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Abstract: As cities are growing in size and complexity, the estimation of air pollution exposure
requires a detailed spatial representation of air pollution levels, rather than homogenous fields,
provided by global- or regional-scale models. A critical input for city-scale modeling is a timely
and spatially resolved emission inventory. Bottom–up approaches to create urban-scale emission
inventories can be a demanding and time-consuming task, whereas local emission rates derived
from a top–down approach may lack accuracy. In the frame of this study, the UrbEm approach
of downscaling gridded emission inventories is developed, investing upon existing, open access,
and credible emission data sources. As a proof-of-concept, the regional anthropogenic emissions
by Copernicus Atmospheric Monitoring Service (CAMS) are handled with a top–down approach,
creating an added-value product of anthropogenic emissions of trace gases and particulate matter for
any city (or area) of Europe, at the desired spatial resolution down to 1 km. The disaggregation is
based on contemporary proxies for the European area (e.g., Global Human Settlement population
data, Urban Atlas 2012, Corine, OpenStreetMap data). The UrbEm approach is realized as a fully
automated software tool to produce a detailed mapping of industrial (point), (road-) transport (line),
and residential/agricultural/other (area) emission sources. Line sources are of particular value for
air quality studies at the urban scale, as they enable explicit treatment of line sources by models
capturing among others the street canyon effect and offer an overall better representation of the
critical road transport sector. The UrbEm approach is an efficient solution for such studies and
constitutes a fully credible option in case high-resolution emission inventories do not exist for a city
(or area) of interest. The validity of UrbEm is examined through the evaluation of high-resolution air
pollution predictions over Athens and Hamburg against in situ measurements. In addition to a better
spatial representation of emission sources and especially hotspots, the air quality modeling results
show that UrbEm outputs, when compared to a uniform spatial disaggregation, have an impact on
NO2 predictions up to 70% for urban regions with complex topographies, which corresponds to a
big improvement of model accuracy (FAC2 > 0.5), especially at the source-impacted sites.

Keywords: air pollution modeling; air quality modeling; emission rate modeling; urban air pollution;
chemistry transport modeling; EPISODE-CityChem

1. Introduction

The percentage of the population residing in urban areas in Europe continues to
increase from 74.9% in 2019; it is expected to reach 77.5% (83.7%) by 2030 (2050) [1,2]. In
turn, this will increase the urban population exposed to air pollutants and the consequent
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health impacts. Presently, despite past reductions in emissions that have taken place in
most European countries, a significant proportion of the urban population in the EU-28 is
still exposed to concentrations of certain air pollutants above the EU limit values. This is
even more so when the more stringent WHO air quality guideline values are taken into
account (i.e., the percentage population exposure to PM2.5 above limit values rises from
6–8% (EU limit) to 74–81% (WHO limit). With respect to PM10, the respective exceedances
were 13–19% (42–52%), for surface O3, they were 12–29% (95–98%), and for NO2, they
were 7–8% both for the EU and WHO [3]. The estimated premature deaths in the 27 EU
Member States and the United Kingdom attributed to PM2.5, NO2, and O3 exposure are
374,000, 68,000, and 14,000, respectively, while the number of years of life lost (YLL) per
100,000 inhabitants is estimated at 800, 100, and 30 [3]. The ever-rising amount of evidence
regarding the negative effects of air pollution on health—evidence assessed as having
high or moderate certainty of an association between a pollutant and a specific health
outcome—has led to new and even more stringent guidelines set by the WHO in September
2021 [4].

As cities are growing in size and feature inherent complexity, urban air quality man-
agement requires a more detailed spatial representation of air pollution levels than given by
(a) the available number of stationary measurement stations and (b) the current resolution
(one to tens of kilometers) provided by regional Eulerian grid air pollution models [5].
These models, inter alia, fail to capture concentration gradients that typically occur near
heavily trafficked streets [6], with further implications on exposure [7] and the choice of
mitigation measures. The accuracy of the assessment of the effectiveness of these measures
is dependent on the robustness of the emission (the flux of certain trace gases and particles
into the atmosphere) inventories and their efficacy for scenario analysis to assess measures
for emission reductions and improved air quality [8,9]. Therefore, emission inventories
are considered a key component in an urban air quality management plan [10]. Emission
inventories come at various scales, from global to regional and local. For the purposes of
this study, we will only consider the latter two and, in particular, how well they serve the
urban domain, as it is there where urban health studies are often hindered by the lack of
city-scale emission inventories.

Several regional emission inventories exist in Europe, with spatial resolution usually
between 7 and 11 km. A spatial inter-comparison of some of these top–down and proxy-
based inventories, including EDGAR v4.3.1, TNO-MACCIII, EMEP, and JRC07, has been
performed in representative European urban areas [11], and sources herein. The authors
acknowledge that although bottom–up inventories do often exist for major cities, providing
more accurate information at a higher spatial resolution is still of utmost importance to
be able to rely on consistent and harmonized European-wide inventories for extensive
air quality modeling. However, the study also identified significant differences between
regional emission inventories in these cities due to the choices made in terms of the
disaggregation approach in the industrial sector, where the use of the population density
as a proxy for the diffuse fraction results in an over-allocation of emissions in urban areas
and in the residential sector, where spatial patterns and variation of emissions from wood
and coal burning are not captured.

As noted in Kadaverugu et al. [12], CTMs require emission inventories representative
of the study area. Similarly, appropriate spatial and temporal resolution inventories on a
grid that is compatible with city-scale models is imperative. Currently, many countries
provide emission inventories down to 1 × 1 km2 [10], although no universal standards are
available; thus, applications rely on urban or local-scale project initiatives [5]. The Forum
for Air Quality Modeling (FAIRMODE) has recently published a report providing recom-
mendations to build emissions for fine-scale applications [13]. This report advocates for
an expansion of the existing EMEP/EEA [14] emission guidance document to ensure that
spatial disaggregation approaches provide appropriate results for local/urban emission
assessments, for an adoption of the Gridded Nomenclature For Reporting (GNFR) and for
national efforts toward urban-scale emission compilation following bottom–up approaches.
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A bottom–up approach relies mostly on local activity estimates collected over the area
of interest (e.g., traffic counts for road segments in a city). One recent example, albeit more
generalized, was the approach followed by Guevara et al. [15] where, in sync with EMEP
guidelines, a method for estimating and preparing high-resolution bottom–up emissions
from multiple anthropogenic sources in a flexible and transparent way was developed.
The approach presents a Europe-wide applicability as long as the required input data are
available. A top–down approach, on the other hand, distributes emission totals spatially
(country or region, e.g., derived from total fuel sales) according to gridded proxies (e.g.,
population, land use). Nevertheless, bottom–up approaches have usually different levels
of detail or granularity, as not all parameters needed for a pure bottom–up approach
are known and, as a result, bottom–up and top–down modeling approaches are often
combined [10].

Given the fact that bottom–up inventories are resource intensive and are not built in a
standardized manner [16], methodological homogeneity between different cities and over-
all compliance with AQ Directives is not easily achieved. Moreover, bottom–up approaches
are in general site-specific and resource intensive, so the support for their compilation in a
consistent basis does not exist for every city. For this, we developed a hybrid and modular
approach to enable the construction of the desired high-resolution emission fields. The
approach is hybrid, as it commences from downscaling regional emission inventories to a
gridded inventory—in this case, the CAMS-REG regional inventories from the Coperni-
cus Atmospheric Monitoring Service (CAMS) [17,18], following a traditional top–down
methodology. However, instead of disaggregating solely into areas, it explicitly handles
the—critical for the urban environment—line and point sources, so as to accommodate for
urban CTM models such as [19–22]. The approach is also modular as it can handle differ-
ent proxies for spatially disaggregating the regional inventory, in this case JRC’s Global
Human Settlement Layer (GHSL) [23], Copernicus Land Monitoring Services’ Corine Land
Cover (CLC) [24], European Pollutant Release and Transfer Register (E-PRTR) point source
information (https://industry.eea.europa.eu/, accessed: 23 October 2021), and Open Street
Map (OSM) [25] road network data.

This study describes the framework for creating emission inventories for urban air
quality simulations across Europe by utilizing generic and publicly available proxies in a
consistent manner. While the concept of downscaling coarser emissions, up to the 1 km
mark, by utilizing proxies (point, line, or areas) has been visited in the past, such as in the
MEGAPOLI project (https://cordis.europa.eu/project/id/212520, accessed: 23 October
2021), where a fine emission inventory was created for the whole of Germany albeit though
localized data and effort, here, Europe-wide applicability, consistency, and ease of use
were the strategic objectives. The demonstration cities are Hamburg and Athens, i.e., cities
with different climatic, geomorphological, and urban growth characteristics, where the
accuracy of the produced inventories is evaluated by comparing concentration fields from
urban-scale air quality modeling with actual measurements. This framework is completely
scalable, sustainable, has a low computational and overall implementation cost, and is
of high and critical importance for air quality modelers, especially when national/local
emission data are either unavailable or outdated.

