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����������
�������

Citation: Podhajska, E.;

Burszta-Adamiak, E.; Drzeniecka-

Osiadacz, A.; Zienowicz, M.;

Podhajski, B.; Sawiński, T.; Jasińska,
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Abstract: One of the essential factors influencing the overall urban experience is the presence of
biologically active surfaces. Despite widespread awareness of the beneficial effects of such spaces,
the natural tissue in cities is still being significantly limited by the priority given to functionality
and the economy. The aim of this article is to assess the potential of using a hybrid infrastructure
in the grey–green–blue system (GGB) on a public site. In order to assess the efficiency of the
implemented solutions, a multi-criteria method was developed, thereby recognising this research
aspect as necessary in the process of designing urban built-up spaces. The assessment compared
indicators of biological activity in the area using the biotope area factor and green space factor
scales. The rainwater retention potential was estimated using a quantitative method. The change
in the site’s thermal conditions was analysed by conducting numerous experiments with the use of
micrometeorogical computational fluid dynamics models ENVI-met. The demonstrated improvement
in the proportion of the biologically active area, water retention, and thermal conditions, ranging
from a few to a dozen percent compared to the initial state, confirms the legitimacy of using grey–
green–blue infrastructure systems as a method of shaping a sustainable and climate-responsive
urban design.

Keywords: sustainable city; urban planning; nature-based solutions; grey–green–blue infrastructure;
urban morphology

1. Introduction

The observed trend of expansion in the urban population has caused the continued
growth and development of urban areas, changing the morphology of cities and their
physical features. The density of urbanised areas’ tissue, postulated in the guidelines for
sustainable development, has led to a specific phenomenon, referred to as the “paradox
of the compact city” [1]. The high density of urban development, recognised as one of
the indicators of sustainability, albeit based on traditional technologies, has brought an
increasing number of tightly built-up areas into cities [2]. The transformation of the natural
cover of land causes changes in the natural patterns of atmospheric and hydrological
cycles, disturbances to the natural ecosystem processes, modifications of the radiation
and thermal budget, and changes in the urban pattern of the wind [3,4]. The limitation of
evapotranspiration and moisture availability in cities and extreme surface runoff, as well
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as a reduction of baseflows and infiltration, which contributes to the desiccation of soil,
thereby lowering the level of groundwater and overloading natural surface receivers, have
all been observed [5,6]. For these reasons, there is an increasingly urgent need to search for
a strategy to mitigate the negative phenomena of urbanisation and to verify the available
design methods in this respect [7,8]. Much research is channeled towards understanding
the influence of urbanisation on the urban climate, looking at the possibility of shaping
compact housing with better sustainability parameters [9,10]. One of the solutions for
increasing the sustainability level of the compact urban development is the implementation
of a hybrid grey–green–blue infrastructure (GGB) [11,12]. This type of integrated system
allows us to use both the ability of engineering technology and the potential of biological
processes to keep the expected functionality of urban spaces without degrading their
biological value [13]. Nature-based solutions (NBS), being an integral part of the GGB
system, are inspired by nature in a conceptual and functional sense [14]. Such an approach
maximises the beneficial effects provided by nature using its environmental services [15].
The fusion of nature and engineering technologies increases the efficiency of processes,
shaping their long-term and stable course, all the while developing the phenomenon of
urban resilience in terms of complex socio-ecological systems. In this perspective, the GGB
systems are recognised tools in the mitigation and adaptation strategies of cities, allowing
them to shape their more sustainable form [16].

The aim of this article is to assess the possibilities offered by the use of a hybrid infras-
tructure in the grey–green–blue system (GGB) in the city. The objective of the presented
project is to promote a more sensitive urban design as a possible measure for mitigating
the negative environmental phenomena accompanying the growing urban tissue. In order
to estimate the efficiency of the implemented NBS, a method comprising a multi-criteria
evaluation of their effectiveness has been developed, taking into account the multidis-
ciplinary nature of such implementations and verifying, in a comprehensive approach
to sustainability, its individual aspects, i.e., the share of biologically active areas, water
management, and local thermal conditions.

The infrastructure systems (GGB) presented in this article and the multistage verifica-
tion of their effectiveness are an attempt to determine the design process canon taking into
account the research aspect. According to the authors, the research stage should become
obligatory in the process of shaping sensitive urban design and constitute the basis for
compact city design decisions.

2. Materials and Methods
2.1. Background Information and Description of Study Site

Taking into account the GGB infrastructure, the concept of land improvement was
developed for the area within the customer service building belonging to the Municipal
Water and Sewage Company in Wrocław (Poland). The facility is located in the vicinity
of the city centre and, given its function, it is visited daily by dozens of customers. The
standard space so far, based on traditional engineering solutions, does not refer to the
principles of sustainable shaping, nor does it offer any form of organised rainwater reten-
tion, despite the structure’s profile (Figure 1). The design region has an area of 2767 m2,
including 1894 m2 of sealed areas and 423 m2 of biologically active areas.

