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Abstract: One way to use climate services in the case of sugarcane is to develop models that forecast
yields to help the sector to be better prepared against climate risks. In this study, several models for
forecasting sugarcane yields were developed and compared in the north of Ivory Coast (West Africa).
These models were based on statistical methods, ranging from linear regression to machine learning
algorithms such as the random forest method, fed by climate data (rainfall, temperature); satellite
products (NDVI, EVI from MODIS Vegetation Index product) and information on cropping practices.
The results show that the forecasting of sugarcane yield depended on the area considered. At the
plot level, the noise due to cultivation practices can hide the effects of climate on yields and leads to
poor forecasting performance. However, models using satellite variables are more efficient and those
with EVI alone may explain 43% of yield variations. Moreover, taking into account cultural practices
in the model improves the score and enables one to forecast 3 months before harvest in 50% and 69%
of cases whether yields will be high or low, respectively, with errors of only 10% and 2%, respectively.
These results on the predictive potential of sugarcane yields are useful for planning and climate risk
management in this sector.

Keywords: crop modeling; sugarcane; Ivory Coast; machine learning; vegetation index; yield forecast

1. Introduction

The economy of Ivory Coast is strongly dependent on agriculture: in 2018, this sector
accounted for 21.5% of GDP, was the source of nearly half of employment and accounted
for 60% of the country’s merchandise exports [1]. However, in the current context of
climate change, the risks due to temperature rises and increased climate variability weigh
heavily on Ivorian agriculture—especially because 95% of crops are rainfed in Sub-Saharan
Africa [2] and are therefore highly dependent on climatic conditions.

The climate in West Africa has changed significantly since the beginning of the 20th
century. According to the last Intergovernmental Panel on Climate Change (IPCC) report,
the temperature has increased by about 0.2 ◦C–0.5 ◦C by decade, with a high confidence
level [3]. Moreover, the interannual variability of rainfall has increased and rainfall patterns
have undergone major changes: heavy rainfalls and dry periods have been more and more
frequent, with a high and medium confidence level, respectively [3]. In particular, Ivory
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Coast experienced a significant rainfall deficit in the 1970s and 1980s [4,5], followed by a
partial recovery of rainfall from 1980 to 2010, concentrated in the southeast of the country [6].
Sultan et al. [7] modeled the past changes of agricultural yields and found that regional
average yields have reduced by 10–20% for millet and 5–15% for sorghum in the 2000–2009
decade. Moreover, climate change will intensify over the next decades, particularly through
a significant rise in temperatures, and this will have serious consequences on agricultural
yields. Using four different crop models, Parkes et al. [8] found that, without adaptation
measures, yields of major cereals in Africa could decline weekly, whereas yield variability
could increase a lot as global temperatures approach 1.5K above pre-industrial levels.

Regarding sugarcane, a study by Marin et al. [9] based on a sugarcane growth model
(DSSAT/CANEGRO) and general circulation models (PRECIS and CSIRO) estimated that
yields (simulated stalk fresh mass) would increase by 15% to 59% in Brazil by 2050, depend-
ing on different climate scenarios. Similarly and using the same tools, Singels et al. [10]
forecast sugarcane yield increases of 4% in Australia, 9% in Brazil and 20% in South Africa
by 2050. So, in spite of the variability from place to place, sugarcane yields are expected
to increase in the coming years. These results underline the fact that, despite the negative
effect of lower rainfall on yields, higher temperatures would have a positive effect that
would counterbalance it. In addition, Linnenluecke et al. [11] conducted a literature review
on the subject and compared several articles from different geographical locations. Their
study showed that climate change could have a positive effect on irrigated sugarcane yields,
particularly in South Africa and Brazil, but, on the other hand, irrigation needs and the
risk of plant contamination are expected to increase. Furthermore, an increase in average
yields could also hide an increase in their variability due to potentially damaging extreme
events. This variability will probably be higher because of increases in the frequency and
intensity of extreme weather events, especially drought [12]. This calls for new tools to
forecast yields and anticipate risks caused by low-yield years.

To cope with these risks, climate services have shown that they can be an effective
adaptation strategy [13,14]. They involve the generation, provision, and contextualization
of information and knowledge derived from climate research for decision-making at all
levels of society [15]. In the field of agriculture, this means providing information and
forecasts on several future weather parameters for the subsequent hours (thunderstorms),
days (rain or not, temperature) or months (probabilistic forecasts over the subsequent
months), so that farmers can take them into account to optimize their decision-making
processes. The World Meteorological Organization insists particularly on the development
of early disaster warning systems to cope with flood, heat wave and drought risks [14], which
can have strong impacts on food security through crop diversification in Uganda, for exam-
ple [16]. Broadly speaking, these services have shown great potential for a large number
of applications and areas: in Burkina Faso, for example, Ouedraogo et al. [17] showed
that cowpea farmers increased their gross margin by 66% thanks to forecasts. However,
a report on the state of climate services published in 2019 by the World Meteorological
Organization [14] highlighted a significant lag in West Africa’s development of climate
services in terms of investment, as well as in its technical capacity and infrastructure, com-
pared to other geographical areas. In this context, the CLIMSUCAF project (Climatic and
Meteorological Services for the Sustainable Production and the Exploitation of Sugarcane
in Ivory Coast, https://www.climsucaf.net, accessed on 9 May 2021) aims to study the
requirements of providing climate and meteorological information in the sugar sector,
and the positive spin-offs that they could deliver for both the sugarcane industry and the
national meteorological department (Sodexam).

