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Abstract: Sichuan Basin is one of the most densely populated areas in China and the world. Human
activities have great impact on the air quality. In order to understand the characteristics of overall
air pollutants in Sichuan Basin in recent years, we analyzed the concentrations of six air pollutants
monitored in 22 cities during the period from January 2015 to December 2020. During the study
period, the annual average concentrations of CO, NO2, SO2, PM2.5 and PM10 all showed a clear
downward trend, while the ozone concentration was slowly increasing. The spatial patterns of
CO and SO2 were similar. High-concentration areas were mainly located in the western plateau of
Sichuan Basin, while the concentrations of NO2 and particulate matter were more prominent in the
urban agglomerations inside the basin. During the study period, changes of the monthly average
concentrations for pollutants (except for O3) conformed to the U-shaped pattern, with the highest in
winter and the lowest in summer. In the southern cities of the basin, secondary sources had a higher
contribution to the generation of fine particulate matter, while in large cities inside the basin, such as
Chengdu and Chongqing, air pollution had a strong correlation with automobile exhaust emissions.
The heavy pollution incidents observed in the winter of 2017 were mainly caused by the surrounding
plateau terrain with typical stagnant weather conditions. This finding was also supported by the
backward trajectory analysis, which showed that the air masses arrived in Chengdu were mainly
from the western plateau area of the basin. The results of this study will provide a basis for the
government to take measures to improve the air quality in Sichuan Basin.

Keywords: air pollution; spatio-temporal variations; Sichuan Basin; back-trajectory

1. Introduction

In the past 20 years, China has experienced severe air pollution due to rapid eco-
nomic development and increasing urbanization [1]. Studies showed that exposure to
ambient air pollution has been associated with increased risks of mortality and morbidity
worldwide [2,3]. According the Global Burden of Disease (GBD) project, air pollution was
responsible for 1.6 million deaths in China and 4.2 million deaths worldwide in 2015 [4].
The continuous and serious air pollution has caused an immense burden for China’s medi-
cal and economic [5]. In order to cope with serious air quality problems, China has taken a
series of measures in recent years [6,7].

In 2005 and 2011, China implemented the installation of desulphurization and selective
catalytic reduction (SCR) systems for coal-fired power plants [8]. At the same time, the
strategies of upgrading vehicle fuel and prohibiting polluting old vehicles were introduced
at the city level [9]. The Ministry of Environmental Protection of China issued the revised
“Ambient Air Quality Standards” (CAAQS, GB3095-2012) in February 2012, adding PM2.5
and O3 to CAAQS for the first time [10]. In 10 September 2013, the Chinese government
promulgated the Air Pollution Prevention and Control Action Plan. The plan aimed to
reduce the number of severely polluted days drastically and improve the national air
quality significantly through long-term efforts [11]. Despite these efforts, there were still
many cities that have not yet reached the current CAAQS [12]. According to the “2020
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Reports on the State of Environment of China”, there were still 135 cities whose ambient
air quality exceeded the standard, accounting for 40.1% of the total number of cities. In
the days exceeding the standard, the proportions of PM2.5, O3, and PM10 as the primary
pollutants were 51%, 37.1%, and 11.7%, respectively.

Previous studies showed that Beijing-Tianjin-Hebei area (BTH), Yangtze River Delta
(YRD), Pearl River Delta (PRD) and Sichuan Basin were the four main regions with severe
air pollution in China [13,14]. In Beijing, YRD and PRD, some scholars have carried out a lot
of research to understand the basic characteristics, chemical mechanisms, main components
and transmission sources of air pollution [15–19]. Since 2000, the air quality in Sichuan
Basin has further deteriorated due to increased anthropogenic emissions. However, only
a few studies have focused on Sichuan Basin [20,21]. And in the past, related studies
on Sichuan Basin were mainly concentrated in the two megacities of Chongqing and
Chengdu, and there were few studies on the overall air quality for the whole of large-scale
valley terrain [22,23]. The characteristics and source of air pollution for Sichuan Basin
in recent years are still unclear [24]. In this study, we analyzed air quality data collected
from Sichuan Basin for six years (January 2015 to December 2020) to fill this gap. The
main goal is to investigate (1) the temporal and spatial characteristics of the overall air
pollution in Sichuan Basin, (2) the industry contribution reflected by the ratio of different
pollutants, and (3) a regional-scale air pollution episode that influenced multiple cities in
the region. The knowledge gained in this study provides a scientific basis for formulating
future emission control policies aimed at reducing severe PM2.5 pollution in this unique
watershed