The development of the city-scale emission inventories is based on a hybrid approach,
investing upon existing, open access, and credible emission datasets. Their spatial disag-
gregation is based on contemporary spatial datasets of the European area (Section 2.1). The
emission inventories and spatial datasets are processed in the newly developed UrbEm
framework (Section 2, Figure 1), which is a hybrid method to derive high-resolution emis-
sions for city-scale air quality modeling. UrbEm is fully automated to produce a detailed
mapping of industrial (point), transport (line), residential, agricultural, and other (area)
emission sources for any city (or area) of Europe at the desired spatial analysis. These
products can be directly used as input for local-scale atmospheric models, for the estimation
of air pollution levels within the region of study, at high resolution. In this study, we use
emission inventories that were downscaled with the presented approach in the chemistry
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transport model EPISODE-CityChem [22] and applied it to two European urban areas,
Athens (Greece) and Hamburg (Germany). Finally, the results of the emissions downscal-
ing procedure and their application in EPISODE-CityChem are presented (Section 3.1),
evaluated (Section 3.2), and discussed (Section 4).
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Figure 1. General methodology for the Urban Emissions downscaling framework UrbEm.

2. The UrbEm Approach for Emissions Downscaling

The developed hybrid approach to arrive at high-resolution area emissions, as well as
point and line source emissions for city-scale air quality modeling, follows the generalized
framework described in Figure 1. This framework can be applied to any urban region in
Europe. Based on an urban domain definition, in line with the requirements of a city-scale
air quality model, sector-specific spatial proxies are prepared based on publicly available
datasets to distribute CAMS-REG and E-PRTR emission datasets to area, point, and line
sources. The overall methodology includes first the general approach to prepare spatial
proxies for different sectors (2.1) and second, the application of these proxies in the hybrid-
downscaling approach, which is called UrbEm (2.2). A reduced overview on the general
methodology is illustrated in Figure 1, while a more detailed insight in the realization of
the general methodology is given in Figure 2.

The application of the UrbEm approach is realized as a software tool that is open
source distributed via GitHub (https://github.com/martinottopaul/UrbEm, accessed:
23 October 2021). There are two different versions available: (1) based on the interpreted
programming language R [26], and (2) a combination of Python (https://www.python.org,
accessed: 23 October 2021). Both solutions run on different operating systems on single-
core processors and need a minimum of 2 gigabyte RAM. Depending on the extent of the
model domain and its resolution, the preparation of proxies, the downscaling of emissions,
and the creation of point, area, and line source output files, the required computing time
is about 30–45 min (for example, for a 50 km × 50 km domain, with a grid resolution of
1 km × 1 km, including 15,000 line source elements and several point sources).

https://github.com/martinottopaul/UrbEm
https://www.python.org
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2.1. Spatial Datasets: Selection and Processing

As illustrated in Figures 1 and 2, the spatial disaggregation of the selected CAMS
regional emission inventory CAMS-REG (≈6 × 6 km2 grid cells) [17] is performed with
sector-specific spatial proxies. These proxies are prepared with publicly available, well-
established, contemporary spatial datasets of European (or Global) coverage (for a detailed
description of all datasets, see Appendix A). In a first step, suitable spatial datasets are
mapped to sectors following SNAP or GNFR nomenclature. Table 1 introduces anthro-
pogenic activities based on SNAP or GNFR classification, which are allocated to the appro-
priate proxies, such as population density, land type categories (e.g., industrial, agriculture),
and road networks.

Table 1. The spatial proxies (and their origin) used to disaggregate each anthropogenic activity
(expressed as source sectors in SNAP and GNFR) in the proposed downscaling framework. More
information on all spatial datasets used can be found in Appendix A.

Anthropogenic Activity
(Source Sector) Spatial Proxy (Dataset Source)

Public Power and Refineries
(SNAP 1 * or GNFR A)

Polygons hosting Public Power installations
(E—PRTR and CLC 2018) combined with Land

type characterized as ‘Industry’ (CLC 2018)

Residential Heating
(SNAP 2 or GNFR B)

(Residential) population Density (GHS-POP
2015)

Fossil Fuel Production and Fugitive
(SNAP 5 or GNFR D)

Land type characterized as ‘Industry’ (CLC
2018)

Solvent and Other Use Production
(SNAP 6 or GNFR E)

(Residential) population Density (GHS-POP
2015)

Road Emissions
(SNAP 7: 71,72,73,74,75 or GNFR F)

Major Road Network (OSM) ** consisting of
highways, trunks, primary and secondary

roads, and their links

Non-Road Mobile Emissions (SNAP8):
Shipping (GNFR G)

A superposition of Global shipping routes
(CIA 2013) and Land type characterized as

‘Ports’ (CLC 2018)
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Table 1. Cont.

Anthropogenic Activity
(Source Sector) Spatial Proxy (Dataset Source)

Non-Road Mobile Emissions (SNAP8):
Aviation (GNFR H)

Land type characterized as ‘Airports’ (CLC
2018)

Non-Road Mobile Emissions (SNAP8):
Off Road Machinery (GNFR I)

Land type characterized as ‘Non-Road Mobile
Sources’ (CLC 2018) relevant to agricultural,

industrial, and construction activities

Waste Treatment
(SNAP 9 or GNFR J)

Polygons hosting waste management
installations (E—PRTR and CLC 2018)

combined with Land type characterized as
‘Agriculture’ (CLC 2018) to allocate open waste

Agriculture
(SNAP 10 or GNFR K and GNFR L)

Land type characterized as ‘Agriculture’ (CLC
2018)

Industrial Combustion and Processes
(SNAP 34 or GNFR B)

Polygons hosting installations of mineral or
chemical industries and of production (and

processing) of wood, paper, metals, animal and
vegetable (E—PRTR and CLC 2018) combined

with Land type characterized as ‘Industry’
(CLC 2018)

* CAMS-REG v.1 (SNAP categorization) uses point sources for the spatial allocation of industrial installations.
** OSM data are periodically (30 days) retrieved to ensure consistency with the frequent official updates of
the database.

Population density, as provided within the GHSL-POP layer, is used as a spatial proxy
to distribute emissions from residential heating and the use of solvents. The residential
population density, mapped for 2015 in 1 km2 spatial resolution, is retrieved from the
Global Human Settlement Layer [23].

The CORINE land use/cover (LULC) dataset is used as a spatial proxy for the majority
of source sectors (Table 1) [24]. Original LULC gridded data for 2018, with the spatial
resolution of 100 m and 44 land types, are aggregated to 1 km2 and reclassified into
12 generalized land types. Reclassified gridded data are either used as spatial proxies for
sectors, such as industry and agriculture, or combined with other spatial information in
order to create enhanced land use classes.

In particular, reclassified gridded data are combined with global shipping routes [27]
and E-PRTR industrial information in order to create new added-value proxies. Global
shipping routes for 2013, in vector format, are combined with LULC gridded ports, and a
complex proxy for shipping emissions is created. E-PRTR point location information (2019)
are combined with the LULC vector Geo-database (2018) and reclassified LULC gridded
data. E-PRTR location information, from around 24,000 industrial facilities, divided in
54 sectors and sub-sectors, are reclassified to two general categories, Waste/Wastewater
Management and Other Industrial Activities, and these are then spatially joined with the
LULC polygons to arrive at a new land use classification. These new land use classes are
spatially joined with LULC reclassified gridded data in order to create enhanced proxies
for Waste Treatment and Industrial Combustion and Processes emissions.

To further prepare the downscaling methodology of the gridded datasets, the sector-
specific proxies are resampled (nearest neighbor), masked by the extent of the selected
urban area, and projected to the appropriate coordinate system (e.g., UTM Zones). The
resampled sector-specific proxy grids are normalized per “coarse” grid cell (defined by
the CAMS-REG resolution) separately, by forming the sum of all resampled “fine” grid
cells (defined by the urban domain definition) that are within each “coarse” grid cell and
then dividing each grid cell by this sum. Thus, the spatial distribution information of the
“coarse” CAMS-REG grid is kept in the sector-specific proxy grids, which follow the urban
domain definition.



Atmosphere 2021, 12, 1404 7 of 34

To account for the road traffic sector, Open Street Map vector data (line shape-files)
were applied. We selected eight road types based on highway OSM data to construct the
major road network of each urban area (motorway, motorway link, primary, primary link,
secondary, secondary link, trunk, trunk link). Thus, for each urban domain, the major road
network is represented.

2.2. The Downscaling Method

The UrbEm approach to downscale the regional emission inventory CAMS-REG—or
any coarsely gridded emission inventory—allows for the flexible creation of urban-scale
emission inventories which can consist of any combination of area, line, and point source
information. Thus, the procedure allows creating emission inventories that are suitable for
urban-scale CTM simulations and enable considering the near field dispersion of pollutants
by applying specific modules for point and line sources. This framework can be applied
to downscale all gridded sector emissions with sectors declared either in SNAP or GNFR
nomenclature, depending on the version of the applied CAMS inventory. The mapping of
SNAP to GNFR sector nomenclature follows Granier et al. (2019) [18].

2.2.1. Point Sources

To create a point source emission inventory, the E-PRTR emissions register is applied
to get the annual total emission values per sector and industrial unit. Therefore, the E-
PRTR register for the whole of Europe is projected and cropped to a target urban domain
definition. Before the point source emission information is written into an output format
that can be read by any CTM (e.g., urban-scale EPISODE-CityChem [22]), the annual
emission totals for each sector and pollutant from the CAMS-REG emissions are used to
cross-check area emission information and avoid double counting (further explained below
in Section 2.2.2).