Ivory Coast is the world’s 50th largest producer of sugar cane, with a production dom-
inated by two companies: Sucrivoire, which operates in the Borotou-Koro and Zuénoula
sites, covering 14,000 ha respectively in the North-West and Center of the country, and
SUCAF (Sucrerie Africaine), in the Ferké 1 and 2 sites, covering 14,600 ha in the north
of Ivory Coast. Their productions are respectively equal to approximately 91,000 and
105,000 t of sugar per year. Despite the low relative weight of sugarcane in the Ivorian
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economy compared to other speculations, the choice of a cash crop by a private company
stems (i) from a request by SUCAF to improve the mainstreaming of climate information
in their management and planning process to better adapt to climate change and (ii) from
the findings of Vaughan et al. [18], who highlighted in a review of climate services studies
on Africa that research has mainly focused on food crops and smallholders.

One of the objectives of the project is to be able to anticipate sugarcane production
prior to harvest based on a set of cropping practice, meteorological and satellite data.
There are few models available in the literature for the forecasting of sugarcane yields in
West Africa compared to other geographies such as Australia, France, the United States,
Brazil and South Africa. In those areas, mechanistic models such as APSIM [19] and
CANEGRO [20] that simulate the biological characteristics of plant growth according to
the climatic conditions (temperature, rainfall) have been used. Then, statistical models
have been developed, ranging from ordinary least squares (OLS) regression [21,22] to more
complex algorithms using machine learning such as the random forest method [23–25]. In
parallel, new methods based on satellite data have emerged [26,27] enabling researchers to
estimate yields over large areas at high resolution. In this study, a comparative analysis
of linear regression and machine learning models for the forecasting of sugarcane yields
has been carried out, using either meteorological data, satellite products or information on
cropping practices at the Ferké 1 and 2 sites (14,600 ha) operated by the SUCAF company
in northern Ivory Coast (West Africa).

This manuscript is organized as follows: Section 2 presents the study area and data
used for this assessment. Section 3 describes the methodology with (i) an introduction
on the trends and breaks in the data over the study area, (ii) a presentation of forecasting
models involved and (iii) the strategy implemented to forecast yields at the plot level and
over the entire sites using either meteorological data, satellite products or information
on cropping practices. Section 4 shows the results and the discussions. Conclusion are
presented in Section 5.

2. Studied Area and Data
2.1. Studied Area

In the north of Ivory Coast, agriculture is composed of food crops (yam, maize, rice),
annual cash crops (cotton, tobacco, sugar cane), perennial cash crops (cashew, mangoes,
avocados) and livestock (cattle, goats) [28]. This region is characterized by a transitional
tropical climate with average annual rainfall ranging from 1000 to 1300 mm (Figure 1). This
zone experiences a wet season from April to October with maximum rainfall in August.
During the rainy season, temperatures vary from 20 ◦C to 30 ◦C. The Harmattan wind,
from the Sahara, blows from November to March and carries a significant amount of dust.
This induces a rapid heating of the air during the day and a sharp decrease in temperature
during the night: temperatures then vary from 18 ◦C to 35 ◦C. This climate is favorable for
the growing of sugarcane.

Sugarcane goes through four growth phases. The first is the tillering phase, which
requires average humidity and high, but not extreme, temperatures [29,30]. Then, it
enters the pre-growth phase, in which water requirements are higher. During the high-
growth phase, sugarcane requires a high quantity of water and high temperatures [31,32].
Finally, during the ripening phase, the drop in water supply and the large difference in
temperature between day and night prevents the plant from flowering and encourages
sugar storage [30,32].

Therefore, sugarcane planting takes place between October and March so that it can
experience its period of strong growth during the wet season (from June to September) and
its ripening phase between October and February, a month with scarce rainfall and a wide
temperature range thanks to the Harmattan. Sugarcane is not replanted every year. After
cutting, the ratoons regrow from their roots with a small loss of yield which increases with
time [33].
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Figure 1. West-Africa map of mean annual rainfall (mm) with a zoom on the study area and the location of plots in the
Ferké 1 and Ferké 2 sites. Rainfall data are CHIRPS product [34] data averaged over the years 1998–2018.

The SUCAF Company administers the sugar cane plantations in Ferké 1 and 2
(Figure 1). The total area of the plots is 14,600 hectares, with the production of nearly
1 million tons of sugarcane per year. Within these areas, 80% of the cultivated plots
are irrigated. The slash-and-burn method, which consists of burning the fields before
harvest to facilitate the work of farm workers, is still used. However, because of the envi-
ronmental problems and the yield losses it causes, it is gradually decreasing in favor of
mechanized harvesting.

2.2. Data
2.2.1. Sugarcane Yield

We used yield data in tons of sugarcane per hectare collected by SUCAF at the plot
level of Ferké 1 and 2 from 2008 to 2020. For each plot, the SUCAF database also contains
information about the plot surface, details on the quality of the production such as sugar
content and the percentage of internodes attacked by caterpillars, and information on
cropping practices: harvest date, irrigation status, variety used, number of new plant
regrowth, life cycle length.

The number of plots cultivated per year ranged from 182 to 349 at the Ferké 1 site, and
from 189 and 346 at the Ferké 2 site (the exact geographical location of the plots was only
available for the Ferké 2 area from 2011 to 2020). In total, the database consists of 7424 yield
measurements acquired between 2008 and 2020. Among the data for these of 7424 plots
data, only 5097 were complete, i.e., they contained usable values for each of the cropping
practices and the quality of the plant.