2. Materials and Methods
2.1. Air Quality Monitoring Sites

The air quality was monitored at 127 stations spread over 22 cities across Sichuan Basin,
covering an area of over 260,000 square kilometers. Located in the central and southern
part of the Asian continent, with a total population of more than 100 million, Sichuan Basin
is one of the most densely populated areas in China and the world. Completely surrounded
by high mountains and plateaus, it is a vast subtropical low hills and plains. The west is
surrounded by the high-altitude Qinghai-Tibet Plateau, the south is the Yunnan-Guizhou
Plateau, the east is Wushan, and the north is Dabashan. Due to low wind speed and high
relative humidity, it was one of the four traditional areas with acidic rain and frequent haze
events [25]. Figure 1 showed the locations of the 22 cities that collected the air quality data
used in this study.

Considering the completeness of the data, this study collected the socio-economic data
of each city in Sichuan Basin during 2018 (source: http://tjj.cq.gov.cn/zwgk_233/tjnj/2019
/zk/indexce.htm (accessed on 15 September 2021)). Table 1 listed the city’s abbreviations,
number of vehicles, population, and GDP (Gross Domestic Product). In 2018, Chongqing’s
total population was 31.01 million, the total number of vehicles was 6.31 million, and the
GDP was 20363 billion yuan, ranking first among the cities. As another megacity in Sichuan
Basin, Chengdu has a total population of 16.33 million, a total of 4.87 million vehicles, and
a GDP of 1.5342 billion yuan, second only to Chongqing.

http://tjj.cq.gov.cn/zwgk_233/tjnj/2019/zk/indexce.htm
http://tjj.cq.gov.cn/zwgk_233/tjnj/2019/zk/indexce.htm
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Table 1. Urban areas, population, number of vehicles, and GDP of each city in the Sichuan Basin in 2018.

City Population GDP Primary Industry Secondary Industry Tertiary Industry Vehicle Numbers

(10,000 Persons) (Billion Yuan) (Billion Yuan) (Billion Yuan) (Billion Yuan) (10,000 Units)

Chengdu (CD) 1633 15,342.77 522.59 6516.19 8303.99 487.7169
Mianyang (MY) 485.7 2303.82 301.27 929.4 1073.15 49.9193

Deyang (DY) 354.5 2213.87 243.31 1071.13 899.43 40.5155
Leshan (LeS) 326.7 1615.09 165.92 721.78 727.39 39.2793
Meishan (MS) 298.4 1256.02 186.5 554.46 515.06 37.9811

Yaan (YA) 154 646.1 85.83 303 257.27 11.1461
Ziyang (ZY) 251.2 1066.53 166.79 507.61 392.13 31.0002
Zigong (ZG) 292 1406.71 151.55 653.71 601.45 66.1452

Yibin (YB) 455.6 2026.37 248.57 1006.73 771.07 51.8162
Luzhou (LZ) 432.4 1694.97 190.58 882.97 621.42 18.2872
Neijiang (NJ) 369.9 1411.75 219.31 610.8 581.64 25.1536

Chongqing (CQ) 3101.79 20,363.19 1378.27 8328.79 10,656.13 631.7233
Guang‘an (GA) 324.1 1250.24 173.52 575.23 501.49 35.733
Nanchong (NC) 644 2006.03 381.87 824.05 800.11 17.9184

Suining (SN) 320.2 1221.39 165.64 565.22 490.53 25.2796
Guangyuan (GY) 266.7 801.85 118.1 358.56 325.19 24.403

Dazhou (DZ) 572 1690.17 326.24 603.91 760.02 18.0632
Bazhong (BZ) 332.2 645.88 98.27 316.39 231.22 9.0715