2.2.2. Area Sources

To create area source emissions, CAMS-REG regional emissions are combined with
spatial datasets that are mapped to be used as sector specific spatial downscaling proxies
(Figure 3). Based on the target urban domain’s extent, resolution, and projection, the
selected CAMS dataset is projected and cropped to the extent of the target urban domain.
The result is a grid of annual emission totals with the projection and extent of the target
domain but still with the coarse resolution of the regional CAMS emission inventory. In
the next step, the emission totals for each sector and pollutant are compared to the sector-
specific point source emissions totals, as derived from E-PRTR. If the annual emission total
of the sector-specific point source is higher in the same reference year, the annual emission
total of the CAMS inventory is dismissed, and only point source information is used. It is
here noted that this is a rare case, given the fact that the highly-emitting industrial facilities
registered in E-PRTR are low in number (below 100 for 90% of countries); consequently, their
fraction situated within the boundaries of any gridded urban domain is even lower. If the
annual emission total of the sector-specific point source is lower, the annual emission total
of the CAMS inventory is corrected. This is done by dividing the CAMS annual emission
total grid by the sum of the annual emission totals of this grid to achieve a normalized
grid, containing only information on spatial distribution. Then, this normalized grid will
be multiplied with the difference of the annual emission total of the CAMS inventory and
the sector-specific point source emissions totals, as derived from E-PRTR. Thus, the spatial
information of the CAMS inventory is kept, and double-counting with E-PRTR is avoided.
This procedure is mainly necessary for public power and industrial activity sources. In
the next step, the corrected grids of annual emission totals are top–down distributed to
the normalized grids of sector-specific proxies. Thus, the spatial distribution information
of the coarser CAMS grid is considered in downscaling to the high-resolution grid (e.g.,
1 × 1 km). Nevertheless, caution should be taken with the use of CLC-based spatial proxies
for the disaggregation of agricultural emissions, when the focus is on non-urban domains,
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including livestock. Due to their high emissions, modern stables should be allocated at
points rather than uniformly at the agricultural areas.
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2.2.3. Line Sources

To estimate line sources, mainly belonging to the road transport sector, CAMS road
transport emissions are firstly downscaled to area sources with the introduced procedure
and then distributed to road links derived from OpenStreetMap (OSM) (Figure 4). The
transformation of area sources for road transport to line sources generally requires spatial
information on road networks as well as information on traffic density or annually averaged
daily traffic volumes. Spatial data on traffic densities, vehicle and road types, etc. have been
taken into account through investing upon the spatial disaggregation of road transport
emissions of the CAMS-REG inventory [17]. As the UrbEm approach aims at minimizing
the need for explicit data requirements such as these, the OSM-based methodology was
adopted to account for higher traffic densities in urban areas. However, before distributing
road traffic area emissions to road links, a factor to alter road traffic emissions in urban
centers is applied. This is done to counteract likely underestimations of road traffic
emissions in urban areas, when downscaling regional emission inventories to the urban
scale, which are frequently recognized as one of the main causes of bias in modeled NOX
concentrations, as demonstrated by Kuik et al. [28]. Kuik et al. investigated the top–down
quantification of regional NOX emissions from traffic in the Berlin area to be applied
for urban-scale air quality modeling and estimated “a correction factor for traffic NOX
emissions of ca. 3 [is estimated] for weekday daytime traffic emissions in the core urban
area, which corresponds to an overall underestimation of traffic NOX emissions in the core
urban area of ca. 50%” [28] (p 8203). Furthermore, depending on the time and season, the
NOX emission correction factor derived by Kuik et al. ranges between a minimum of ca.
2 (midday in summer) and a maximum of ca. 4.5 (winter morning). Although Kuik et al.
derived the averaged emission correction factor of ca. 3 solely for the Berlin urban area
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and NOX, we apply this factor as a default factor to increase road traffic emissions for all
pollutants in any European urban center before downscaling regional road traffic emissions
to the urban scale. This approach was used by Ramacher and Karl [29] in the city of
Hamburg and resulted in good agreements with measured values of NOX, PM10, and
PM2.5. Nevertheless, the default correction factor is very likely to vary from city to city and
especially for each pollutant, which is why there is a simple option to adjust the factor in
the UrbEm approach software application.
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Based on these findings, the downscaled road traffic area emissions are masked
with an Urban Centre Database layer [30] of the Global Human Settlement Layer project
(GHSL) of European Commission’s Joint Research Centre (Annex IV), and road traffic
emissions that are within an area marked as the urban center are multiplied with the
default emission correction factor. The road transport emissions modified in this way may
be extracted and used as area emissions in case a gridded format is desired; otherwise,
they are converted into a dataset of line sources by applying major road types of the
OpenStreetMap (OSM) database. Therefore, each grid cell of the downscaled road traffic
area emissions is separately intersected with downloaded OSM road links, which are
tagged as motorway, trunk, primary, and secondary roads. The intersecting OSM road
links’ lengths are used to calculate the total road length of all intersecting road links. The
total road link length is used to derive a first weighting factor for each intersecting road
link. A second weighting factor is derived, based on the different road types of each road
link intersecting the grid cell, to account for generic traffic densities of different road types,
following the work of Ibarra-Espinosa et al. [31,32]. The combination of both weighting
factors allows for top–down distribution of the grid cell emission value to all intersecting
road lengths, taking into account length and road type. This is repeated for all grid cells of
the road traffic area emissions grid. Thereby, all road traffic area emissions are distributed
to OSM road links (line emission sources).
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3. Methodology Evaluation
3.1. Comparison of Air Pollution Emissions

In order to identify the spatial differences and optimization of the European emission
inventories (here CAMS datasets) when downscaled at the local level, representative species
of selected source sectors are mapped for two scenarios: through the UrbEm approach
(UrbEm scenario) and through a uniform spatial disaggregation of the original annual
emission rates (CAMS no proxy approach or no-proxy scenario). The two cities that act
as demonstrators of the value of the current development are Hamburg (Germany) and
Athens (Greece) (Figure 5). Emission totals for the urban domains are compared to official
reports or publications (Sections 3.1.1 and 3.1.2), and differences in the spatial distribution
provided by the two approaches are discussed. It should be noted that the two sets of
gridded emission rates serve also as inputs to the city-scale model applications for both
cities (Section 3.2).
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3.1.1. The Hamburg Demonstrator

The Free and Hanseatic City of Hamburg (Figure 5a) is a federal state and the second-
largest city in Germany with a population of over 1.8 million people. Hamburg lies at
the River Elbe, which connects the city with the 110 km distant North Sea, making it the
gateway to Europe’s third largest international port. According to the municipality of
Hamburg, road traffic and shipping have been contributing with 35% and 38% to total
NOX emissions as well as 30% and 17% to total PM10 emissions in 2012, making the
transportation sector the largest emission source for NOX and PM10 [33]. Although overall
air quality in Hamburg has improved in recent decades, there are still exceedances of NO2
limit values as defined by air quality standards of the European Union. In Hamburg, there
is a well-established air quality monitoring network (Hamburger Luftmessnetz, HaLM,
http://www.luft.hamburg.de, accessed: 23 October 2021) continuously measuring air
pollutants such as NO2, NO, PM10, PM2.5, SO2, CO, O3, and a several heavy metals. It

http://www.luft.hamburg.de
http://www.luft.hamburg.de
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consists of about 15 measurement stations at traffic, industry, and urban background sites.
Since PM10 and NO2 limit values were exceeded in recent years, especially at traffic stations,
the municipality of Hamburg established its first Clean Air Plan to tackle these exceedances
with a variety of actions in 2004 [34]. These plans have been updated in 2012 and 2016.

For Hamburg, there exists a detailed inventory on point sources as derived through
mandatory emission reporting under the Federal Emission Control Act, as well as a bottom–
up line sources emission inventory which was created and updated for air quality plans
in Hamburg 2012 and 2016 [33,35]. The point sources are available every four years
(e.g., 2012, 2016), do not cover all criteria pollutants, and are measured, calculated, or
estimated. The line sources are based on traffic density and flow data from measurements
in combination with traffic-flow modeling and emission factors by HBEFA for the year
2011 [36]. Additionally, there exist scenario calculations for other years. When it comes
to other sources such as agriculture, residential heating, airports, etc., emission totals
are derived from different sources and gathered in the air quality plan, but no spatial
distribution of such emissions is provided. The German Environment Agency offers
tools [37] for spatial distribution of nationally reported emissions from different sectors
with resolutions of up to 1 km based on different proxies. Nevertheless, such emissions
are only available for specific years upon request and are spatially limited to the city’s
boundaries. Thus, the suitability of such emissions for urban-scale CTMs is very limited.