2.2.2. Meteorological Data

Daily data on temperature, evapotranspiration, insolation and relative humidity are
available for the two climate stations located at Ferké 1 and Ferké 2 and managed by
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SUCAF R&D Department. They have less than 1% missing values for the 2007–2019 period.
Rainfall data came from 27 rain gauges located at Ferké 1 (available from 2007 to 2019)
and 24 at Ferké 2 (from 1999 to 2018). These rain gauges were those used by SUCAF
to monitor the rainfall in the region. The administration and maintenance of these rain
gauges is carried out by SUCAF with occasional support from the National Meteorological
Office (Sodexam).

However, the collected data contained some missing values. To determine whether
a given station was usable, the 10% threshold was used, a criterion generally argued to
reject stations with too many missing values [35]. At Ferké 1, all stations had less than
10% missing values. At Ferké 2, only 4 stations had a very large number of missing values
(nearly 80%) and were therefore removed from the analysis. The other 20 stations that
met the 10% criterion were retained and the correlation weighting method was used to
fill in the missing values if they existed. This consisted of replacing these values with the
average of the other nearest stations, weighted by their correlation coefficient with this
station. Teegavarapu and Chandramouli [36] showed that this method was both efficient
and easy to implement to fill gaps in rainfall time series.

2.2.3. Satellite Data

Two types of satellite indices were used in this study, the NDVI (Normalized Difference
Vegetation Index) and the EVI (Enhanced Vegetation Index). During photosynthesis,
vegetation tends to absorb visible wavelengths (mainly in the green spectral zone) and
to emit in the near-infrared region. The NDVI (Normalized Difference Vegetation Index)
provides a measure of photosynthesis and ranges between −1 and 1 [37]. It is defined as:

NDVI =
NIR − VIS
NIR + VIS

(1)

where NIR is the radiation in the near infrared region and VIS in the visible region.
For sugarcane, NDVI is close to 0.2 at the beginning of the rainy season, then it

increases to 0.7–0.8 at the end of the strong growth phase (during the maximum magnitude
of the rainy season) and finally it decreases slightly during the ripening phase until the
end of the rainy season [26].

As a comparison and based on the literature, another more recent vegetation index
used was the EVI. This latter is defined as:

EVI = G
NIR − RED

NIR + C1∗RED − C2∗BLUE + L
(2)

where NIR (near infrared), Red, and Blue are the full or partially atmospheric-corrected (for
Rayleigh scattering and ozone absorption) surface reflectance; L is the canopy background
adjustment for correcting the nonlinear, differential NIR and red radiant transfer through a
canopy; C1 and C2 are the coefficients of the aerosol resistance term (which uses the blue
band to correct for aerosol influences in the red band); and G is a gain or scaling factor.
The coefficients adopted for the MODIS EVI algorithm were L = 1, C1 = 6, C2 = 7.5, and
G = 2.5 [38].

The EVI has greater sensitivity in areas of dense vegetation and reduces the influence
of the atmosphere on the signal, providing less saturated results. NDVI is a measure
of chlorophyll concentration, whereas EVI is a measure of structural variations in the
vegetation cover. Both coefficients are related to biomass availability but the relationship
with EVI is more direct than for NDVI [38].

The satellite data used come from the MODIS Vegetation Index product, freely pro-
vided by NASA (https://modis.gsfc.nasa.gov, accessed on 19 May 2021). They provide
NDVI and EVI data at different resolutions over a 16-day period. The algorithm used
retrieves the best available pixel over the 16-day period according to the following criteria,
in order of priority: low cloud cover, low angle of view and the highest possible value [38].
We used 250-m resolution images over the entire Ferké 1 and 2 areas, which is the best

https://modis.gsfc.nasa.gov
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spatial resolution that has been proposed. The images were retrieved every 16 days from
18 February 2000 to 19 June 2020. These data have already been used to estimate sugarcane
yields in Brazil [39] and India [40].

Satellite data are strongly affected by cloud cover, shadows, weather phenomena
and noise introduced by sensors [41]. Therefore, it is necessary to clean up these data by
smoothing and filtering anomalies. A Whittaker filter is used here. This smoothing is
based on the minimization of a cost function describing the balance between fidelity to
the measured values and the robustness of the estimates among them. It is simple to use
and depends on a single parameter (lambda) controlling the inclination of the balance [42].
The Whittaker filter is a commonly-used method for smoothing NDVI data [43]. It is
particularly efficient in filling large data gaps, and offers good accuracy and smoothing
performance in comparisons with other methods [41,42]. A lambda value equal to 10,000
was used, as it provides good performance in terms of accuracy and efficiency. Figure 2
shows the actual EVI provided by the MODIS Vegetation Index as well, as the filtered EVI
obtained with the Whittaker filter.

Figure 2. Example of mean EVI and mean EVI modified using the Whittaker filter of Ferké 2 from
2013 to 2016.

To explain sugarcane yields we have used the maximum of the NDVI and the EVI over
the year. These variables measure the maximum value of biomass in the plot. We have also
used the integral of NDVI and EVI, which measures the sum of biomass creation during
the entire year. These variables have been used by Bégué et al. [26] to explain sugarcane
yields. Figure 3 shows the annual mean value of the maximum and the integral of EVI over
the 2001–2019 period.
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Figure 3. Map of the annual mean value of the maximum (left) and integral (right) of the EVI in Ferké 1 and 2 during the
2001–2019 period. All variables used in this study have been listed in Table 1.

Table 1. List of the variables used in this study. The variables with * will be considered in the models using cropping
practices and the quality of production because they have a significant effect on sugarcane yields.