Aba (AB) 94.4 306.67 49.55 139.53 117.59 24.2416
Ganzi (GZ) 119.6 291.2 65.47 121.78 103.95 23.3053

Liangshan (LS) 490.8 1533.19 307.61 613.13 612.45 35.1002
Panzhihua (PZH) 123.6 1173.52 39.74 731.13 402.65 25.5248

2.2. Air Quality Data

The concentrations of six pollutants, SO2, NO2, CO, O3, PM2.5 and PM10, were mon-
itored hourly over 22 cities across Sichuan Basin from January 2015 to December 2020.
The data were made available by the China National Environmental Monitoring Center
(http://www.cnemc.cn/ (accessed on 15 September 2021)).

The instruments for air quality monitoring were deployed according to the China En-
vironmental Protection Standard HJ 664-2013. The equipment came from Shenzhen Aosen
Purification Technology Co., Ltd., China. The gaseous pollutant and PM concentrations
were measured following the Specifications and Test Procedures for Ambient Air Quality
Continuous Automated Monitoring System HJ 654-2013 for SO2, NO2, O3 and CO, and HJ

http://www.cnemc.cn/
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653-2013 for PM2.5 and PM10, as stipulated in the National Environmental Protection Stan-
dards of the People’s Republic of China. The air quality monitoring stations were located
at least 50 m away from any notable stationary pollution sources, and the inlets for the
instruments were placed at least 1 m higher than the roof of the building or wall [26]. Data
quality assurance and quality control (QA/QC) were conducted following the technical
guidelines on environmental monitoring quality management (HJ 630-2011) established
in the National Environmental Protection Standards of the People’s Republic of China.
The validity of the data was checked following the national ambient air quality standards
specified in the National Standards of the People’s Republic of China (GB 3095-2012), as
used in earlier studies [27,28]. The daily, monthly, and annual means of the data were
calculated from the hourly concentrations (with ~80% of the available data to be considered
as valid for calculating the mean).

2.3. Back-Trajectory Analysis

Backward trajectory analysis essentially follows a parcel of air backward in hourly
time steps for a specified length of time [29]. The HYbrid-Single Particle Lagrangian Inte-
grated Trajectory (HYSPLIT) model developed by the National Oceanic and Atmospheric
Administration (NOAA) was used to identify the potential source area of air pollution in a
specific city and capture the vertical movement of the air masses from the sources to the
receptor inside planetary boundary layer [30].

The HYSPLIT model was used to investigate the movement of air masses during a
heavy particulate pollution observed in winter 2017. In order to understand the impact of
the regional transmission process, three-dimensional 48 h backward trajectories arriving at
500 m above ground level (AGL) of the receptor sites were also calculated using 1◦ × 1◦

Global Data Assimilation System (GDAS) data from National Centers for Environmental
Prediction (NCEP). Based on the Euclidean distance between the motion trajectories,
the Ward layering method was used to assign the motion trajectories to different clusters
according to their moving speed and direction. The hour with the highest PM concentration
of coarse particles in Chengdu was selected as the start time of the trajectory, and the
backward trajectory at a height of 500 m from 3 January to 6 January 2017 was calculated.
The main transportation routes that caused severe air pollution in the winter of 2017 were
identified by combining the trajectory with the corresponding average concentration of
pollutants [31].

3. Results
3.1. Spatio-Temporal Characteristics of the Air Quality

The annual average concentrations of the pollutants in Sichuan Basin were deter-
mined by averaging the effective data from all stations. Their values are shown in Fig-
ure 2. The annual mean concentrations of CO, NO2, SO2, O3, PM2.5 and PM10 in the
entire basin area ranged from 0.67–0.90 mg/m3, 24.33–30.4 µg/m3, 8.41–17.76 µg/m3,
80.08–91.4 µg/m3, 31.2–46.56 µg/m3 and 47.87–75.19 µg/m3, respectively. During the
same period, in Chengdu and Chongqing, two megacities of Sichuan Basin, the annual
average concentrations of the six pollutants ranged from 0.69–1.08 (0.79–1.1) mg/m3,
33.75–49.46 (37.18–45.5) µg/m3, 6.56–15.75 (7.49–16.17) µg/m3, 87.86–101.56 (68.98–81.54)
µg/m3, 39.23–61.85 (32.27–54.42) µg/m3, 61.27–103.83 (51.85–84.12) µg/m3, respectively.