2.2. Methodology of Design Framework

This section presents the fundamental concepts and technologies used to create a
GGB design framework. The so-called two-track methodological approach consists of
the following methods: design and research. It will also verify the proposed measures in
terms of consistency with the main aims of this study. The appropriate tools to assess the
performance of the whole design process were implemented, e.g., biotope area factor (BAF)
and green space factor (GSF), the bioretention capacity and thermal indices.
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Figure 1. The current state of the area near the Customer Support Centre.

2.2.1. Design Method

The main design method adopted was the implementation of solutions connected
to the hybrid infrastructure in the grey–green–blue system. To maximise the beneficial
environmental effects, the fundamental guideline assumed in this project was to increase
the presence of vegetation. While providing us with a wide range of environmental services,
and, at the same time, delivering positive influences that can be described as supportive,
provisioning, and cultural, vegetation fulfills many regulating functions [17].

In practical terms, urban vegetation has the capacity to clean the environment [18,19],
can improve the local climate through reduction of solar radiation absorption and air
temperature by providing shade and through evapotranspiration [20,21], have control over
precipitation run-off of, and can improve the retention capacity of built-up areas [22].

The presented project is designed not only to improve the image of the facility but also
to realistically increase the environmental values of the place. In this project, various types
of vegetation were introduced in diverse arrangements that remain in conjunction with the
engineering systems and traffic area, thereby constituting the GGB infrastructure (Table 1).

Table 1. Grey–green–blue infrastructure types used in design concept *.

Infrastructure Type Surface Type

Grey 1. area of the circular
traffic—driving road

2. area of the circular
traffic—parking 3. sealed pavement

Green 1. green
parking—geogrid

2. pedestrian
walkway—living

pavement;
3. area of landscaped
greenery—decorative

4. area of landscaped
greenery—decorative

Blue 1. rain gardens 2. absorbent troughs 3. bioswale
*—the colors used based on [23].

Traffic zones in the built-up areas are an important element that drastically changes
the quality of the urban environment. The use of high albedo materials for pavements and
implementation of a permeable structure have been able to significantly influence the level
of local sustainability [22,24,25].

Loosened surfaces, with the possibility of introducing vegetation, are a specific case
where a synergy of benefits occurs, and it results from the unsealing of the shielded cover
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and increasing the vegetation’s presence, thereby influencing the morphological indices to
support a sustainable urban environment [7].

The design uses varying degrees of pavement loosening, incorporates vegetation
into the pavement structure, and manipulates ground layers to improve the rainwater
retention capacity.

2.2.2. Research Method

The research method consists in gradual, multi-faceted verification of the effectiveness
of the implemented system of grey–green–blue infrastructure. The following aspects
were analysed:

A comparative list of markers of biological activity in the area

In the planning practice, there are several types of measures that one can use to assess
the influence of design intervention on the biological activity in the area. These scales are
used for the identification of environmental features and for the evaluation of their ecologi-
cal benefits [26]. Because of the multi-faceted nature of the GGB infrastructure, the BAF
and GSF scales were used to explore the different aspects of projected intervention [26,27].

Essential for the area balance is its capacity to retain water, the size of the area covered
with vegetation, and the type of introduced plant communities (considering their level of
naturalness). The BAF scale promotes the connection between individual elements and the
native soil, accommodating the plants with local conditions, and the ability to infiltrate
rainwater (Table 2). In the GSF scale, the discriminant is constituted by the additional
score granted by the greenery’s cubature of the area and implementation of the additional
computational area for the size of trees and shrubs (Table 3) [27]. Intervention impact
assessment involving two types of measures (GSF and BAF) reinforces the choice of the
implemented project’s methods and highlights their comprehensiveness as far as shaping
the area’s biological activity is concerned.

Table 2. Biotope area factor [28].

Surface Type Factor

Sealed surface 0.0

Partially sealed surfaces 0.3

Semi-open surfaces-permeable to water and air 0.5

Surfaces with vegetation unconnected to soil below, small substrate thickness 0.5

Surfaces with vegetation unconnected to soil below, large substrate thickness 0.7

Surfaces with vegetation connected to soil below 1.0

Rainwater infiltration per m2 of roof area 0.2

Vertical greenery up to 10 m in height 0.5

Extensive and intensive green roofs 0.7

Table 3. Green space factor [27].

Surface Type Factor

Vegetation on ground 1.0

Vegetation on trellis or facade 0.7

Green roofs 0.6

Vegetation on beams, soil depth between 200–800 mm 0.7

Vegetation on beams, soil depth > 800 mm 0.9

Water surfaces 1.0



Atmosphere 2021, 12, 1464 5 of 18

Table 3. Cont.

Surface Type Factor

Collection and retention of stormwater 0.2

Draining of sealed surfaces to surrounding vegetation 0.2

Sealed areas 0.0

Paved areas with joints 0.2

Areas covered with gravel or sand 0.4

Tree, stem girth 16–20 cm (at 20 m2 per tree) 20.0

Tree, stem girth 20–30 cm (at 15 m2 per tree) 15.0

Tree, stem girth > 30 cm (at 10 m2 per tree) 10.0

Single bush higher than 3 m (at 2 m2 per bush) 2.0

Quantification is performed on the basis of comparing the spatial dimension of a
certain quality while bearing in mind the numerical quantity of the factor assigned to
this quality concerning the area of the whole presumption, according to the following
Equation (1) [26]:

BAF, GSF = ∑i(Fi × fi)/F (1)

where: BAF, GSF—markers of biological activity in the area [-], Fi—partitive surface of
certain land use [m2], fi-factor attributed to a certain land use (Tables 2 and 3) [-], F—total
area of the analysed land [m2].