Type of Variables Variables Description Unit

Cropping practices Irrig_status * Irrigation status
Ratoon * Number of plant regrowth

CoupeN * Date of harvest Date
Age * Life cycle length Month
Var *

Surface
Sugarcane variety
Surface of the plot

Quality of production Suc Sugar content Percent
ENA Percentage of internodes attacked by caterpillars Percent

Climate variables Tmin Minimal temperature ◦C
Tmax Maximal temperature ◦C

Trange Temperature range ◦C
Prec Accumulated precipitation Mm
ETP Potential evapotranspiration Mm

RHmean Mean relative humidity Percent
Rg Global insolation radiation W.m−2

DegDays Cumulated degree days degree.day
Satellite variables Int_NDVI Integrated NDVI 10−3

Max_NDVI Maximal annual NDVI 10−3

Int_EVI Integrated EVI 10−3

Max_EVI Maximal annual EVI 10−3

3. Methodology
3.1. Trends and Breaks in Rainfall Data

First, an analysis of the trends and breaks in the rainfall data collected at the Ferké
1 and 2 stations was conducted on the variables listed in Table 2. The analysis included
rainfall data, temperature data and sugarcane yields. To measure the cumulative annual
rainfall, the average rainfall on rainy days and the 12-month Standardized Precipitation
Index were used [44]. The latter is an index ranging from −2 to 2 that statistically compares
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the monthly rainfall values for the year under consideration with the other years of the
study. Then, the evolution of the mean, minimal and maximum temperature is studied.

Table 2. Variables studied in the trends and breaks analysis.

Indices Index Definition Unit

Rainfall data
PRECTOT Average rainfall on rainy days (>1 mm) mm.day−1

SPI12 12-month SPI index taken in December
Temperature data

Tmoy Mean annual temperature ◦C
Tmin Minimal annual temperature ◦C
Tmax Maximal annual temperature ◦C

Sugarcane yields
Yields Sugarcane yields Tons/ha

To detect breaks in the rainfall data, the Pettitt test was used [45]. This non-parametric
test does not require any assumptions about the data. The probability of having a break in
the year K among the temporal series is approximately calculated as:

p = 2 exp

(
−6K2

T3 + T2

)
(3)

where T is the number of years.
The presence of a trend in a period is assessed using the Mann–Kendall test. This non-

parametric test is commonly used in the study of the long-term changes of climatological
variables [46]. The null hypothesis of this test is that there is no trend in a data set (the data
are independent and randomly distributed); otherwise, the second assumption is that there
is a trend in the data. To observe whether this trend is positive or negative, we looked at
Sen’s estimator of slope, defined as:

SENcoeff = mediani<j

(
yj − yi

xj − xi

)
(4)

This coefficient is a good estimate of the slope (i.e., the linear rate of change) of trends
in the time series.

3.2. Explanatory and Yield Forecating Models

Three types of forecasting models were selected from the literature (Table 3), in order
to compare their performance: (i) based on climatic and cropping management data at the
plot scale, (ii) based on climatic data and yields averaged on Ferké 1 and Ferké 2 and (iii)
based on satellite data at the plot scale. For each of the different models, an analysis of the
correlations between the variables under consideration and performance was undertaken.
Then, a yield forecast tool implemented several months before harvest was constructed,
based on the correlation results already obtained.

Table 3. Non-exhaustive list of models of prediction of sugarcane yields with their respective performances.

Article Studied Area Model Used Main Variables Performances

Binbol et al. [47] Nigeria Evaporation
Minimum temperature R2 = 0.68

Skocaj and Everingham [48] Australia Linear regression
Stepwise model Rainfall at the end of growing season 0.37 < R2 < 0.94

Everingham et al. [23] Australia Random Forest Forecast of El Niño phenomena 0.67 < R2 < 0.79
Hammer et al. [24] Brazil Three machine learning models Number of ratoons 0.64 < R2 < 0.66

Bégué et al. [49] Reunion island Satellite imagery NDVI R2 = 0.75
Robson [27] Australia Satellite imagery GNDVI 0.4 < R2 < 0.7

R2 correspond to the coefficient of determination.
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3.2.1. Forecast from Climate Variables at the Plot Level
Explanatory Model

The aim here was to understand and to explain how yields at the plot level are driven
by climate variables and cropping practices. For this purpose, each climatic variable
cumulated or averaged, depending on its intensive or extensive character, is considered
at the different phases of plant growth: the tillering phase from 10 to 11 months before
harvest, the pre-growth phase from 8 to 9 months before harvest, the strong growth phase
from 3 to 7 months before harvest and the ripening phase from 1 to 2 months before harvest.

The main risk of error in the model is the multicollinearity in the explanatory climate
variables. However, the use of a single variable among Tmin, Tmax, Trange and DegreJ,
combined with another among Prec, ETP, RHmean and Rg, strongly limits the risk of
multicollinearity, as the variables within these two groups are highly correlated. The
calculation of the variance inflation factor (VIF) verifies the absence of multicollinearity.
The VIF must be less than 10 for all the variables in the model [50].

Then, in order to conserve the most explanatory and meaningful model from these
variables, the “stepwise” method was used. Stepwise regression is a variable selection
method that tests the addition and deletion of variables at each step of the process. It is
frequently used in regression models with a large number of variables [47,51].