As a first step to evaluate the UrbEm approach, we compared reported emission
totals as given in the Clean Air Plans for 2012 and 2016 with emissions as created with the
UrbEm approach from CAMS-REG inventory. Therefore, we applied an urban domain
definition for Hamburg in the UrbEm approach, which has an extent of 30 × 30 km2 with
a resolution of 1 km and covers most of the Hamburg metropolitan area but also some
surrounding areas (Figure 5a). In the Hamburg air quality plan for 2016, there are only
NOX emissions reported for the sectors road traffic, industry (incl. energy generation),
residential heating, shipping, aviation, railroad, and off-road. When compared to the
reported residential heating emissions, the CAMS-REG emissions for the same extent
show 25% less NOX emissions; for shipping, aviation, railroad, and off-road, which can be
categorized as the SNAP8 sector, there are 40% less NOX emissions calculated with UrbEm.
In terms of shipping, this high underestimation is mainly due to ship emissions being
roughly estimated in the municipality report, while shipping emissions in the CAMS-REG
are based on model calculations taking into account AIS-based ship movements [38]. The
comparison of road traffic shows slightly higher emissions totals (2%) when applying the
UrbEm approach including a factor of 3 to increase road traffic emissions in the urban
center. The comparison of reported emissions from industry and energy production with
the sum of SNAP sectors 1, 3, and 4 shows 9% higher emissions with the UrbEm approach.

The second step to compare the UrbEm approach with Hamburg as a demonstrator is
the analysis of spatial emission distribution. As indicated above, besides detailed informa-
tion on reported high emitting industrial point sources and emissions from the main road
network, there exist no official emissions inventory with spatially distributed emissions.

For the residential combustion sector, CAMS emissions are re-distributed with spatial
proxies based on population density. Using these proxies leads to a distribution of emissions
that matches the major residential areas in the north of the city center (PM2.5 is showed
exemplary in Figure 6a,b). In addition, the ratio of relatively high to relatively low emission
areas in the population density proxy approach is similar to the respective ratio in CAMS.
For the road network sector, CAMS emissions are redistributed with line proxies based on
OSM. Thus, the distribution accurately matches the road network of the city of Hamburg
(e.g., NOX displayed in Figure 6c,d). Moreover, first comparisons of road traffic emissions
derived with the UrbEm approach to more recent bottom–up modeled emissions based
on HBEFA4.1 emission factors [36] and data on traffic density given by the Hamburg
municipality revealed good agreement in terms of NOx and PM emission totals and their
spatial distribution, with slight underestimations toward the city center. Spatial proxies for
the non-road transport, waste, and agricultural sector are derived from the Corine Land
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Cover 2018 dataset [24]. For the non-road transport sector (Figure 6e,f), the high emission
areas are now concentrated on the corresponding sources of emissions—Hamburg port
and airport Hamburg Fuhlsbüttel. Especially in terms of emissions from port activities by
shipping, the spatial distribution is improved compared to the coarser CAMS emissions.
Since there are residential areas close to the port areas, this turns out to be a crucial
improvement for air quality management assessments. It needs to be mentioned that
the Airbus airport is not represented by the CLC proxies, because the Airbus facility is
considered an industrial area instead of an airport, although it is frequented by air transport.
Redistributed CAMS emissions in the waste sector (Figure 6g,h) are concentrated on high-
emission areas in the south of the city center and spatially match waste treatment plants
and recycling facilities. Hamburg is surrounded by agriculturally dominated areas. The
redistributed emissions in the agriculture sector sufficiently represent the peak emission
areas in the southwest of the city (“Altes Land”) and in the north and east of the city
(Appendix C). In total, the applied spatial proxies in the UrbEm approach to downscale
regional CAMS emissions in the Hamburg area match the most important features, which
are necessary to represent the spatial distribution of emissions in air quality modeling
and management.
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3.1.2. The Athens Demonstrator

Athens (Greece) is one of the biggest urban agglomerations in the eastern Mediter-
ranean, which is bound by medium-altitude mountains and by the Saronic Gulf to the
south–southwest [39,40]. The Athens basin (450 km2) concentrates the majority of the
population (more than 3 million) and economic activity of the Greater Area of Athens,
which combined with intense primary emissions, complex topography, and meteorology
leads to high levels of atmospheric pollutants [41–43].

A large number (over 2.8 million) of vehicles are circulating in the area, of which
approximately 90% are gasoline-powered private cars [42]. Road transport is responsible
for a substantial part of not only NOX but also PM2.5 emissions [39,44]. The persistent
economic recession has led to a shift in the fuel used for residential heating from fossil fuel
toward biofuels, primarily wood, which in turn has caused pronounced wintertime air
quality events, especially regarding particle pollutants [41,45]. The major non-traffic, non-
heating activity affecting the Athens basin is shipping at and around the port of Piraeus,
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which is the largest passenger port in Europe and the second-busiest container port in the
Mediterranean. Industrial activity inside the Athens basin is limited [39,42].

Over the last decades, NO2 and PM levels have gradually decreased, although frequent
smog events (and violations of the limit values) occur, mostly during wintertime [41,43,46,47].
The air quality of Athens is regularly monitored by the National Monitoring Network
(Figure 4b). In situ measurements are also routinely conducted at the Thissio (THI) Air
Monitoring Station (37.97326◦ N, 23.71836◦ E, 105 m a.s.l, 4 m a.g.l.) of the National Obser-
vatory of Athens (NOA), which is considered representative of background conditions in
the central Athens basin [48–50].

Athens lacks official gridded and total emission data to compare with the UrbEm
result for Athens. To this end, the scientific literature was explored, while applying the
algorithm for 2016, for an extent of 45 × 45 km2 (1 × 1 km2 cell size) centered at the urban
center (official definition by JRC), including both the neighborhood industrial area (at the
west) and the national airport (at the southeast). The current comparative findings add
value to the evaluation of the spatial allocation of the official national totals at the urban
level, which are performed uniformly over Europe by the CAMS methodology [18]. To the
best of our knowledge, such comparisons are not yet published for any urban area of the
Eastern Mediterranean.

A literature search revealed several national and/or local gridded emission invento-
ries [51–56]. Despite the divergence in the year of reference (from 1990 to 2010), surface cov-
erage (e.g., Attica prefecture, Greater Athens Area, Athens basin, urban compound/area),
and pollutants (NOX, PM2.5, PM10, NMVOC, CO) of these emission datasets, the total
CAMS NOX emitted from the urban center of Athens for 2016 (27,774 t yr−1) is consis-
tent with the respective total for 1990 (44,200 t yr−1, according to Zachariadis et al. [56])
decreased by the officially reported factor (approximately 0.4) from 1990 to 2016 for Greece
reports (EIONET Central Data Repository, https://www.eionet.europa.eu, accessed: 23 Oc-
tober 2021). Similar consistency is also found for PM2.5 between 1998 (4888 t yr−1, ac-
cording to Economopoulou and Economopoulos [51] and 2016 (2315 t yr−1), using the
officially reported decrease factor of 0.5. The industrial sector CAMS NOX emission totals
for Athens (21,139 t yr−1) are similar to those reported by Markakis et al. [52] for 2003
(22,400 t yr−1). For road transport emissions, the comparison among datasets is more
challenging. CAMS urban center totals (using the EIONET conversion factors from 1990 to
2016) are significantly lower than all published totals emitted from Athens. The modeling
analysis performed by Kuik et al., 2018 [28], suggests that traffic emissions by CAMS
are strongly underestimated, which is in alignment with the aforementioned discrepancy
and is partly attributed to the inadequate representation of traffic congestion. A distinct
difference among the spatial distribution of emission totals stems from the expanded urban
area for 2016 when compared to all previously published maps.

Focusing on the performance of the spatial disaggregation approach, we have devel-
oped comparative maps of the regional CAMS, and the local scale UrbEm emissions from
Athens sources are given in Figure 7. Some findings apply to all types of sources and are
due to the complex topography of Athens. For example, residential combustion emissions
from coarse resolution grid cells (Figure 7a) extend beyond the coastline, whereas the use of
population density as a high-resolution proxy to redistribute this sector eliminates this error
(Figure 7b). Along the same line, the algorithm attributes all emissions from anthropogenic
activities around mountainous areas at the downhill urbanized cells (e.g., road transport;
Figure 7c,d). As evident through the mass totals (given at the bottom of each plot in
Figure 7) and the spatial distribution of emissions within each coarse cell, although mass is
conserved, the range of emission values is amplified by a factor of ca. 5 (road transport and
waste treatment) or 10 (residential heating and non-road activities) for the high-resolution
mapping. The pronounced gradient of UrbEm spatial fields is definitely an improvement
stemming from the appropriate and high-resolution spatial proxies, which are used to
allocate CAMS gridded emissions. The proxies are contemporary and frequently updated
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to ensure the consistency with the actual urban landscape during the period of study. The
efficiency of this optimization is quantified in the next section.

Examining each source sector separately, the UrbEm approach depicts spatial features
of the air pollution emissions from residential combustion sources that coarse mapping
fails to capture (Figure 7a,b). In particular, emissions are allocated at the inhabited areas in
and around the urban center, with maximum values in the northern suburbs and in the
mountainous residential areas. Most of the particulate matter emitted from residential com-
bustion activities is known to originate from biomass (wood) burning, according to CAMS
data for Greece. The latter (in particular TNO-MACC II [57]) has been proven reasonable
for Athens during the economic crisis [48]. Therefore, the specific high-resolution dataset is
expected to accurately represent residential wood burning emissions in Athens from 2009
to the present.