Quantification of the potential for the reduction of stormwater runoff

The critical intensities method was applied to calculate the reduction of stormwater
runoff (and, therefore, increasing the retention) from the analysed urban area [28]. This
method is recommended for use in the catchment, the area of which is below 2 km2. In
this case, it is assumed that the maximum flow of every computational section refers to
the precipitation, the duration of which is the same as time needed for the water to reach
the furthest section of the catchment. The method also considers the delays caused by the
so-called area concentration and canal retention. Valid stream of volume Qm of rainfall
[dm3/s] is calculated using the following Formula (2):

Qm = qmax(td,C)·ψs·A (2)

where: qmax(td,C)—maximum unit intensity of rainfall for its duration (td (min)) and the
frequency of occurrence of calculation rainfall (C (years)) [dm3/s ha], ψ_s—maximum (peak)
rainwater runoff coefficient assumed depending on the sealing degree, land slope, and the fre-
quency of calculated rainfall occurrence according to the DWA A-118:2006 [-] [29], A—surface
of an urban area [ha].

The rainfall frequency C was assumed according to recommendations set out in the
new standard PN-EN 752: 2017 [30] for city centres, areas of services, and industry (once
every 5 years). The qmax value, calculated on the basis of a probabilistic model of max-
imum rainfall heights for the analysed area (from the observation period 1960–2009) for
the duration of rainfall td = 15 min and for the rainfall frequency C = 5 years, accord-
ing to the Regional Water Management Guidelines of the city of Wroclaw (2019) [31],
qmax = 181.7 [dm3/s ha].

The influence of grey–green–blue infrastructure on thermal comfort conditions

The assessment of the effectiveness of urban green infrastructure on enhanced microcli-
matic conditions by modeling with the ENVI-met microclimatic software was implemented.
The ENVI-met model was used to generate micro-climatic data for the selected area with
two design scenarios; the first concerns the baseline scenario (the NoGreen scenario), and
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the second concerns the grey–green–blue (GGB) scenario (after implementation of green–
blue infrastructure into grey infrastructure). ENVI-met, a computational fluid dynamics
(CFD) model, simulates the microclimatic dynamics within a daily cycle in complex urban
structures, and its high spatial and temporal resolution enables it to describe microclimate
parameters at the pedestrian’s level [15,32]. Air temperature (PAT in ◦C), mean radiant
temperature (MRT in ◦C), and hourly change in temperature (ATC in ◦C/h) for the selected
day were calculated. PAT describes the so-called potential air temperature at reference
(and model default) pressure; for the 3D model, it can be treated as the absolute air tem-
perature. The idea behind using the mean radiant temperature (MRT) is that it allows for
the assessment of the radiative exchange rate between a human and its environment, and
MRT is the crucial parameter for describing the human energy balance, particularly during
heatwaves [33,34]. The ATC parameter describes the changes in air temperature compared
to the last hour (https://www.envi-met.com/software/; accessed on 15 May 2021).

ENVI-met simulations were performed under the meteorological conditions recorded
on 27 August 2019, which is a representative day for heatwaves (Table S1 (Supplementary
Materials)). The meteorological data used were gathered at the Meteorological Observatory
of the University of Wroclaw (DCAP). The station is located about 2.5 km from the area
of intervention. The Observatory is located in the eastern part of Wrocław, near the large
Szczytnicki Park, about 5 km from the city centre and about 2.5 km from the area of
intervention. The DCAP provides high-resolution, relevant information about the urban
climate [35].

The average daily temperature for this day was 23.5 ◦C, with a daily maximum of
temperature above 31 ◦C and a minimum temperature of around 17 ◦C. The average
relative humidity was 69 %, and wind speed was 1.3 m/s (Table 4).

Table 4. ENVI-met configuration file setting.

Definition Value

Location: Wroclaw 17◦1′59” E; 51◦5′59” N
Central European Standard Time Reference Longitude 15◦

Total Simulation Time 24 h

Meteorological factors
min and max value of air temperature 17–31 ◦C

min and max value of relative humidity at 2 m a.g.l 50–70%
wind direction 90◦ for E

wind speed measured at 17 m a.g.l 1.3 m/s
roughness length at measurement site 0.10 m *

Vegetation factors
Trees 15 m

Shrubs 5 m
Creeping vegetation 30 cm
Leaf Area Density 1.6 (averaged value)

* according to [36].

Given the geographic location, the radiation budget was calculated with an atmo-
spheric model. The resulting data were stored at 1-h intervals. In area of intervention,
taking into account the different land-use and GGB system, five receptors were selected
to describe the impact of different types of small green infrastructures on microclimate
conditions (Figure 2).

For the experimented cases, the situation was reconstructed in the model, including
the characteristic morphology of the location, as well as mapping of the plant arrangements,
including the traffic area, parking lot, and vegetation areas.

