
or liquid water. In addition, studies have shown that, in some cases, relative humidity
cannot completely represent the threat possibility of icing, and it is currently difficult
to accurately conduct numerical weather prediction on the ice [45,46], and the relative
humidity is defined as vapor pressure and the ratio of saturated vapor pressure, so cannot
be used to directly determine the air liquid water content, particle size, and other factors.
Therefore, the inaccurate judgment may be caused by this factor.
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7. Conclusions

Based on CFARR millimeter-wave radar and Lidar data and the basis of the ICAO icing
index using a variety of machine learning and statistical methods, from the perspective
of both qualitative and quantitative, gradually thorough methods of using radar data
are given to judge expression of aircraft icing conditions and methods. The training set
and testing set confirmed that PCA, cluster analysis, and neural network methods had
certain significance, respectively, and some of the problems and possible improvements
for discussion and analysis. This current study is a first step for the development of a
diagnosis tool of an aircraft icing environment.

(1) Combined with the data of Lidar and millimeter-wave radar, the principal component
analysis method was used to improve the correction determination coefficient to
0.7240, and the noise in the data was effectively eliminated.

(2) Clustering analysis can increase the proportion of ice accumulation samples from
18.81% to 33.03%. If the classification number continues to increase, there will be
overfitting, so it is difficult to further improve this proportion. However, the samples
that significantly deviate from the central value can be considered as impossible for
ice accumulation and excluded.

(3) Two kinds of neural networks are constructed, which have similar performance on
the judgment results of the test set, and can reach more than a 50% accuracy rate. The
error is mainly shown as a false report, and the omission rate is very low, but it is
difficult to calculate the ice accumulation index quantitatively.

(4) Possible reasons for inaccurate quantitative judgment include inconsistency between
the location of the radar station and the sounding station, a great difference between
the samples of the training set and the test set, and the ice accumulation index cannot
fully represent the ice accumulation environment, etc.

This study can be further improved from the following points: (1) select more matching
data from the same site for training; (2) introduce more new variables that may improve
the significance and accuracy of the judgment; (3) select indexes that are more objective
and accurate for the expression of icing threat to carry out the above experiment; and
(4) modify the algorithm to consider the physical properties of the model.
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