The biggest asset of the developed tool lies beyond the hybrid mechanism to produce
the spatially disaggregated road transport emissions, either in fine (1 × 1 km2) cells or
attributed to the contemporary road network of the studied city. As expected, the spatial
allocation of vehicle emissions through CAMS (Figure 7c) is performed with consistency
to the density of the Athens road network (Figure 7d). The finer disaggregation applied
through UrbEm reveals spatial gradients and emission maxima from roads in more detail
and accuracy. The optimization of air pollution from road transport is realized when
the emitted masses are ascribed to lines and then combined with air quality models that
incorporate urban canyon processes (see Section 3.2).

Waste treatment emissions are known as more localized than how they are represented
by CAMS (Figure 6e). With the usage of the locations of waste treatment installations, mass
allocations are performed in higher accuracy (Figure 7f). The open burning of waste has an
increased positioning uncertainty, as it can potentially occur on any agricultural surface.

CAMS data representing emissions from non-road activities (Figure 7g) are greatly
improved by allocating airport and shipping emissions at their actual land and sea surfaces
(Figure 7h). Shipping is indeed found as a pronounced source of air pollution, which is
consistent with what is stated above for Athens. With respect to non-road machinery, its
allocation follows the same restrictions mentioned for open waste fires.
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tural surface.  

CAMS data representing emissions from non-road activities (Figure 7g) are greatly 
improved by allocating airport and shipping emissions at their actual land and sea sur-
faces (Figure 7h). Shipping is indeed found as a pronounced source of air pollution, which 
is consistent with what is stated above for Athens. With respect to non-road machinery, 
its allocation follows the same restrictions mentioned for open waste fires. 

  

Figure 7. Cont.



Atmosphere 2021, 12, 1404 16 of 34
Atmosphere 2021, 12, x FOR PEER REVIEW 16 of 34 
 

 

  

  

  

Figure 7. As in Figure 6, but for Athens.



Atmosphere 2021, 12, 1404 17 of 34

3.2. Verification through Air Pollution Predictions

The evaluation of the developed approach (UrbEm) to arrive at urban, high-resolution
emission inventories is performed through their implementation in atmospheric numerical
simulations. In particular, AQ predictions for Hamburg are performed for 2016 and com-
pared with observations from 13 and five stations measuring NO2 and PM2.5, respectively
(Figure 4a). For Athens, a heavily polluted month (December 2018) is used to demonstrate
the value of high resolution (including linear road) emissions for a city that faces complex
challenges, as described in Section 3.1.2. NO2 and PM2.5 observations made by the National
Monitoring Network (Figure 4b) and at the supersite at Thissio [50] are compared with
the respective predictions. In both demonstrators, the urban stations are categorized and
grouped as traffic, background, and industrial.

In order to quantify the assets of the UrbEm approach discussed in Section 3.1, namely
the use of high-resolution spatial proxies for area emission distribution, plus the allocation
of road transport emissions in line sources, the CAMS (no proxy) and UrbEm emission
datasets already discussed in Section 3.1 stand as the core of the two emission scenarios
applied in both demonstrator cities (CAMS no proxy and UrbEm scenario, respectively).
Based on the already mentioned findings of Kuik et al. (2018) [28], the proposed multiplica-
tion factor of 3 is applied in the emissions by road transport. As this was found to remediate
underestimations in regional emission inventories (as well as other possible sources of
model biases), it is also applied in the CAMS no-proxy scenario. Such a consistency keeps
comparisons among scenarios linked to their spatial divergence.

Hourly emission rates are calculated by using the monthly, weekly, and diurnal profiles
indicated through Bieser et al. (2011) [58] for each source sector. The monthly profiles for
road transport in Athens are adjusted according to national data [59]. Daily and hourly
profiles for residential heating are based on air pollution measurements in Athens [48].
Additionally, area emissions of residential heating are generated with dependence on the
daily average temperature in Hamburg and Athens. Lastly, the split of NOX (CAMS output)
to NO and NO2 emissions (EPISODE-CityChem inputs) is 95:5 for area and point and 70:30
for line emissions.

Emission databases correspond to reference years. In order to provide high-resolution
emissions for any year of interest, the official, national reports (EIONET Central Data
Repository, https://www.eionet.europa.eu) of total emissions are compared. The extracted
multiplication factors per source and pollutant are applied and convert emissions from the
year of reference to the year of interest.

3.2.1. Chemistry Transport Model Setup

EPISODE-CityChem is a Chemistry Transport Model to enable chemistry/transport
simulations of reactive pollutants on the city scale. In particular, the horizontal spatial
resolution of simulations is 1 km with an embedded regular receptor grid (100 m × 100 m),
which hosts Gaussian line and point source dispersion and local photochemistry [22]. More
details on the features of the model and its configuration and setup for the current study
can be found in Appendix B.

3.2.2. Comparison of Predictions and Observations

The comparison with available observations (sites of which are shown on Figure 4)
support the efficiency of the UrbEm approach, especially for NOX. In particular, the
EPISODE-CityChem model is found to underestimate observations (Appendix C) in both
cities, but the intercomparison of the average mean biases from CAMS no proxy to UrbEm
shows a significant reduction of this underestimation by more than 100% in most cases.
Indeed, NO2 predictions from these two model runs have been compared, and their
difference is found statistically significant at the 95% confidence level (p < 0.05) for all
stations in both cities. The temporal correlation (r) among measurements and observations
is significantly improved when replacing the CAMS no proxy and the UrbEm approach.
As expected for urban environments, the deviation of observations from their mean value

https://www.eionet.europa.eu
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is elevated, which cannot be represented when emissions are coarsely allocated to their
sources (CAMS no-proxy scenario). In contrast, UrbEm enables the depiction of a greater
dispersion of air pollution around the mean urban values, which is reflected through the
higher standard deviation found, better matching the real case in both cities. In addition,
the fraction of modeled values within a factor of two of the observed values is in most
stations above 50%, reaching 75% for PM2.5, when the UrbEm scenario is considered.
The greatest improvement of model performance occurs for NO2 over the industrial and
traffic urban areas of Athens as well as for Hamburg (Figure 8). This is attributed to the
strong spatial variation of urban land types, and thus of emission sources, when combined
with elevated anthropogenic emissions during wintertime, the short lifetime, and strong
gradients of NO2. This combination necessitates the right spatial allocation of urban
emissions, namely at the road network and the industrial sites generating much stronger
gradients when compared with a coarser resolution grid.
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Figure 8. Daily NO2 (µg m−3) scatter plots for (a) Athens, December 2018 and (b) Hamburg, 2016. The observed (obs)
versus modeled (mod) mass concentrations are shown, the latter when applying the original CAMS emissions (CAMS no
proxy) and high-resolution emissions using the newly developed approach (UrbEm).

In order to proceed to a targeted inter-comparison between the two model scenar-
ios/disaggregation approaches, Figure 8 (and Appendix C) presents the scatter plots to
show the deviation of model predictions for mean daily NO2 (and PM2.5) from the observed
values (markers upon the solid 1:1 line) up to a factor of two (markers inside the dashed 1:2,
2:1 lines) and further (markers outside the dashed lines). An overall statement is the com-
parative advantage of the UrbEm approach, shifting the cloud of observation–prediction
pairs toward the 1:1 line, which is striking for NO2. This performance is more apparent
in emission hotspots (traffic or industrial areas) and is explained by their more accurate
spatial representation by the UrbEm approach. Especially for the urban traffic sites, the
significance of the line representation of road transport emissions is revealed through the
distinct position of the CAMS no proxy outside the dashed lines. Through high-resolution
emission allocation, mass rates from their actual hotspots (e.g., roads, industrial sites, resi-
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dences) are increased; thus, concentration underestimations over and downwind primary
emissions are decreased.

The effects of the UrbEm approach on PM2.5 model performance are less pronounced
(Appendix C). This is expected over and downwind urban traffic areas, because traffic
has a smaller footprint on PM2.5 and hence on its spatial disaggregation. More broadly
and independent of pollution sources, PM2.5 shows less spatial variability due to its
governing atmospheric processes, including the role of secondary inorganic and organic
formation of atmospheric aerosols. Overall, the applied downscaling is especially valuable
for short-lived species, but in some cases, improvements can be seen also for PM2.5. It is
worth mentioning that these improvements are important, given the statistical comparison
performed among the two model scenarios, which found their difference significant at the
95% confidence level (p < 0.05) for all stations in both cities.

Focusing on the air pollution mapping over the complex area of Athens during a
highly polluted winter month, it seems that the spatial optimization of coarse emissions
contributes more than 30% and up to 70% to the modeled NO2 concentrations over most
of the urban area (Figure 9a) and the other polluted areas outside (e.g., the industrial
area in the west and the national road toward the north). Indicatively, over the sites
of model-measurement mean monthly inter-comparison (e.g., PIR, ELE, PER, LIO), the
UrbEm approach improves model results by 30–50% when compared to the CAMS no-
proxy scenario.