The computational domain covers a horizontal area of 50 m × 50 m and a vertical
height of 20 m. The three-dimensional model is based on a grid domain, the cells of
which define the vertical and horizontal extension ∆z as well as the resolution of the
model. All grid cells have an identical extension of 2 m. The analysis was performed

https://www.envi-met.com/software/
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employing average leaf area density (LAD) parameters, taking different values for shrubs
and trees. For the LAD of trees, a default value of 1.6 was chosen. In addition, groups of
low vegetation were adopted: shrubs and creeping plants covering parking spaces and a
pedestrian passage made with the living pavement technology.
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point above bioswales area, close to group of trees; 2. control point close to rain garden; 3. control
point above grass car parks with carpet planting; 4. control point close to main building; 5. control
point above grass car parks with sedum carpet, close to group of trees). Solid lines indicate the
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3. Results
3.1. The Design Concept

The design concept proposes a hybrid GGB system comprising: bioretention elements
(rain gardens, infiltration basins, bioswales), systems of traffic space with loose surfaces
(green parking areas, and pedestrian passages with living pavement surface systems), and
different types of vegetation (areas of arranged and decorative greenery, turf vegetation,
groups of shrubs) (Figures 2 and 3).
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3.2. Multi-Criteria Evaluation of the Effectiveness of Solutions
3.2.1. Evaluation of Improvement in Biological Activity on the Designed Site

The results of the assessment of the GGB infrastructure system’s efficiency conducted
before and after the introduction of the design idea using the BAF and GSF indicators are
summarised in Tables 5 and 6.

Table 5. The results of BAF analysis.

Surface Type Factor
Baseline Scenario NBS Scenario

Area [m2] Factor × Area BAF Area [m2] Factor × Area BAF

Sealed surface 0.0 1894.0 0.0

0.15

1542.0 0.0

0.24

Semi-open
surfaces-permeable to

water and air
0.5 _ _ 352.0 176.0

Surfaces with
vegetation connected

to soil below
1.0 423.0 423.0 423.0 423.0

Rainwater infiltration
per m2 of roof area 0.2 450.0 0.0 450.0 90.0

Summary 2767.0 423.0 2767.0 689.0

Table 6. The results of GSF analysis.

Surface Type Factor
Baseline Scenario NBS Scenario

Area [m2] Factor × Area GFS Area [m2] Factor × Area GFS

Vegetation on ground 1.0 423.0 423.0

0.16

775.0 775.0

0.40

Collection and retention
of stormwater 0.2 _ _ 250.0 50.0

Draining of sealed
surfaces to surrounding

vegetation
0.2 _ _ 142.0 28.0

Sealed areas 0.0 2144.0 0.0 1792.0 0.0

Paved areas with joints 0.2 200.0 40.0 200.0 40.0

Tree, stem girth 16–20
cm (at 20 m2 per tree) 20.0 _ _ 7 × u 140.0

Tree, stem girth > 30 cm
(at 10 m2 per tree) 10.0 _ _ 1 × u 10.0

Single bush higher than
3 m (at 20 m2 per tree) 2.0 _ _ 35 × u 70.0

u—number of trees or bushes.

The analysis of the biological activity in the area using the BAF scale showed an
upward trend from a value of 0.15 points, obtained for the site prior to the implementation
of the design, up to a value of 0.24 points as a result of the implementation. The assessment
on the GSF scale based on the evaluation of 15 types of land use showed a change from 0.16
points to 0.40 points. The GGB balance sheet for the area shows a decreasing trend in the
percentage of grey area (from 84.7% to 72.0%), an increase in the share of green area (from
15.3% to 28.0%), and the distinguishing of the blue category with a size of 9.0% (Table 7).
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Table 7. Area balance by type of grey–green–blue infrastructure.

Infrastructure Type

Surface Type *
Summary

1 2 3 4

Area [m2] Area [m2] [%]
Baseline scenario 1894.0 450.0 2344.0 84.7Grey

NBS scenario 1542.0 450.0 1992.0 72.0
Baseline scenario - - 222.0 201.0 423.0 15.3

Green NBS scenario 314.0 39.5 421.5 775.0 28.0
Baseline scenario - - - 0.0 0.0

Blue NBS scenario 142.0 38.0 70.0 250.0 9.0
Baseline scenario 423.0 15.3Total share of

Green–Blue
Area

NBS scenario 775.0 28.0 (increase
of 12.7%)

* the explanations of the numbers are placed in Table 1.

3.2.2. Quantification of the Potential Increase in Water Retention

An increase in the greenfield areas, taking into account the systems that ensure the
infiltration of rainwater without the retention or temporary retention of water in the
bioretention systems, i.e., rain gardens, bioswales, allows for a reduction in the reliable
flow rate, Qm, of the rainwater from 41.8 dm3/L to 37.8 dm3/L. Consequently, with newly
designed land use, water retention can rise by more than 9% (Table 8). This is the amount
of water that will remain on the spot of precipitation and then enter the groundwater and,
thus, does not run unproductively in the sewerage network.

Table 8. Compilation of areas with different management techniques, reliable runoff of the rainwater Qm [dm3/s] before
and after the design concept, and retention volume ∆R [%].