The annual average SO2 concentration was the lowest in Bazhong, with a value of
4.71 µg/m3, and the highest in Panzhihua, with a value of 33.69 µg/m3. The lowest
NO2 concentration of 9.21 µg/m3 was observed in Aba Prefecture, and the highest in
Chengdu, reached 43.73 µg/m3. The highest annual average CO concentration observed
at 1.49 mg/m3 in Panzhihua, and the lowest of 0.48 mg/m3 was observed in Ganzi. The
lowest annual average concentration of O3 was observed in Ya’an during 2015, which
was 53.2 µg/m3. The highest annual average concentration of O3 was observed in Zigong
during 2018, with a value of 105.19 µg/m3. The annual average concentration of PM2.5 and
PM10 in Aba Prefecture was the lowest, 15.12 µg/m3 and 26.38 µg/m3, respectively. The
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highest values of 84.94 µg/m3 and 109.6 µg/m3 was observed in Zigong, both of which
appeared in 2015.
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As shown in Figure 3, the concentrations of five pollutants other than O3 all showed a
downward trend from 2015 to 2020 in Sichuan Basin. The concentration of NO2 was the
highest in 2017, at 30.4 µg/m3, and the lowest in 2020, at 24.33 µg/m3, with an average
annual decline rate of 2.72%. The highest concentrations of CO, SO2, PM2.5 and PM10 all
appeared in 2015 with the value of 0.9 mg/m3, 17.76 µg/m3, 46.56 µg/m3 and 75.19 µg/m3,
respectively. The lowest concentrations all appeared in 2020 with the value of 0.67 mg/m3,
8.41 µg/m3, 31.2 µg/m3, 47.87 µg/m3, and the average annual decline rates were 5.14%,
10.52%, 6.59%, and 7.27%, respectively.

At present, the environmental concentration of most air pollutants in China is de-
clining, but the concentration of secondary pollutants such as O3 is increasing at both
provincial and capital city levels [32,33]. Previous studies showed that the rising rate of O3
in China’s 2 + 26 urban areas was almost 14 times that of the global O3 [34]. The lowest
ozone concentration of 80.08 µg/m3 in Sichuan Basin was observed in 2015, and reached
the highest in 2018, with the value of 91.4 µg/m3. It declined slightly in the following
two years, but still showed an upward trend during the overall study period. The annual
growth rate was about 0.76%.
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Ozone is not directly emitted by pollution sources in the environment [35]. It is
a secondary pollutant generated by chemical reactions of nitrogen oxides and volatile
organic compounds under strong ultraviolet light irradiation [36]. Although China has
adopted strict control measures in recent years, which has made PM, NO2, SO2 and other
atmospheric pollutants show a clear downward trend, the ozone concentration is still slowly
increasing [37]. The main reason for this phenomenon is that emissions of NOx and VOCs
(main precursors of O3) remain high in China [38]. And the meteorological conditions of
high temperature and low rainfall are conducive to the generation of O3 in recent years [39].
At the same time, the global O3 background value has been continuously increasing, which
also makes a certain promoting effect on China’s ozone concentration [40].

3.2. Seasonal Variations of Pollutants

Figure 4 shows the seasonal variations of the six pollutants in each city. For almost all
pollutants (except O3), the highest concentrations were observed in winter and the lowest
in summer. It is speculated that the continuous adverse weather conditions in winter
include smaller wind speed and rainfall, lower temperature and atmospheric boundary
height, which are not conducive to the diffusion of pollutants. And compared with other
seasons, the consumption of coal and biomass fuel for heating in winter is higher [41,42].
On the contrary, in summer, the wind speed and planetary boundary layer is higher, the
rainfall is abundant, the rain removal effect is obvious, and the pollutant concentration is
lower [43,44].