The contribution of UrbEm to the mean monthly PM2.5 predictions (Figure 9b) based
on CAMS emissions is lower (up to 30%) and occurs mainly outside the urban center, over
the industrial areas and the northern residential suburbs. These maxima of UrbEm effects
are related to the spatial optimization of industrial emissions and residential combustion,
respectively. From the four measuring sites of PM2.5, only the predictions at the urban
traffic site at the port (PIR) seem to differentiate around 20%, with the UrbEm approach
being consistent with the mean monthly observations.

Figure 9c,d illustrate the differences between the CAMS no proxy and UrbEm for both
NO2 and PM2.5 concentrations in Hamburg. Especially for NO2, the linear structures of
the road network become more distinct in the UrbEm approach. In general, the UrbEm
approach allows a wider distribution of concentrations in the city domain. For both NO2
and PM2.5, it is expectable that the concentrations peaks are in the city center and the port
area, which is additionally a hotspot for industrial activities. For further discussion of air
pollutant concentration for Hamburg in 2016 as derived from emissions downscaled with
an early version of the UrbEm, we refer to Ramacher and Karl (2020) [29].
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4. Discussion

The comparison of downscaled regional CAMS-REG emissions (≈6 × 6 km2 grid cells)
with the introduced UrbEm approach to the same emissions that were mapped to our high-
resolution grid without the use of any spatial redistribution proxies showed substantial
changes in the fields of emissions in Hamburg and Athens. The city-specific exploration
of local features, such as waste and recycling facilities, road networks, industrial and
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agricultural areas, as well as the locations of ports and shipping lanes guided and optimized
the spatial distribution of connected emissions through the use of the appropriate, detailed
spatial proxies in the frame of the UrbEm approach. The approach is of utmost importance
for modeling air quality for coastal cities, as it ensures zero emissions from the sea surfaces
that are adjacent to land-oriented emissions and vice versa. Despite the claim of the
UrbEm approach to be generally applicable in European cities, there are some remaining
imprecisions in the spatial distribution, e.g., the consideration of all types of airports,
independent of their use (e.g., public or military) or the specific location of point sources
with high emissions that are not covered by the E-PRTR emission inventory because they
are below the reporting thresholds. Thus, knowledge, if possible, on the local emission
features, can optimize the outputs of the UrbEm approach, as well as reveal desired
deviations from the horizontal CAMS methodology at the domains/cities under study.

Considering the treatment of road traffic emissions, the UrbEm approach allows for
distributions of emissions to any city’s road network by using OSM data. Evidently, that
improves the distribution of road traffic emissions when compared to grid emissions. Thus,
this feature is of high value for any detailed spatial analysis of urban air pollution, while it
can be essential for urban-scale air quality models capable of handling road emissions from
line instead of area sources. The coupling of UrbEm with Episode-CityChem for two city
demonstrators showed an increased accuracy and a better representation of gradients in
intra-urban air pollution predictions. According to a recent sensitivity study on the choice
of the subgrid resolution in urban-scale air pollution modeling [60], the 100 m resolution
(used here) has been found competent to represent near-road concentration estimates.
Nevertheless, model underestimations at road traffic sites remain both in Hamburg and
Athens, even though we applied the emission correction factor of 3 proposed by Kuik
et al. (2018) [28] to all pollutants in both cities. A possible reason might be the ventilation
effects and concentration agglomerations in street canyons or at junctions that might not be
adequately represented in chemistry transport modeling. Another source of discrepancy
could be the uniform application of the NO to NO2 ratio, which was applied to split
the NOX input provided by CAMS. Additionally, occasional heavy traffic at intersections
and traffic jams is not taken into account when conventional temporal emission profiles
are applied. Similarly for the spatial dimension, the distribution of regional road traffic
emissions to urban-scale road links as derived from OSM does not take into account city-
specific traffic densities, congestion, or other spatial features that may be applied in bottom–
up approaches. Lastly, a frequent source of model discrepancies is the non-accounted
air pollution sources in emission inventories, such as the recirculation/resuspension of
particulate matter due to vehicle movement [48,53].

The UrbEm approach does not claim to replace city-specific emission modeling efforts
or bottom–up emission inventories. Nevertheless, the creation of bottom–up anthropogenic
emissions is still a demanding and expensive task due to the necessary collection of city-
specific data (e.g., road-specific vehicle densities, fleet compositions) and their compilation
toward emission rates per source and pollutant. In addition, most of the detailed city-
specific emission inventories are available for specific years and/or upon request; these
are spatially aggregated or their disaggregation is frequently in cells above 2 km spatial
resolution, road (and occasionally industrial) emissions are attributed to cells (instead of
lines or points), and it is limited to municipal boundaries or prescribed domains. In cases,
specific sources and/or pollutants could be missing from existing local inventories. In
addition, for big cities, such as Athens and Hamburg, there are lots of high-resolution
data for adequate urban air quality modeling temporally and spatially aggregated or
missing. Lastly, the scope of city-scale inventories may be different from typical national or
European-wide inventories, which makes it difficult to nest the city-scale inventory into a
wider regional inventory [61].

Therefore, the UrbEm approach enables urban air quality planners and modelers that
lack resources and city-specific information to initiate efforts in air quality management.
For cities such as Athens, with a complex terrain and official emissions at the national level,



Atmosphere 2021, 12, 1404 22 of 34

the UrbEm approach to downscale open regional emissions adds value to air quality man-
agement efforts by using the detailed spatial proxies in downscaling. Taking into account
that the spatial data that underlie the applied proxies in the UrbEm approach are frequently
updated and/or become more detailed, we expect the spatial representativeness of emis-
sions downscaled with UrbEm to enhance. Indicatively, once the building height data
by CLMS (https://land.copernicus.eu/local/urban-atlas/building-height-2012, accessed:
23 October 2021) become available for all European cities (rather than solely capitals), its
incorporation to our approach will certainly optimize the spatial allocation of residential
heating emissions.

Through this work, it is shown that the high-resolution emission allocation with
UrbEm improved the performance of modeled values from a state-of-the-art city-scale
CTM. Such an approach provided also flexibility in the selection of the region, resolution,
and period of interest for AQ modeling. Lastly, comparative modeling studies among
several European cities is feasible and concrete when using gridded emission data produced
by the same methodology and tool, based on a common European database, thus aligning
with the call from the European Commission’s recent Air Quality—Fitness Check of the
AAQ Directives for further harmonizing modeling activities across the EU [62].

Overall, the investment upon existing knowledge and data hosted on reliable pro-
grams/platforms such as Copernicus/CAMS is an approach to overcome the lack of
bottom–up high-resolution emission inventories for certain cities, or it can be an equiva-
lent alternative to pre-existing local emission data. Whichever the case, such exploitation
and development can certainly act as feedback toward the continuous improvement and
optimization of the provided services.

5. Conclusions

The use of regional emission inventories can be challenging for urban-scale AQ
applications and air quality management in cities. Nevertheless, their exploitation through
disaggregation by utilizing spatial proxies, available on a European or global scale, is a
credible solution for European cities that lack bottom–up emission inventories. To this end,
we developed the UrbEm approach, which enables in a modular manner the downscaling
of gridded regional emissions with specific spatial proxies based on a variety of open
access, robust, sustainable, and frequently updated sources. The presented approach can be
applied to any urban area in Europe and provides methodological homogeneity between
different cities.

Prioritizing applicability and homogeneity, the developed approach avoids any de-
pendence on occasional, local, high-resolution data, without excluding this option once
such data (e.g., variable traffic volumes for specific road segments) are available for cities
or periods of interest. Nevertheless, the method invests upon well-established European
emission inventories (here CAMS-REG), which already have incorporated pollutant- and
source-specific data (e.g., traffic densities, vehicle and road types), for the spatial disag-
gregation of national emission totals. All data that support the high-resolution spatial
proxies used are being quality controlled and assured (see more on Appendix A), while the
limitations relevant to CAMS-REG or any traditional top–down emission inventory are
expected unless near real-time emission data were ideally available and used.

To demonstrate the general applicability and performance of the developed method
and tool, we compared the spatial distribution of uniformly disaggregated regional emis-
sions with emissions downscaled with the UrbEm approach for the differing cities of
Athens and Hamburg. The representation of local features in general and of emission
hotspots in particular was largely improved. We further applied the two emission invento-
ries in a state-of-the-art urban-scale Chemistry Transport Model and compared the results
against measurements. Urban-scale air pollutant concentrations based on the UrbEm
approach show improved agreement, especially for NO2 and measurement sites close to
road traffic.

https://land.copernicus.eu/local/urban-atlas/building-height-2012
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The UrbEm downscaling approach is completely free of cost and open source, which
is accompanied with an efficient, fully automated, and intuitive tool (https://github.com/
martinottopaul/UrbEm, accessed: 23 October 2021) that enables users to create high-
resolution urban emissions from point, line, and area sources. We are confident that UrbEm
fully covers the emission inventory prerequisite for all urban air quality modeling and
management efforts and serves as a starting point for such efforts in cities across Europe.