Land Cover Baseline Scenario NBS Scenario

A [m2] A [%] A [m2] A [%]

Asphalt/concrete surface 1894.0 68.3 1542.0 55.7

Area under the buildings 450.0 16.3 450.0 16.3

Pedestrian passage-living pavement - - 39.5 1.4

Lattice paving blocks - - 247.0 8.9

Green area 222.0 8.0 171.5 6.2

Rain garden - - 142.0 5.1

Infiltration basins - - 38.0 1.4

Bioswale - - 70.0 2.5

Stonecrop carpet - - 67.0 2.4

Unarranged green areas 201.0 7.4 - -

Total area 2767.0 100 2767.0 100

U [%] 84.7 72.0

Ψs [-] 0.86 0.77

Qm [dm3/s] 41.80 37.80

∆R [%] 9.5

Notes: A—area [m2, %]; U—share of impermeable area [%]; Ψs—averaged runoff coefficient [-].

3.2.3. The Influence of the Green–Blue Infrastructure on Thermal Comfort Conditions

The effect of the replacement of conventional paving materials with cool water-
permeable materials and vegetation was examined by means of an ENVI-met simula-
tion. The extraction of 1.5 m of air temperature (expressed as PAT) and the mean radiant
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temperature (MRT) from the model were used to assess the thermal conditions during a
selected day of a heatwave in Wroclaw. The results of the microclimate simulation show the
limited but constant improvement of the thermal conditions throughout the analysed day.
It should be noted that, within the analysed project, a mainly permeable structure and low
vegetation with a small share of trees were introduced; therefore, the direct shading of a
surface by greenery and the increase of the surface albedo by cool and green areas leads to a
decrease in the net radiation of the surface underneath. The albedo of built-up areas can be
around 0.1–0.2, whereas the albedo of green areas can reach values of 0.3 or higher [36–40].
Thus, in the case of the designed intervention, the reduction of solar radiation is expected.
The previous studies show that an increase in the ground albedo from 50% to 80% leads to
a variation in the surface temperature by approximately 5 ◦C [7,41] even though the best
effect could be achieved by the synergy of the green infrastructure with cool materials and
permeable surfaces [42].

In addition, any soil moisture changes from the implemented green–blue infrastructure
impact the thermal properties of the soil and air by enhancing evaporative cooling [43].
The evaporative cooling contributes to reducing heat absorption by the ground surface,
lowers the Bowen ratio (the partitioning between sensible and latent heat flux), and also
decreases the air temperature of the area in the vicinity. This effect has greater importance
during the day rather than at night because of the turbulent transport in the atmospheric
surface layer predominant after sunrise [44,45].

A comparison of the thermal conditions before the introduction of green–blue infras-
tructure and after the modification indicates relatively small but significant changes in the
thermal properties of the analysed area (Table 9). The average daily difference in the air
temperature (expressed as PAT) in the selected points varies from 0.03 ◦C (point 5, close
to grass car park) to 0.22 ◦C (point 1, above bioswales zone). In the reference points, the
registered maximum diurnal air temperature variation ranges from 0.2 ◦C to 1.1 ◦C. A part
of these reductions is also achieved thanks to the shading effect of the trees, higher shrubs,
and walls of the main building. Generally, a comparison of the air temperature differences
between reference points indicates that a cooling effect is found to increase with the rising
number of trees and increasing the share of bioretention areas (e.g., bioswales zone).

Table 9. The main thermal characteristics of control points (S0 indicates baseline scenario, SGGB concerns situation after
introduction of green–blue infrastructure).

Control
Point Scenario

MRT [◦C] PAT [◦C] Rising Rate of T after
Sunrise (ATC) [◦C/h]

Cooling Rate during Night
(ATC) [◦C/h]

avg max min avg max min avg max min avg max min

1 0 36.9 69.8 9.5 24.0 30.2 17.7 1.2 1.4 1.1 −0.9 −0.8 −1.1
GGB 27.9 64.6 13.6 23.8 29.1 17.9 1.1 1.3 1.0 −0.8 −0.6 −0.9

2 0 36.4 69.6 10.0 24.0 29.4 18.1 1.1 1.3 1.0 −0.8 −0.7 −0.8
GGB 33.8 65.8 11.3 23.9 29.2 18.0 1.1 1.3 0.9 −0.8 −0.7 −0.8

3 0 36.3 69.8 9.7 24.0 29.6 17.9 1.2 1.3 1.1 −0.8 −0.8 −0.9
GGB 31.8 66.5 11.7 23.9 29.3 18.0 1.1 1.3 1.0 −0.8 −0.7 −0.9

4 0 35.1 69.5 9.9 24.0 29.6 17.9 1.2 1.4 1.0 −0.8 −0.7 −0.9
GGB 33.7 66.3 10.8 24.0 29.4 17.9 1.2 1.4 1.0 −0.8 −0.7 −0.9

5 0 34.6 69.7 10.3 24.1 30.2 17.6 1.3 1.3 1.2 −0.9 −0.8 −0.9
GGB 33.2 64.3 13.4 24.1 29.9 17.8 1.2 1.3 1.1 −0.9 −0.7 −0.9

1 Absolute
differ-
ences

(GGB-0)

9.0 33.9 −4.1 0.2 1.1 −0.2 0.1 0.2 0 −0.1 0 −0.4
2 2.5 24.6 −1.3 0.1 0.3 −0.1 0 0.1 −0.1 0 0 −0.1
3 4.5 30.9 −2 0.1 0.3 −0.1 0 0.1 0 0 0 −0.1
4 1.4 8.1 −6.3 0.1 0.2 −0.1 0 0.1 −0.1 0 0 −0.1
5 1.4 25.5 −3.1 0 0.3 −0.1 0 0.1 0 0 0 −0.1

MRT [◦C]—mean radiant temperature, PAT [◦C]—potential air temperature at reference (and model default) pressure; for the 3D model, it
can be treated like the absolute air temperature, ATC [◦C/h]—hourly change in air temperature.