Since NO2 is the main man-made pollutant emitted from vehicles and transportation
facilities and fuel combustion, these activities are more frequent in the two megacities of
Chengdu and Chongqing than in other places [45]. In 2018, the total number of motor
vehicles in Chengdu and Chongqing accounted for 28.2% and 36.5% of the entire basin
area respectively. Therefore, the highest NO2 concentration was observed in these two
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cities. The average concentration of NO2 in winter was between 111.87 µg/m3 (Chengdu)
and 50.93 µg/m3 (Aba Prefecture). Similar characteristics were observed for CO, namely
the highest and lowest concentrations were observed in winter and summer, respectively.
The opposite trend of ozone occurred. The highest concentration happened in spring and
summer, and the lowest concentration occurred in winter. This is related to the formation
mechanism of ozone. Many studies showed that under sufficient light, volatile organic
compounds (VOCs) and nitrogen oxides (NOx) underwent a photochemical reaction to
generate O3 and at the same time produced secondary pollutants in the atmosphere [46–48].
High temperature, strong ultraviolet and high photochemical reaction rate were common
phenomena in Sichuan Basin during spring and summer. The weaker solar radiation in
winter inhibited the photochemical reaction, which was not conducive to the production of
O3. Therefore, the O3 concentration in the Sichuan Basin had the highest trend in spring
and summer.
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Regions with high SO2 concentrations were mainly located in the plateau areas of the
western Sichuan Basin, such as Panzhihua, Liangshan, Ganzi and other cities. Far more
than the cities such as Chengdu and Mianyang in the basin, the winter SO2 concentration
of Panzhihua was 38.7 µg/m3, about 3 times of the average SO2 concentration in whole
Sichuan Basin (12.8 µg/m3). On the one hand, the SO2 of cities in the basin such as
Chengdu was mainly derived from industrial emissions. In these areas, the government
took strict desulfurization measures, which greatly reduced the concentration of SO2. On
the other hand, coal combustion for household heating due to low temperature in high
altitude regions, led to more SO2 emissions, and the implementation of desulfurization
measures in these areas were not yet fully completed.

Different with northern China, due to the warm temperature in Sichuan Basin (about
10 ◦C on average), there was no widespread coal or wood burning for household heating
in winter; therefore, atmospheric processes and meteorological conditions played an
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important role in the seasonal changes of particulate matter effect [49]. Almost all regions
had the highest concentration of particulate matter in winter, about 1.8–2.5 times that of the
other three seasons. The concentration was similar in spring and autumn, and the lowest
concentration occurred in summer.

3.3. Analysis of City’s Pollutant Ratio

The average PM2.5/PM10 ratio of all cities in Sichuan Basin was 0.61, and the monthly
ratio was between 0.43 and 0.69, appeared in April and January respectively. The average
ratio in Chengdu and Chongqing was 0.60 and 0.63, respectively. In 2017, a study reported
the average ratio of 0.58 for 31 provincial capital cities, and Zhang (2015) reported an
average ratio of 0.56 for 190 cities in China [7,50]. However, in Beijing (0.80), Shanghai
(0.70) and Guangzhou (0.72), the ratio was much higher than that observed in this study [51].
These findings indicated that, compared to developed cities in China, the air quality in
Sichuan Basin was more affected by coarse particles. Figure 5 showed the monthly average
ratios of different cities in Sichuan Basin during the study period. The lowest average ratio
was found to be 0.43 (in Guangyuan), while the highest average ratio (0.69) was observed
in Zigong and Luzhou.
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In winter, all cities had the highest PM2.5/PM10 ratio, while in spring and summer,
the ratio decreased rapidly. This was due to the high emissions of coarse particulate
matter from sand and soil during the spring when it is very dry, windy, and dusty in
Sichuan Basin [52]. Dust emitted from desert areas in Xinjiang (such as Taklimakan) may be
transported towards the Qinghai-Tibet Plateau in the northwest of Sichuan Basin, thereby
affecting the atmosphere and ecosystems of the basin area.