While the work described here establishes UrbEm, we envision a continuous improve-
ment of the methodology regarding its technical components such as the integration of
improved proxies. Beyond the paradigm of the building height data by CLMS discussed
already, the Automatic Identification System (AIS) data used for shipping emissions is such
a candidate. The latter was exploited under the uEMEP implementation [60], which is a
similar undertaking to ours and with whom we will pursue technical exchange regarding
the use of proxies not currently handled by them. Moreover, comparisons between the
two methodologies and with other bottom–up implementations in European cities would
deliver a clear insight on the balance between overall resources required and efficiency
across Europe. Relevant to this, comparative applications of atmospheric numerical models
using UrbEm and bottom–up local inventories when and where available would further
build the proof of efficiency of the method as well as reveal deficiencies to alleviate. Lastly,
we plan to expand the automization of the whole workflow, minimize the need for location-
specific refinements, and keep the process per city temporally efficient. A valuable addition
would be the integration of the newly developed temporal profiles CAMS-TEMPO [63]
toward producing hourly, instead of yearly, emission rates, based on spatially-variant
temporal profiles.

On a more policy-related note, UrbEm aims at contributing to the current discussion on
the Revision of Ambient Air Quality Directives [64] (https://ec.europa.eu/environment/
air/quality/revision_of_the_aaq_directives.htm, accessed: 23 October 2021) and its ensuing
policy implications. In particular, we aspire to support—Europe-wide—the mitigation of
administrative burden of air quality management by offering such an agile tool, to increase
the comprehensiveness of air quality assessments by providing a common staring point,
and to bring out the underlying aspects of environmental inequalities present in the spatial
distribution of emissions, concentrations, and exposure in urban locales while offering a
credible solution for planning equitable measures.
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Appendix A. Short Description of Spatial Datasets

Appendix A.1. European Pollutant and Transfer Register (E-PRTR)

E-PRTR (http://prtr.ec.europa.eu/, accessed: 23 October 2021) is the Europe-wide
register that provides key environmental data for industrial facilities in European Union
Member States and a few other countries, and it provides annual emission totals for large
sources i.e., for pollutants that exceed limit values. In addition to the annual emission
totals, the geographic location and sector for these sources is also defined. The official
national data transmitted by the Member States to the European Environmental Agency
(EEA) are subjected to a quality control through an automated validation tool developed
by the EEA (https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:5201
7SC0710&from=EN, accessed: 23 October 2021).

The emissions of nitrogen oxides (NOX), sulfur oxides (SOx), carbon dioxide (CO2),
ammonia (NH3), and particulate matter (PM10) from industrial facilities are utilized in
this work. In addition, geo-locations from this database are selectively used for the spatial
disaggregation of emissions from relevant sources (e.g., public power; see Table 1).

Appendix A.2. The CAMS Regional Anthropogenic Emissions (CAMS-REG)

CAMS provides sectoral annual emission totals for Europe (30◦ W–60◦ E and 30◦

N–72◦ N) for 2000–2015 (CAMS-REG-v2.2.1 or CAMS-REG-v1 for 2003–2009) and 2016
(CAMS-REG-v3.1). In particular, these databases involve annual emission rates of CH4,
CO, NH3, NMVOC, NOX, PM10, PM2.5, and SO2 from road, air, rail transport, navigation,
mobile machinery, fuel production, industrial activities (paper, cement, minerals, metals,
etc.), stationary combustion, agriculture, waste, solvent use, and public power. The first
two versions are based on the SNAP sector classification and provide emission rates at the
horizontal spatial resolution 0.125 × 0.0625 degrees (lon/lat) [17,57], while CAMS-REG v3.1
has adopted the GNFR sector classification and provides data at 0.1 × 0.05 degrees [18].

In the core of CAMS methodology lies the national reports of emissions by year,
pollutant, and sector registered in and available through the Centre for Emission Inventories
and Projections (http://www.ceip.at/, accessed: 23 October 2021). Supplementary sources
include the Environmental European Agency (EEA), the Greenhouse gas—Air pollution
Interactions and Synergies model (GAINS), the Emissions Database for Global Atmospheric
Research (EDGAR), and estimates by the Netherlands Organization for Applied Scientific
Research (TNO). The spatial distribution of country total emissions from point sources is
based on the E-PRTR database, while non-point sources are disaggregated through spatial
proxies, such as total, rural, and urban population, arable land, and the TRANSTOOLS
road network.

A thorough report on the quality of the spatial data of the CAMS-REG inventory
lies in Kuenen et al. (2021). Overall, uncertainties with respect not only in the National
registrations but also in the spatial disaggregation proxies and methods used are present
and difficult to quantify. With respect to the urban environment, indicative sources of errors
include the following: (i) the spatial disaggregation of vehicle emissions is performed for
a single year (instead of annually), excluding actual real-time road intensities and small
road traffic volumes; (ii) power plant and industrial emission registrations include errors
and inconsistencies; (iii) building characteristics (e.g., type of building, level of insulation)
are not taken into account for the spatial disaggregation of residential heating emissions;
(iv) occasional large construction sites are not taken into account for the construction of
off-road machinery emissions.

Focusing on the cities/demonstrators of the present intra-urban disaggregation, the
emissions of all pollutants in Hamburg (Germany) is based on CEIP, except for CH4, which
is retrieved by EEA. The latter also holds for Athens (Greece), whereas the rest of the
gaseous pollutants are based on EEA data. PM2.5 and PM10 are GAINS estimations.

http://prtr.ec.europa.eu/
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017SC0710&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017SC0710&from=EN
http://www.ceip.at/
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Appendix A.3. Corine Land Cover

The CORINE Land Cover (CLC) inventory (https://land.copernicus.eu/pan-european/
corine-land-cover, accessed: 23 October 2021) was initiated in 1985 (reference year 1990).
Updates have been produced in 2000, 2006, 2012, and 2018. It consists of an inventory of
land cover in 44 classes. CLC uses a Minimum Mapping Unit (MMU) of 25 hectares (ha)
for areal phenomena and a minimum width of 100 m for linear phenomena. The Eionet
network National Reference Centres Land Cover (NRC/LC) is producing the national CLC
databases, which are coordinated and integrated by EEA. CLC is produced by the majority
of countries by visual interpretation of high-resolution satellite imagery. The Sentinel
2 images used provide homogeneous, high-quality multi-temporal imagery, to support
high-quality identification of land cover changes in Europe (https://land.copernicus.eu/
user-corner/technical-library/clc2018technicalguidelines_final.pdf, accessed: 23 October
2021). In a few countries, semi-automatic solutions are applied, using national in situ data,
satellite image processing, GIS integration, and generalization.

CLC has a wide variety of applications, underpinning various community policies
in the domains of environment, but also agriculture, transport, spatial planning, etc. In
this study, we applied CLC classes from the 2018 version as spatial proxies to distribute
emissions to different sectors.

Appendix A.4. Global Human Settlement Layer

The Global Human Settlement Layer project of the European Commission’s Joint Re-
search Centre [23] addresses these needs with spatially detailed information on population
and settlements. The GHSL are offered as open and free data. The data range goes from
global coverage datasets to pan-European built-up layers (the European Settlement Map)
to analytical data (e.g., the Urban Centre Database [30]). In this study, we apply the Global
Human Settlement population grid (GHS-POP) and the Global Human Settlement Layer
Urban Centres Database (GHS-UCDB).

The GHS-POP spatial raster dataset depicts the distribution of population, expressed
as the number of people per cell (https://ghsl.jrc.ec.europa.eu/ghs_pop2019.php, accessed:
23 October 2021). Residential population estimates for target years 1975, 1990, 2000, and
2015 provided by CIESIN GPWv4.10 were disaggregated from census or administrative
units to grid cells, which was informed by the distribution and density of built-up areas as
mapped in the GHSL global layer per corresponding epoch. The available resolutions are
250 m, 1 km, 9 arcsec, and 30 arcsec. In this study, we apply the GHS-POP layer for 2015 with
a resolution of 30 arcsec (WGS84) (GHS_POP_E2015_GLOBE_R2019A_4326_30ss_V1_0)
to spatially distribute emissions that are connected to population activity, e.g., residen-
tial heating.

The GHS-UCDB is the most complete database on cities to date, which was publicly
released as an open and free dataset. The database represents the global status on Urban
Centers in 2015 by offering cities’ location, their extent (surface, shape), and describing
each city with a set of geographical, socio-economic, and environmental attributes, many
of them going back 25 or even 40 years in time. Urban centers are defined in a consis-
tent way across geographical locations and over time, applying the “Global Definition of
Cities and Settlements” developed by the European Union to the Global Human Settle-
ment Layer Built-Up (GHS-BUILT) areas and Population (GHS-POP) grids. A validation
of the global human settlement through the Landsat imagery, as well as a quality con-
trol to ensure that all input population was disaggregated and totals were preserved,
have been successfully conducted [65]. In this study, we apply the GHS-UCDB layer
(GHS_STAT_UCDB2015MT_GLOBE_R2019A_V1_0) to identify the geographic extent of
urban centers.