Forecasting Model

The random forest algorithm [52] is a learning algorithm which can be used as a
regression tool. It builds a large number of decision trees and provides the mean prediction
of these decision trees, after being trained. The random forest package provided in R [53]
makes possible the use of these algorithms. The number of trees used by default is 500
and the number of parameters observed at each node is equal to the number of variables
divided by three. Since modifying these parameters does not have a significant impact on
the results, the default values were retained.

The yield forecasting model consists, for a given year, of training the algorithm over
all the other years in order to obtain a forecast of this year. This method is equivalent to
performing a cross-validation in preventing the risk of data for the training to be used for
the forecasted year [54].

Two metrics are used to measure model performance, the coefficient of determination
between forecasted and actual yields, which measures the explanatory power of the model,
and the root mean square error (RMSE) defined as:

RMSE =

√
∑n

1 (yi − yi)
2

n
(5)

which measures the error of the estimation.

3.2.2. Forecast of Mean Sugarcane Yields of Ferké 1 and 2 from Climate Variables
Explanatory Model

To reduce the noise due to plot management, the same type of model used at the plot
level was implemented, but taking into account the yields and climate variables at the
whole site over the years. Once again, the “stepwise” method was used to select the most
representative and significant model. At the scale of the whole site, it is not possible to use
the information on cropping practices which depend on the plot considered.

Forecasting Model

Due to the small amount of data at the site scale, it is not possible to train a random
forest model to make yield forecast. To circumvent this problem, the forecasting model
carried out consisted of applying to each year the regression model constructed for all
other years, in order to prevent the model from spatial autocorrelation. Then, the correla-
tion between forecasted yields and actual yields was observed and measured using the
coefficient of determination and RMSE.
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3.2.3. Forecasting from Satellite Variables at the Plot Level

The exact spatial location of the plots was only available for the Ferké 2 area and for
the harvest campaigns from 2011 to 2020. Therefore, the analysis will be restricted to this
zone and to these years.

Explanatory Model

For each plot, the NDVI and EVI were taken as respectively equal to the mean fil-
tered value of the set of pixels (250-m square) intercepting the geometry of the plot. The
correlation between sugarcane yields and the maximum value of NDVI and EVI on the
one hand, and the integral of NDVI and EVI over the whole year on the other hand, was
then computed.

Forecasting Model

As in the first model, the forecasting model consists of training a random forest
algorithm on the set of different years of the tested year, and makes a prediction for the
tested year. The variables used to train this algorithm were the cropping practices and the
satellite index restricted to the month of the prediction.

3.3. Comparison of the Models

In order to compare the different forecasting models, yields were classified into three
terciles: low yield, medium yield and high yield. The ability of each forecasting model to
place the yields in the correct category was then observed through a confusion matrix.

Three complementary metrics, not relying on prevalence, were then used to evaluate
the performance of this classification. There are often used to assess prediction models
of classification [55]: (i) accuracy, which measures the proportion of the correct forecast;
(ii) sensitivity (the proportion of correctly identified points in a class); and (iii) specificity
(the proportion of points correctly identified as not belonging to a class). In our case, the
accuracy of the model measures its overall ability to correctly classify yields. The sensitivity
of the high and low classes measures the model’s ability to detect years with high or low
yields. The specificity of these classes measures the model’s ability not to consider the
year’s yields to be high or low when they are not.

4. Results and Discussion
4.1. Trends and Change-Points in Data

Table 4 shows all of the trends and change-points observed in our data. No change-
point was observed for all the different indices of rainfall. Regarding sugarcane yields, no
trend was observed, as highlighted by Figure 4. There are significant increasing trends at
the 5% threshold for Tmin and Tmax in Ferké 1 and 2 and at the 1% threshold for Tmoy in
Ferké 1 and 2, these trends can be observed in Figure 5. For these indices, the Sen’s slope is
between 0.1 ◦C and 0.2 ◦C per year.

Table 4. Trends and change-points observed in the data used in this study.

Indices Change-Points Trends

Rainfall data
PRECTOT No change-point No trend

SPI12 No change-point No trend
Temperature data

Tmoy No change-point Significant increasing trend at the 1% threshold in Ferké 1 and 2
Tmin No change-point Significant increasing trend at the 5% threshold in Ferké 1 and 2
Tmax No change-point Significant increasing trend at the 5% threshold in Ferké 1 and 2

Sugarcane yields
Yields No change-point No trend
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Figure 4. Evolution of standardized yields in Ferké 1 and 2 from 2008 to 2019.

Figure 5. Evolution of mean annual temperature, minimum annual temperature and maximum
annual temperature from 2007 to 2019 in Ferké 1 and 2.

Several studies have analyzed extreme rains and droughts in West Africa. These
studies used data over longer periods than ours (at least 50 years). However, the data used
here have the advantage of being more recent, coming directly from rainfall stations and
having a high spatial density. In agreement with Sacré Regis M. et al. [56], who investigated
changes in precipitation during the last 30 years using the CHIRPS dataset (blending
satellite products and rain gauge data), no significant trend of precipitation was found in
our study area.

Regarding temperature, statistically significant warming in Africa is considered to be
evident in the literature [57–59]. Nevertheless, Barry et al. [57] calculated an increase in the
annual maximum temperature of 0.27 ◦C per decade from 1981 to 2010 and an increase
in the annual minimum temperature of 0.22 ◦C per decade on the same period, whereas
in this study, an increase in both minimum and maximum temperature of approximately
1 ◦C per decade was found. This higher warming rate may be due to the shorter period of
our study. Broadly speaking, the main limitation of this analysis is the sort period of data
availability, which can lead to high imprecision in the trend level.
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4.2. Explanatory and Yield-Forecasting Models

In this section, the results of the three different statistical models introduced in the
Methodology are shown. First, the correlation between yields and a set of variables are
computed (explanatory model) and then, a test of forecasting yields for a specific year is
performed (forecasting model). In that case, we consider the data available only before a
particular month. The model is trained on all but one year, on which we will try to forecast
yields values; the process is repeated to predict yields for all years.