The strategies employed have a more significant impact on the MRT values when it
concerns the ambient temperature. The mean radiant temperature is one of the crucial
parameters for describing human thermal comfort, and it influences all shortwave and
longwave radiation fluxes on the human body [46,47]. The introduction of green–blue
infrastructure contributes to the reduction of the MRT value from 1.43 ◦C to over 9 ◦C on
average. The largest difference between the scenarios found is 34 ◦C in relation to the MRT
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values (Table 9). It should be highlighted that, within any urban area, MRT is the major
driver of outdoor human thermal comfort and has a stronger effect on the wellbeing of the
citizens than air temperature, particularly during heatwaves [48].

Moreover, MRT is more sensitive to the shading effect than air temperature, but
an increase in surface reflectance could also increase the MRT value due to more heat
absorbed by the human body (Figure 4). Based on the model simulation, the rising
temperature rate during the day and cooling rate during the night were calculated (ATC air
temperature changes index) (Table 9). Generally, at the reference points, slower changes in
air temperature were noted after the introduction of green–blue infrastructure, on average
from 0.02 ◦C/h to 0.13 ◦C/h. The ATC index for daytime hours achieved 1.4 ◦C/h for the
baseline scenario vs. 1.1 ◦C/h for the GGB scenario in reference point 1. The maximum
differences between the scenarios for the heating rate are around 0.2 ◦C/h (for point 1),
while points 2 and 4 achieved only around 0.02 ◦C/h. Compared to the air temperature
(PAT), there is no difference in the cooling rate during the afternoon and night between
the two scenarios analysed, with the slightly lower temperature recorded during the night
after the introduction of NBS being the outcome rather of the lower maximum temperature
during the day.
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Figure 4 illustrates the spatial variation in the air temperature (PAT in ◦C) and mean
radiant temperature (MRT in ◦C) at 4 p.m. (the hour with the maximum air temperature)
for the baseline and GGB scenarios. The results reflect the thermal conditions on a day
with a heatwave. The range of the temperature values (PAT) shows a significant vari-
ability, ranging from 28 ◦C to above 30 ◦C for both scenarios, even though the analysis
also indicates a greater spatial variation in this parameter after the introduction of NBS.
Before the intervention, the lower air temperature was recorded in the west over the main
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building due to the impact of the existing greenery multiplied by the shading effect of the
building during the hours after sunrise. After the NBS implementation, this area is still
the coldest place, with a temperature of around 28 ◦C, but this is a visible reduction in the
temperature due to the replacement of conventional materials. The significant lowering of
the temperature (above 1 ◦C) was observed close to the rain gardens and bioswales zones,
while less important changes were recorded above the permeable car park. The spatial
distribution of the air temperature indicates that its variability is primarily determined
by the presence of shaded areas around the trees or building and changes in the heat
absorption and distribution due to the evaporative effect [49]. The introduction of green
areas reduces the temperature, mainly in their immediate vicinity, but the so-called oasis
effect, understood as a horizontal advection of cooler air [50], is visible about 10 m apart
from the green infrastructure along with the main wind flow (Figure 4).

The analysis indicates a great variation in the radiant heat load (expressed by the
MRT value) at the pedestrian level (1.5 m) within short distances, which varies from 34 ◦C
to above 61 ◦C for the baseline scenario and from 30 ◦C up to 60 ◦C for the GGB one.
Before the intervention, the MRT values at the spaces in the shadow of the building tended
to be lower than above the unshaded sites with asphalt road and pavement. After the
introduction of the GGB infrastructure, a greater spatial variability in the MRT is observed.
The green-covered areas allow for the improvement in thermal comfort and, according to
the analysis, the MRT value within the vicinity of the green–blue infrastructure is lower at
up to 30 ◦C in reference to the baseline scenario. However, the results of modeling indicate
that, at some small restricted areas, the intervention can lead to the deterioration in heat
comfort due to the enhanced reflection of solar radiation by the brighter (cooler) pavement
as well as the trunks and leaves of trees or shrubs (Figure 4). This effect was confirmed
in different analyses, e.g., Middel et al. [51] and Sun et al. [52]. However, in the case of
planned intervention, this effect is limited only to a few points. The area with a higher
MRT value is still connected with uncovered areas, but the sites with MRT values close to
60 ◦C are strongly reduced in comparison to the baseline scenario.

The comparative analysis of the microclimatic conditions for the baseline scenario,
when taking into account the NBS intervention, shows that even such a small share of
greenery can improve the thermal comfort of pedestrians.