SO2 can be used to normalize PM2.5 to exclude the effects of coal combustion and
meteorological conditions. It can be seen from Figure 6 that during the study period,
among the cities in Sichuan Basin, the city with the highest PM2.5/SO2 was Bazhong (6.39),
followed by Deyang (5.19) and Nanchong (5.18), which reflected the contribution of non-
industrial source to PM2.5. The average ratio in Sichuan Basin is 3.45, which was close to
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the national average (2.92) in the previous study [53]. It is worth noting that in Panzhihua,
Aba, Liangshan and other areas, the value of PM2.5/SO2 has always remained at a low
level throughout the year, which may be because the industry in Sichuan Basin is mainly
concentrated in the western region, and industrial sources contribute more to fine particles.
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PM2.5/SO2 also exhibited a U-shaped mode in most cities, which reflected that non-
industrial sources such as power and residential contributed more to PM2.5 in winter.
Multi-resolution Emission Inventory for China (MEIC) was often used to estimate emis-
sions from various sectors in China [54]. In order to determine the relationship between this
dynamic change and the emission trends of key sectors involved in the air pollution process,
we collected PM2.5 emission information from key sectors in the 2017 MEIC in-ventory of
Sichuan Basin (Figure A1). Among them, non-industrial source emissions showed a similar
U-shaped trend, which was consistent with the previous conclusions.

CO is an indicator of the primary combustion source. The secondary formation of
fine particles in the basin can be studied by calculating the ratio of PM2.5 to CO [55]. From
2015 to 2020, the value of PM2.5/CO was higher in the southern areas such as Luzhou
and Zigong, and the lowest in the western plateau areas such as Panzhihua (Figure 7).
This indicated that the secondary sources in the southern cities of the basin had a higher
contribution to the generation of fine particles.

Previous research reported that the sulfur dioxide emissions were much lower than the
emissions of nitrogen oxides for motor vehicles in China, and the ratio of [SO2]/[NO2] in
motor vehicles was usually between 0.0084 and 0.042. Both NOx and SO2 were emitted from
stationary sources, but the emissions of SO2 was relatively more. The ratio of [SO2]/[NO2]
in fixed sources was usually between 1.25 and 5 [56]. Therefore, the SO2/NO2 ratio
was often used as an indicator of air pollution caused by stationary sources and mobile
sources [57]. Figure 8 showed the monthly average ratio of SO2/NO2 in each city. In study
area, Liangshan and Panzhihua had the highest SO2/NO2 ratios, indicating that the air
pollution in these western plateau cities mainly came from local industrial sources and coal
combustion. Bazhong was the lowest (0.21), followed by Chengdu (0.24) and Chongqing
(0.26). These results confirmed that there was a strong correlation between air pollution
and automobile exhaust emissions in Chengdu and Chongqing.
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From 2015 to 2020, the ratio of PM2.5/SO2 in Sichuan Basin had shown a continuous
upward trend, and the ratio of SO2/NOx had shown a continuous downward trend
(Figure A2). It showed that the contribution of industrial sources to fine particulate matter
con-tinued to decline. This was related to the pollutant emission reduction measures that
the government had introduced. PM2.5/CO also showed a downward trend, reflecting
the de-cline in the contribution of secondary sources to fine particulate matter, which was
related to the decrease in the concentration of SO2 and NOx in the regional atmosphere. In
2015, the executive meeting of the State Council of China decided to implement ultra-low
emis-sion and energy-saving retrofits for coal-fired power plants before 2020. Sichuan
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Province had successively formulated the implementation rules for the Air Pollution
Prevention and Control Action Plan from 2014 to 2017, and proposed a series of measures
to improve the atmosphere environmental quality, including the elimination of coal-fired
boilers be-low 10 tons per hour and the prohibition of new coal-fired boilers below 20 tons
per hour. At the same time, we also noticed that during the study period, the ratio of
PM2.5/PM10 showed an overall upward trend. This reflected the effectiveness of current
dust removal measures to a certain extent, because the existing dust removal measures had
far greater removal effects on coarse particles than fine particles.