4.2.1. Explanatory and Forecasting Models Using Climate Variables and Cropping
Practices at the Plot Scale
Explanatory Model

Table 5 shows the stepwise model based on the plot-level regression of yields as a
function of climate variables and cropping practices. The cropping practices included in the
model are irrigation status, sugarcane variety, month of harvest, number of plant regrowth
and length of life cycle. They are all significant at the 1% threshold and are not represented
in the table. The model has variance inflation factors of less than 10 for all variables, which
justifies the absence of multicollinearity. The model with the lowest Mallow Cp value has
been selected, to keep the variables with the most significant relation with sugarcane yields.
This model is not necessarily optimal; however, it is not far from it and can be used to draw
interesting conclusions on the capacity of meteorological variables to explain variations in
sugarcane yields at plot levels.

Table 5. Result of the stepwise regression for yields in tons of sugarcane per hectare in Ferké zones
1 and 2 from 2008 to 2020.

Sugarcane Yields
Coefficient p-Value

Prec in maturation phase 0.0481 *** (0.0000)
Prec in pre-growth phase −0.0139 *** (0.0001)

Max temp in high growth phase −3.2336 *** (0.0000)
Max temp in maturation phase −1.3556 *** (0.0000)
Max temp in pre-growth phase 1.5727 *** (0.0000)

N 5097
R2 (cropping practices) 0.5114

R2 (all variables) 0.5413

*** p < 0.001. Prec = precipitation, Temp = temperature, Max = maximum. R2 (cropping practices) is the adjusted
coefficient of determination for the model including only the cropping practices. R2 (all variables) is the adjusted
coefficient of determination for the model including the cropping practices’ variables and the climate variables
shown in the table.

As a main result, cropping practices explain 51% of the yields at the plot scale and
adding climate variables into the model increases the coefficient of determination by only
3%. Thus, cropping practices play a greater part in explaining yields at the plot level than
climate variables.

A relationship between rainfall and yields is often observed [60,61] but the model using
the combination of rainfall and maximum temperature demonstrated the best performance
in explaining the variations of sugarcane yields.

Table 5 shows that during the pre-growth phase, rainfall negatively affects yields.
Binbol et al. [47] and Humbert [30] also found that during the pre-growth phase, too much
rainfall can affect plant development, especially when drainage is inefficient. Besides,
the accumulated rainfall during the maturation period has the heaviest effect on yields.
However, in this study, the relationship may be amplified when comparing the particularly
wet year 2015 with the high accumulated rainfall during the ripening phase and the high
yields of the same year, mainly due to good cropping practices. Indeed, according to
SUCAF, irrigation management was particularly good that year, and the implementation
of a new weeding method was very effective [62].
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Maximum temperature also appears in some studies to be a good proxy of
yields [51,63]. While increasing the maximum temperature is often considered benefi-
cial for sugarcane yields [30,32,64], Deressa et al. [31] consider that temperatures above
35 ◦C can negatively affect plant growth. However, at Ferké 1 and 2, the average tem-
peratures of the warmest month have always been above 35 ◦C between 2007 and 2019,
and had reached 38 ◦C in some years. Then the negative coefficient linked to maximum
temperature during the high-growth phase may be due to this quadratic relation between
yields and maximum temperature.

Forecasting Model

Figure 6 describes the values forecasted by the algorithm compared to the actual
values. An average coefficient of determination for each forecast equal to 0.51 and an
RMSE value equal to 14.28 tons per hectare was obtained. These results show that the
forecasted values have a smaller standard deviation than the actual values, meaning that
the algorithm was not able to detect conditions leading to extreme yield values.

Figure 6. Predicted values vs. actual values with the random forest method for Ferké 1 and 2 from
2008 to 2019.

Cropping Practices

The model with cropping variables explained 51% of yields at the plot scale, whereas
considering only the climate variables, any model tested can explain around 10% of the
yields. Adding climate variables to the model with cropping variables allows an increase of
only 0.03 in the coefficient of determination to explain yields. This confirms the importance
of information on cropping practices at the plot level and in the random forest model,
Figure 7 shows that the importance of cropping practices greatly exceeds that of the
climate variables.
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Figure 7. Importance of the variables used in the random forest algorithm (Prec = precipita-
tion, Tmin = minimum temperature, HG = high growth, PG = pre-growth, T = tillering and
M = maturation).

Thus, the climate variables provide little additional information to explain the varia-
tions in yields at the sugarcane plot level. Unrecorded cropping practices such as herbicides
and fertilizers or planting and harvesting methods also have effects at the plot level. They
can induce noise on yield values and, therefore, do not allow the statistical effect of climate
variables to be properly observed.

Cropping practices frequently depend on the studies carried out. For example, irri-
gation status, which is the most important variable in our model (Figure 7), was never
present in the previous studies because all plots studied were either irrigated or rainfed.
Therefore, it is difficult to compare the effect and relative importance of irrigation practice
found in this study with previous studies. However, the number of new plant regrowth is a
cropping practice that is often taken into account because its effect on yield reduction is well
known [65]. Bocca and Rodrigues [60] and Hammer et al. [24] found that the importance of
this variable greatly surpassed climate variables in all of their models. Similarly, according
to Ferraro et al. [66], cropping practices such as the farm, the variety, the life cycle length,
the month of harvest and the geographic characteristics had a greater effect on yields than
climate variables.