4. Discussion

The sustainable development paradigm has developed many urbanisation models
that are described in different ways: “sustainable cities”, “green cities”, “eco cities”, as well
as specialist-oriented variants, such as “low carbon cities” and “resilient cities” [53,54]. In
the context of urban structures, among other things, the concepts of porous city and city-
sponges have been developed to increase the potential for the ventilation, filtration, and
retention of urban structures [55]. The concept of porous city, apart from its broad social
connotations, provides the opportunity to refer to the architectural and urban features and
qualities of the built environment developed as permeable. It should thus be considered in
terms of the meaning of an open, flexible, ventilated, and connected smart city as opposed
to terms such as sealed, isolated, and hermetic [56].

In the presented project, thanks to the applied GGB infrastructure solutions, the postu-
lated “porosity” and “sponginess” effect was achieved, thereby increasing the proportion
of biologically active surfaces (Table 7) and achieving higher land sustainability parameters,
as shown in the specific analyses.

The cumulative effect of porosity and sponginess is achieved by the implementation of
permeable surfaces (e.g., porous asphalt or cement, sustainable car park, living pavement
systems), the scaling of green spaces, and also by a diversified form of greenery (starting
with engineering structures and the associated vegetation and ending with some beginnings
of a park habitat). This attempt allows for initiating some urban ecosystem and placing the
design area within nature’s outer connected complex system.
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The increased share of the biological factor within engineering structures provides an
opportunity to reintegrate the urban processes with the natural cycles of nature and shape
the framework of their circular, dynamic flow (appropriate for natural environments),
which allows for the breaking of their linearity (typical for urban development), and,
therefore, shaping the beginnings of the urban autarky [57].

An important element of shaping urban sustainability is the pursuit of a higher
biodiversity in urban green areas, with the growing trend of naturalistic plantings in cities.
Due to the adaptation of urban areas to many guidelines, including climate change, major
modifications of plant systems are allowed, sometimes far from natural phytosociological
patterns [58].

The individual parts of the project, although not shaped by actual phytosociological
patterns, receive a visual impression of naturalness that affects the general quasi-naturalistic
image of the object. In practice, such references are valuable so long as it is recognised
that the pro-ecological value of the project also lies in fulfilling an educational function
and shaping consumer patterns. Due to the role and popularity of the facility in the
minds of the city’s inhabitants, this symbolic dimension should also be appreciated as an
educational exhibition of sustainable shaping. When it comes to cities, it is accepted to
establish habitats artificially so that they remain dependent on human care even though, in
the natural sense, such compensatory habitats are considered to be of lesser value when
compared to natural habitats. However, in the context of urban buildings, their value
is significant, as is represented on the index scales created for the designed buildings,
such as BAF(e.g., Berlin) or GSF (e.g., Malmö), which have also been introduced in this
article [27,59].

The applied solutions from the nature-based group, by shaping the comprehensive
set of GGB infrastructure, significantly increase the share of biologically active surface area
within the built-up area, thus changing their quality.

The use of the BAF and GSF scales showed an increase in the area’s biological activity
compared to the state before the introduction of the intervention. The BAF score improved
by 0.9 points in relation to the situation before the intervention (0.15 before the intervention
vs. 0.24 after the intervention). In the GSF scale, the intervention improved the level of
biological activity in the area by 0.24 compared to the situation before the intervention (0.16
before the intervention vs. 0.40 after the intervention) (Tables 5 and 6).

Despite the demonstrated improvement, the obtained values in relation to the guide-
lines in the same planning documents for European cities (e.g., Berlin’s Landscape Pro-
gram, Masterplan Western Harbor, B01 Malmö), place the performed intervention at a level
slightly below the lowest accepted values that would make it possible to recognise the
ecological significance of the implementation. The BAF scale takes values from 0.6 for new
residential units, public facilities, and nursery schools to 0.3 for commercial, city centre, and
technical infrastructure. In the case of the GSF scale in relation to an environmentally sus-
tainable urban district B01 (Malmö), the lowest value adopted was 0.5 points. The values
obtained in the research were 0.24 points (BAF) and 0.40 points (GSF) despite demon-
strating an overall improvement (on the BAF scale by 60 %, on the GSF scale by 150 %);
still, these are below the accepted level of acceptance, This indicates the need to develop
additional aspects towards increasing the facility’s level of environmental performance.
Such a situation should be considered consistent with the intended use of tools, such as
the BAF and GSF scales, which, being regulatory tools, should be used in the evaluation
of the intervention’s effectiveness and to shape the attitude of a “creative” dialogue with
the investor, allowing to clarify the course of action and guidelines aimed at increasing the
ecological value of the facility [27].