3.4. Characterization of an Air Pollution Episode in Winter 2017

During this research period, the particulate pollution incident that caused a wide
range of impacts was identified in the winter of 2017. Figure 9 showed the hourly average
PM10 concentration of four cities affected by air pollution incidents (3–6 January 2017),
during which the hourly average PM10 concentration of all cities exceeded 120 µg/m3. The
average daily concentrations from 3–6 January in Chengdu, Deyang, Ya’an and Meishan
were 366 µg/m3, 245 µg/m3, 232 µg/m3 and 225 µg/m3, respectively. The average daily
PM10 concentration in these cities was about 10–18 times higher than the WHO guidelines.
During the period of heavy pollution, the average ratio of PM2.5/PM10 increased over
Chengdu, Deyang, Ya’an and Meishan to 0.65, 0.68, 0.69 and 0.74, respectively. The ratio
of the four cities is greater than 0.65, much higher than the annual average value of 2017
(0.59), indicating the dominance of fine particulate matter during the event.
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Figure 9. Air transport clustering trajectory in Chengdu during heavy pollution period, and the color
of red and orange represent two different trajectories. The right picture shows the hourly average
PM10 concentration of the four cities during the event. The shaded part represents the arrival time of
the peak concentration.

After clustering the downloaded backward trajectories, it was found that they mainly
originated over the plateau area of the southwestern part in the basin. The air mass
reached Ya’an first from the southwest. The concentration of particulate matter in Ya’an
reached a peak with the value of 316 µg/m3 at 20 o’clock on 4 January, and then the
air mass continued to move northeastward. When the air mass moved to Chengdu, the
concentration of particulate matter increased. Moreover, the highest concentration was
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observed in the Chengdu area, and the highest concentration may occurred over Chengdu
and Deyang. Chengdu and Meishan peaked at around 15:00 on 5 January, with PM10
concentrations of 478 µg/m3 and 288 µg/m3, respectively. Deyang reached the maximum
concentration of 324 µg/m3 during the pollution period at around 20 o’clock on 5 January.

It is worth noting that the backward trajectory changed the direction in DY and MY
before arriving in CD. The further enrichment of particulate matter concentration from
DY to MY and CD may be affected by climatic conditions. The adverse meteorological
conditions in heavy pollution days, including high pressure, weak wind (0.7 m/s in
average) and low temperature (10.5 ◦C in average), make the pollution track not easy to
spread and can only flow inside the basin.

Southwest region is the industrial concentration area of Sichuan Basin, with devel-
oped secondary industry. In these cities of Southwest region, PZH is one of the four major
iron ore areas in China. In 2018, the economic proportion of the secondary industry in
PZH was 62.3%, the highest among all cities in Sichuan Basin. Previous studies have
shown that there is a strong positive correlation between the secondary industry and PM2.5
concentration [58]. Dense industrial sources in southwest region and adverse meteorolog-
ical conditions may be the main causes of heavy pollution events in the selected cities.

3.5. Comparison of Air Quality with Standards and Guidelines

In this section, we compared the mean concentration of the pollutants with the avail-
able national and WHO guidelines to determine the impacts of current air quality on
human health in Sichuan Basin. China revised the National Ambient Air Quality Standard
in February 2012. The WHO standards were more stringent than China. Table 2 com-
pared the annual average concentrations of the four pollutants in the basin with different
standards, such as the United States Environmental Protection Agency (USEPA), Euro-
pean Union (EU), Australia and Indian standards. The situation regarding pollutants in
Sichuan Basin was severe. The WHO guideline for PM2.5(PM10) was exceeded by a factor
of approximately 4 (3.8), indicating that the health of the residents will be affected. And
the concentrations of PM2.5 and PM10 are approximately 2 and 1.8 times higher than the
national Grade-I standards, respectively.

Table 2. Comparison of the annual average concentration of the four pollutants with the available standards.

Species
China

WHO USEPA EU Australia India Sichuan Basin (This Study)
Grade-I Grade-II

PM2.5 15 35 10 15 25 8 40 39.75
PM10 40 70 20 - 40 25 60 75.19
SO2 20 60 - - - 20 * 50 17.76
NO2 40 40 40 53 * 40 30 * 40 28.17

Values are in µg m−3, * Values in ppb (parts per billion).

In Figure 10, the annual average concentration was compared with WHO standards
and national Grade-I and II standards. During the study period, the average annual SO2
concentration of all cities in Sichuan Basin reached the national Grade-II standard. All cities
except Panzhihua reached the national Grade-I standard in 2020. The high concentration of
SO2 in Panzhihua may be due to the burning of coal and biomass and the work of power
plants. Moreover, the annual average concentration in Panzhihua declined rapidly since
2018, and it was only slightly higher than the national Grade-I standard in 2020.