Nevertheless, cropping practices, especially those that do not depend on the biological
characteristics of the plant (variety, number of regrowth, etc.), are local, and are inherently
dependent on crop management. It is possible that in areas where management is standard-
ized and industrialized, these cultural practices will have a weak effect. For example, in
the model developed by Oliveira et al. [25] in Brazil, where sugarcane production is more
standardized and industrialized than in Ivory Coast, the importance of meteorological
variables outweighs those due to cropping practices.

In Ferké 1 and 2, cropping practices have clearly significant effects on yields. One
of the limitations of our database is that it does not take into account some practices that,
according to the SUCAF, have an influence on sugarcane yields. These include the use of
the slash-and-burn method, weeding methods or good irrigation management. This lack of
information accentuates the noise caused by cropping practices on yield values and makes
it difficult to measure the effect of climate on these yields.
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4.2.2. Explanatory and Forecasting Models Using Climate Data at the Scale of Ferké 1 and
Ferké 2
Explanatory Model

The stepwise regression model showed that the most efficient model was the one
which explained the yields based on the average minimum temperature during the year.
This model explained 38% of the yields and this relationship was significant at the 1%
threshold (Table 6). Figure 8 shows the relationship between yields and minimal tempera-
ture at the zone level.

Table 6. Result of stepwise regression for sugarcane yields in tons per hectare and sugar content in
percentage in Ferké 1 and 2.

Sugarcane Yields (T/Ha)
Coefficient p-Value

(Intercept) −37.68 (0.23)
Minimal temperature 5.33 ** (0.00)

N 24
R2 0.38

** p < 0.01.

Figure 8. Relation between the sugarcane yields and the mean annual minimum temperature of
Ferké 1 and 2 from 2008 to 2019.

In order to observe more precisely the influence of the minimum temperature on
yields, four phases were studied: the tillering phase from January to March, the pre-growth
phase from April to May, the high-growth phase from June to October and the ripening
phase from November to December.

When analyzing the relation between minimum temperature and yields during
these four phases, the minimum temperature during the tillering and the pre-growth
phase explained the yield variations more significantly. Although Greenland [67] and
Saithanu et al. [61] also found the positive effect of minimum temperature on yields during
the year, Samui et al. [68] and Shrivastava [69] even observed that minimum temperature
particularly influenced yields during the first three months after harvest, and thus during
the tillering and pre-growth phases. During these phases, sugarcane does not tolerate
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extreme temperatures and needs high temperatures [30]. Our study confirms that in Ferké 1
and 2, minimum temperature is a key climate driver of the sugarcane yields especially
during the pre-growth and the tillering phases.

Forecasting Model

Figure 9 shows the results of the forecasting model. The minimum temperature during
the tillering and pre-growth period is able to forecast 23% of the yield variability over the
year studied. Thus, this model forecasts the yields as soon as the month of May, i.e., four
months before the beginning of the harvest.

Figure 9. Predicted yields (y) vs. actual yields (x) by regressing over all other years the minimum
temperature during the tillering and pre-growth phase.

4.2.3. Explanatory and Forecasting Models Using Satellite Data
Explanatory Model

Table 7 details the result of the regressions of sugarcane yields according to the annual
maximum of the NDVI, the NDVI integrated over the year, the annual maximum of the
EVI and the EVI integrated over the year. The simple equation estimated is:

Yit = α+ βVIit + εit (6)

where Yit is the yield value for the plot i at the year t, VIit is the value of the vegetation index
and εit is the classical error term. The four relationships are significant (p-value < 0.001)
and explain 16%, 35%, 31% and 41% of sugarcane yields, respectively.

Table 7. Regression results between yields and integral of NDVI (Int_NDVI), annual maximum value
of NDVI (Max_NDVI), integral of EVI (Int_EVI) and annual maximum value of EVI (Max_EVI).

p-Value R2 RMSE

Int_NDVI <2.10−16 0.35 17.19
Max_NDVI <2.10−16 0.16 19.57

Int_EVI <2.10−16 0.43 14.31
Max_EVI <2.10−16 0.31 15.67

R2 is the coefficient of determination.
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The integrals of the vegetation indices were more effective in explaining yield vari-
ations than the maximum of these indices. This is consistent with observations made by
Bégué et al. [26]. In addition, the integrated EVI is slightly better at explaining yields than
the integrated NDVI. Son et al. [70] also found in their study on rice yield prediction that,
while both relationships are highly significant, switching from NDVI to EVI allows a slight
increase in the coefficient of determination.

Forecasting Model

When the integral of EVI is limited to a previous month, the decrease in the coefficient
of determination is about 1% per month. After consultation with local experts, we consider
the integral of the EVI from January to August in our forecasting model. This single
variable explains 38% of the sugarcane yields at Ferké 2 between 2011 and 2020 with a high
level of significance.

Figure 10 describes the yields forecasted by the algorithm versus the actual yields for
each year, after training a random forest regression algorithm over all other years and using
the integral of EVI from January to August and the information on cropping practices. This
model forecasts yields with a coefficient of determination of 62% and a RMSE equal to
13.37 tons per hectare. The standard deviation of the forecasted values is small compared
to the actual values. Therefore, the algorithm is not able to forecast extreme yield values.

Figure 10. Predicted yields vs. actual yields in Ferké 2 from 2011 to 2020 using a random forest
algorithm fed by the integral of EVI from January to August and cropping practices.