In the literature, numerous studies have evaluated the hydrological performance of
bioretention cells using different methodologies and tools in field and laboratory experi-
ments, as well as in hydrological and hydraulic modelling. The majority of these studies
have focused on the hydrological performance of a given type of bioretention system, i.e.,
rain gardens, green roofs, etc. To a limited extent, such analyses are performed for larger
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areas with different land uses. Generally, the results have indicated that nature-based
solutions are useful to control runoff in urban areas. Managing water and urban drainage
systems through the implementation of these systems allows for improving the hydrologi-
cal response of urban areas. Mahmoud et al. [60] have evaluated a bioretention system and
compared its performance with traditional asphalt pavement located in the same parking
area. In this case, the average runoff volume from the bioretention cell was 82% lower
than that of the traditional asphalt pavement section. The performance of bioretention cells
on the reduction of runoff volume, peak runoff, and first flush under potential climatic
changes of different design storms using a hydrology model (SWMM) was examined by
Wang et al. [61]. The study results indicated that the hydrological performance of these
systems is highly sensitive to their structure and scale, as well as to rainfall events. It was
found [62] from a dataset of 49 rainfall events that 18% percent of the events were small
enough so that the bioretention media were able to capture the entire inflow volume and
no outflow was observed. Overall, from a hydrologic perspective, the runoff reduction
decreased as the total rainfall increased. Hence, NBS cannot replace the grey infrastructure
but should be integrated with it.

The perspective that should be discussed in the assessment of the presented project
is, therefore, not only its unit efficiency but, above all, the possibility of including the
facility in the designed variant of systems in urban sustainable areas. Analytical studies
conducted for many cities show that the introduction of NBS systems to replicate the
natural mechanisms of absorption and retention in the urban drainage network system
provides multiple benefits, contributes to improvement in urban stormwater management,
and has several other societal benefits, such as air quality improvements, reduction of
heat island effects, and increasing the aesthetic and recreational values. This gives ample
grounds to determine the new guidelines in the design and urban water management for
climate change adaptation [12,63].

It was also shown that there was an improvement in the land’s retention capacity
for rainwater at over 9 % (Table 8) and a development in the thermal conditions, which
implies that the introduction of green infrastructure contributes to a reduction in the MRT
index from 1.43 ◦C to over 9 ◦C on average (Table 9). Similar values have been achieved
in other analyses of the cooling effect of small green infrastructures, but the final effect
strongly depends on the type of greenery and its size, as well as the general meteorological
condition. For example, in Thessaloniki, Greece, the cooler effect was characterised by very
small differences in air temperature, up to 0.3 ◦C, but up to 17.5 ◦C in surface temperatures,
and approximately 43 ◦C in MRT [64]. In Hong Kong, the researchers proved that pocket
parks can reduce the daytime urban heat island effect by 0.5 ◦C [65]. An additional 5%
of green area covered by shrubs or new trees further reduces the surface temperature by
around 0.5 ◦C [66,67].

In light of the list presented above and, taking into account the small range of applied
interventions, the proven improvement is not only satisfactory but also validates the choice
of these types of solutions in larger-scale situations.

In recent decades, the sustainable development trend has noticeably succeeded in
terms of quality improvement in Polish cities as well [68]. The implemented infrastructure
modernisation and pro-ecological policy have resulted in pro-ecological solutions being
applied in cities, thereby bettering the environmental quality. Based on an analysis of
25 variables, it was determined that, between the years 2004 and 2016, the value of the
summative ecologisation index (SEI) of Polish cities increased on average by 6% [69]. The
discussed example is a result of the long-term impact of the adopted aforesaid policy.

Overall, the facility presented is a representation of the best practices in the field of
integrated sustainable design. When selecting strategies, indicators, technologies, and
tools to assess the ecological aspect of sustainability, there is no explicit instruction to
use prediction tools at the design stage. The introduced proposal to the effect that a
research aspect should be included in the design process is an attempt to bridge the gap
between the advancement in research and its practical application, which is of interest to



Atmosphere 2021, 12, 1464 15 of 18

many researchers [70]. A multi-criteria evaluation of the effectiveness of NBS solutions,
suggested as a mandatory design stage, raises awareness of the interdependence of aspects
and decisions. It also constitutes a move towards the development of appropriate design
regulations and guidelines that could lead to higher quality built-up areas.

5. Conclusions

The synergistic application of the grey–green–blue infrastructure systems will allow
for the attainment of many benefits. The results of the detailed analyses have shown
that even a slight decrease in the tight and homogeneous quality of the surface or the
inclusion of vegetation will not only diversify the form of development in an area but,
more importantly, will also enable the creation of compact urban buildings with better
sustainability parameters. The design interventions have resulted in an increase in the
biologically active area by 12.7%, thereby indicating a rise in the indicators of BAF and
GSF scales of, respectively, 0.09 points and 0.24 points when compared to the state before
the development of the area. The introduction of the permeable surfaces and bioretention
systems led to a reduction in the surface runoff that was later channeled to a receiving
water body while, at the same time, increasing the capacity to retain rainwater in the area.
The estimated increase in such retention, based on the design solution, has increased the
water retention by 9.5%. Introducing the green infrastructure has contributed to a reduction
in the MRT index from 1.43 ◦C to over 9 ◦C on average.

The positive results from a multi-criteria evaluation of the selected aspects have
allowed us to assume the effectiveness of the implemented GGB solutions. The object-
shaping method, based on a synchronisation of the influence of many factors, including
plant material, passive technologies, and engineering systems, has become an effective
tool for developing a sustainable form of urbanised areas. The methodology from this
study could be transferred to other locations. However, it should be taken into account
that the criteria for the NBS impact assessment should be set individually following the
local guidelines in the fit-to-place design process.
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