During the study period, the annual NO2 concentration in almost all cities was
lower than the WHO and national Grade-I standard. As the two megacities in the basin,
Chengdu and Chongqing have the largest anthropogenic activities and emissions, so their
annual average concentration of NO2 was the highest. In 2015–2018, the annual average
level was 1.04–1.23 times higher than the WHO guidelines. However, in 2019–2020, its
concentration dropped rapidly, mainly due to the strict implementation of the government’s
environmental protection policy.
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In 2020, the concentration of fine particulate matter in almost all cities in the basin
exceeded the WHO regulations. Among these 22 cities, only the average PM2.5 concen-
tration of Ganzi was within the WHO standard in 2020. The PM2.5 concentration in Aba
Prefecture in the past two years was only 0.37 µg/m3 higher than the national Grade-I
standard. In Chengdu, Deyang, Zigong and other cities, although the concentration of
particulate matter has been declining in recent years, it was still higher than the national
Grade-II standard, about 3.5–3.9 times higher than the WHO standard. Compared with
PM2.5, the situation of PM10 is slightly better. In 2020, the PM10 concentration of all cities
reached the national Grade-II standard. Both Aba and Liangshan reached the national
Grade-I standard, and only Ganzi reached the WHO standard in 2019–2020.

4. Conclusions

This study used air quality monitoring data to present the overall air quality status
of 22 cities in Sichuan Basin from January 2015 to December 2020. The annual average
concentrations of CO, NO2, SO2, O3, PM2.5 and PM10 in the entire basin were 0.79 mg/m3,
28.17 µg/m3, 13.08 µg/m3, 84.76 µg/m3, 39.75 µg/m3 and 63.56 µg/m3, respectively.
Except for O3, the annual average concentration of the other five pollutants showed a
clear downward trend. CO, NO2, SO2, PM2.5 and PM10 decreased by 25.7%, 13.6%, 52.6%,
32.9%, and 36.3% respectively during the study period. And O3 was slowly increasing at
an average annual rate of 0.6 µg/m3. The spatial patterns of CO and SO2 were similar.
High-concentration areas were mainly located in the western plateau of Sichuan Basin,
while the concentrations of NO2 and particulate matter were more prominent in the urban
agglomerations inside the basin.

The annual average value of PM2.5/SO2 has been maintained at a low level in Panzhi-
hua (0.9), Liangshan (1.2) and other regions for many years, indicating that industrial
sources in the western Sichuan Basin have made a greater contribution to fine particulate
matter. Non-industrial sources such as electricity and housing contribute more to fine
particulate matter in winter. PM2.5/CO is higher in the southern Sichuan Basin, such
as Luzhou (0.077) and Zigong (0.075), indicating that secondary sources have a greater
impact on the generation of fine particles. The low SO2/NO2 values in megacities such as
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Chengdu (0.24) and Chongqing (0.26) indicate that there is a strong correlation between air
pollution and automobile exhaust emissions.

During the heavy pollution incident in the winter of 2017, the average daily con-
centrations from 3–6 January in Chengdu, Deyang, Ya’an and Meishan were 366 µg/m3,
245 µg/m3, 232 µg/m3 and 225 µg/m3, respectively, which were mainly caused by the
surrounding plateau terrain under typical stagnant weather conditions. This finding is
also supported by backward trajectory analysis, indicating that the air masses arriving
in Chengdu are mainly from the plateau area in the western part of the basin. During
the study period, the annual average concentration of PM2.5 (PM10) exceeded the WHO
guidelines by as much as 4 (3) times. This shows that PM is still the main air pollutant
of concern in the region. Therefore, reducing PM should become an integral part of the
strategy, policy and action plan of the air pollution management plan. This paper conducts
an in-depth study on the temporal and spatial distribution characteristics of six standard
air pollutants in the Sichuan Basin, hoping to provide a strong scientific basis for effective
air pollution control planning in this area and similar urban agglomerations.
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