4.3. Overall Assessment of the Forecasting Models

Table 8 shows the results of the categorization of yields after the application of the
forecast algorithm for each year trained on all the other years. The metric used was the
accuracy, which measures the percentage of correct classifications. The model using the
integral of EVI was found to be more accurate with 65% of the correct classification. Table 9
shows the sensitivity and specificity for each yield category and for each model.
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Table 8. Confusion matrix for forecasted and actual yields for the different forecasting models
studied; note that values for the bottom table (with EVI) are for Ferké 2 only.

Cropping Practices and Climate Variables at the Plot Level
(Accuracy = 58%)

Yields
Forecast

High Medium Low

O
bs

er
ve

d

High 756 926 16

Medium 358 1225 115

Low 68 620 1011

Climate variables averaged at the zone level
(accuracy = 54%)

Yields
Forecast

High Medium Low

O
bs

er
ve

d

High 7 1 0

Medium 4 2 2

Low 0 4 4

Cropping practices and integral of the EVI from January to August
(accuracy = 65%)

Yields
Forecast

High Medium Low

O
bs

er
ve

d

High 190 184 4

Medium 66 293 18

Low 7 112 259

Table 9. Sensibility and specificity for high, medium and low sugarcane yields for the 3 forecasting
models studied.

Models Indices
Sugarcane Yields

High Medium Low

Climate variables at the scale of
Ferké 1/Ferké 2
(Section 3.2.2)

Sensitivity 88% 25% 50%

Specificity 75% 69% 88%

Cropping practices and climate variables at
the plot scale
(Section 3.2.1)

Sensitivity 45% 72% 60%

Specificity 87% 54% 96%

Cropping practices and integral of the EVI
from January to August (Section 3.2.3)

Sensitivity 50% 78% 69%

Specificity 90% 61% 98%

All models have important specificities for both low and high classes. This means that
they will rarely forecast that yields are low or high if they are not. The sensitivity for these
same classes is relatively low for both models at the plot level; the algorithm will most
often forecast average yields.

From an operational point of view, the models should particularly avoid making errors
on high and low yields, i.e., they must have a high sensitivity for these classes. Indeed,
if the algorithm wrongly forecasts high yields for a specific year, it will have a high cost
for the producer. The producer would have anticipated high yields and prepared for this
(through the recruitment of additional farmers, investments due to a high-revenue year)
and these costs would be useless. On the other hand, if a high yield year is not detected,
and is considered as average, this simply makes the model inefficient and does not cause
any additional cost.
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The model that performed best was the one using the integral of the EVI from January
to August and the cropping practices. This one showed greater accuracy and had a high
specificity for the low and high classes: in only 2% of cases and 10% of cases, it forecasted
that yields were respectively low and high when this was not the case. Moreover, its
sensitivity was acceptable for the low class: it detected low yields in 69% of cases. It was,
on the other hand, less efficient in detecting high yields; it detected them in 50% of cases.

5. Conclusions

The vulnerability of the African agricultural sector to climate change is a threat that
requires the implementation of adaptation strategies. Climate services are part of these
adaptation strategies in helping stakeholders of the agricultural sector to make decisions.
According to the assessment carried out on Nationally Determined Contributions by
the FAO and WMO, 85% of countries (100/117) identified “climate services” as being a
fundamental element for planning and decision-making in the area of agriculture and food
security [14].

In this context, the development of models for forecasting sugarcane yields could
enable producers to improve crop management and to anticipate years that are more or
less good in terms of climate variables and yields. In addition, such a study can inform the
national weather service (Sodexam) on the most relevant variables to be forecasted and the
appropriate climate products to deliver to meet the needs of sugarcane producers.

First, our analysis of rainfall data in our study area showed that despite positive
coefficients of Sen for most of the rainfall stations, there was no significant trend in the
evolution of accumulated rainfall and drought years. Regarding temperature, a significant
trend was observed for the minimal, the maximal and the mean temperature in Ferké 1
and 2 at the 5% threshold. The warming trend was approximately 1 ◦C per decade for all
the indices.

Then, the study of different forecasting models showed (i) that using only climate
variables enabled us to forecast future yields with moderate performance (R2 = 0.23 using
minimal temperature) and (ii) that using satellite variables provided better results. The
integral of a well-known satellite index (EVI), over the year contributed to explaining 43%
of the year-to-year variability of yields. The resulting forecasting model allowed the correct
categorization of 60% of the yields. This model can detect high or low yields in 50% and
69% of cases, respectively, while being wrong in only 10% and 2% of cases, respectively.
However, it should be noted that these results only consider the Ferké 2 area from 2011 to
2020. It would be necessary to validate these results over a longer period.

The improvement of this model would henceforth require the use of more precise
satellite images. Although MODIS data have the advantage of being easily accessible and
free of charge, the resolution of 250 m leads to an overlap of several plots by a single pixel.
Providing images at a resolution of 30 m, for example, could be an important source of
improvement in the accuracy of our model. These modeling results from the “agro-climatic”
Work Package of the CLIMSUCAF project will now have to be compared with those of the
“socio-economic” Work Package, which aims to question sugarcane growers, owners of
rainfed plots and SUCAF managers of irrigated plots on (i) the sensitivity of their crops to
climate variables, and (ii) their needs in terms of weather and climate information for more
resilient management and sustainable exploitation of sugarcane. The results of this study
will notably help to guide surveys and discussions with local stakeholders, and the results
of the surveys will in return help to refine the models, taking into account parameters that
had not previously appeared relevant.
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