Appendix A.5. OpenStreetMap

OpenStreetMap (OSM) [25] is a collaborative project to create a free editable map of
the world. The geodata underlying the map is considered the primary output of the project.

https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/user-corner/technical-library/clc2018technicalguidelines_final.pdf
https://land.copernicus.eu/user-corner/technical-library/clc2018technicalguidelines_final.pdf
https://ghsl.jrc.ec.europa.eu/ghs_pop2019.php
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Created by Steve Coast in the UK in 2004, it was inspired by the success of Wikipedia and
the predominance of proprietary map data in the UK and elsewhere. Since then, it has
grown to over two million registered users, which may collect data using manual survey,
GPS devices, aerial photography, and other free sources, or use their own local knowledge
of the area. Then, these crowdsourced data are made available under the Open Database
License. The site is supported by the OpenStreetMap Foundation, which is a non-profit
organization registered in England and Wales. Quality assurance and quality control
processes are performed to examine the completeness, consistency, accuracy, timeliness,
and accessibility of the data hosted in the platform (https://wiki.openstreetmap.org/wiki/
Quality_assurance, accessed: 23 October 2021).

The data from OSM can be used in various ways including the production of paper
maps and electronic maps (similar to Google Maps, for example), geocoding of address and
place names, and route planning. OpenStreetMap data have been favorably compared with
proprietary data sources. In this study, we apply OSM data to locate major road networks,
which are used to distribute emissions from road traffic.

Appendix A.6. Global Shipping Lanes

Shipping lanes are extracted from a publicly available image, retrieved from the map
of the world oceans [27]. This is a newly developed spatial proxy to distribute CAMS-REG
emissions from the shipping sector along the underlying shipping routes. The spatial
analysis of this global map is rather low; thus, only one shipping route could be extracted
for the sea area of the Athens domain instead of the actual shipping route network.

Appendix B. Chemistry Transport Model Description and Setup

To evaluate the performance of emissions as downscaled with the introduced hybrid
approach when applied in an urban-scale CTM, we applied the EPISODE-CityChem [22]
model to determine the NO2 and PM2.5 concentrations in Hamburg (2016) and Athens
(December 2018).

EPISODE-CityChem combines a 3D Eulerian grid model with sub-grid Gaussian
dispersion models to resolve pollutant dispersion in proximity of point sources and lines
sources. On the Eulerian grid, time-dependent 3D concentration fields of the pollutants are
calculated by solving the advection/diffusion equation with terms for chemical reactions,
dry deposition and wet deposition, and area emissions. The hourly 2D and 3D fields of
meteorological variables and the hourly 2D fields of area emissions are given as input to the
model with the spatial resolution of the Eulerian grid. In this study, we applied prognostic
meteorological fields from the meteorological component of the coupled meteorological
and chemistry transport model TAPM [66]. To drive the meteorological module of TAPM,
we applied three-hourly synoptic-scale ECMWF ERA5 reanalysis ensemble means for
2016 and 2018 on a longitude/latitude grid at 0.3-degree grid spacing. The meteorological
fields simulated with TAPM have a horizontal resolution of 1 km × 1 km and a vertical
resolution of 30 layers with different heights, following the EPISODE-CityChem vertical
layer structure.

To account for the background air concentrations, we applied hourly Copernicus
Atmospheric Monitoring Services (CAMS) ensemble reanalysis for carbon monoxide (CO),
ammonia (NH3), NMVOC, NO, NO2, O3, peroxyl nitrates (PANS), particulate matter
(PM10, PM2.5), and SO2. The CAMS regional ensemble is based on nine state-of-the-art
numerical air quality models developed in Europe [67]. The spatial resolution of the
regional forecast is 0.1 × 0.1 degrees for the whole of Europe, with nine vertical levels,
extending from the surface up to 500 hPa, and the time resolution is one hour. The CAMS
forecast concentrations are downloaded and interpolated to the horizontal and vertical
resolution of the domain, to be considered at the lateral and vertical borders of the urban
domains in EPISODE-CityChem simulations.

In EPISODE-CityChem, emissions from point sources are added onto the Eulerian
grid concentration during each time step. Emissions from line sources are added to the grid

https://wiki.openstreetmap.org/wiki/Quality_assurance
https://wiki.openstreetmap.org/wiki/Quality_assurance
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concentrations following a procedure described in more detail in Hamer et al. (2019) [68].
The combination of a Eulerian grid model with sub-grid Gaussian dispersion models
allows for the calculation of ground-level concentrations near pollution sources with high
spatial resolution. Moreover, a simplified street canyon model (SSCM) is part of EPISODE-
CityChem for better treatment of pollutant dispersion in street canyons in comparison to
models without SSCM [69]. The SSCM module computes concentrations for the receptor
points that are located in street canyons. To account for all relevant emission sources in the
study domain, emission data containing sector-specific and geo-referenced yearly emission
totals created with the developed UrbEm approach are processed with the EPISODE-
CityChem interface for emission pre-processing, the Urban Emission Conversion Tool
(UECT) [22]. UECT creates hourly varying emission input for point sources, line sources,
and area source categories using sector specific temporal profiles and vertical profiles,
based on annual totals of emissions. Temporal profiles from the SMOKE-EU model [58] are
applied in UECT.

Table A1. Model description and setup for the case studies of Athens and Hamburg.

Name (Version) EPISODE-CityChem (v1.2r)

Short description

A Chemistry Transport Model to enable chemistry/transport simulations of reactive pollutants on
the city scale. EPISODE is a Eulerian dispersion model developed at the Norwegian Institute for

Air Research (NILU) appropriate for air quality studies at the local scale. The CityChem
extension, developed at Helmholtz-Zentrum Geesthacht (HZG) is designed for treating complex
atmospheric chemistry in urban areas and improved representation of the near-field dispersion.

Reference(s) Karl et al., 2019 [22]; Hamer et al., 2019 [68]

Availability
The EPISODE model and the CityChem extension are open-source code subject to the Reciprocal

Public License (“RPL”) Version 1.5, https://opensource.org/licenses/RPL-1.5 (accessed: 23
October 2021). Zenodo. http://doi.org/10.5281/zenodo.1116173 (accessed: 23 October 2021).

Important
mechanisms

Gaseous chemistry: EmChem09-mod, including 70 chemical species, 67 thermal reactions, and 25
photolysis reactions (Karl et al., 2019 [22]).

Aerosol treatment: PM2.5 and PM10 are treated as passive tracers. Dry deposition of particles due
to Brownian diffusion, impaction, interception, and gravitational settling, as well as wet

scavenging (Simpson et al., 2003 [70])
Street canyon dispersion: Simplified street canyon model (SSCM) based on the Operational Street

Pollution Model (OSPM; Berkowicz et al., 1997 [69]) using generic canyon classifications.
Gaussian sub-grid dispersion: Line source dispersion (HIWAY2) coupled to SSCM. Point source

dispersion by segmented plume model (SEGPLU).
Local photochemistry (EP10-Plume; Karl et al., 2019 [22]) is applied in the receptor points of the

receptor grid (100 × 100 m2).

Boundary AQ conditions CAMS reanalysis hourly AQ data (http://www.regional.atmosphere.copernicus.eu, accessed: 23
October 2021)

Air pollution emissions Anthropogenic emission rates from CAMS-REG-AP v3.1 (Denier van der Gon et al., 2010; Kuenen
et al., 2011, 2014 [17,67])

Meteorological fields The Air Pollution Model (TAPM) [66], fed by synoptic-scale meteorological reanalysis ensemble
means (ECMWF ERA 5).

Outputs Hourly mean mass concentration values (µg m−3) for O3, NO, NO2, H2O2, N2O5, HNO3, SO2,
H2SO4, CO, PM2.5, PM10, NMVOCs (10 individual species).

Vertical grid 24 levels (from surface to ca. 3.7 km; first layer is 17.5 m thick).

Athens Hamburg

Horizontal domain
SW corner 23.4◦ E, 37.8◦ N
(45 × 45 cells of 1 × 1 km2,

with an embedded receptor grid 100 × 100 m2)

SW corner 53.5◦ E, 9.9◦ N
(30 × 30 cells of 1 × 1 km2,

with an embedded receptor grid 100 × 100 m2)

Simulation period 1–31 December 2018 1 January–31 December 2016

Scenarios CAMS no proxy: original emissions database, no proxies used for the downscaling
UrbEm: high-resolution emissions, based on CAMS, disaggregated through selected proxies

https://opensource.org/licenses/RPL-1.5
http://doi.org/10.5281/zenodo.1116173
http://www.regional.atmosphere.copernicus.eu
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Appendix C. Model Evaluation Local Statistics

In the statistical analysis of the model performance, the following statistical indicators
are used: normalized mean bias (NMB), standard deviation (SD), root mean square error
(RMSE), correlation coefficient (r), index of agreement (IOA), and the fraction of predictions
within a factor of two of observations (FAC2). The overall bias captures the average
deviations between the model and observed data and the NMB is given by:

NMB =
M − O

O
(A1)

where M and O stand for the averaged model and observation results, respectively. The
RMSE combines the magnitudes of the errors in predictions for various times into a single
measure and is defined as:

RMSE =

√√√√ 1
N

∗
N

∑
i=1

(Mi − Oi)
2 (A2)

where subscript i indicates the time step and N indicates the number of observations. RMSE
is a measure of accuracy to compare prediction errors of different models for particular
data and not between datasets, as it is scale-dependent. The correlation coefficient (Pearson
r) for the temporal correlation is defined as:

r =
∑n

i=1
(
Oi − O

)
·
(

Mi − M
)√

∑n
i=1
(
Oi − O

)2·∑n
i=1
(

M − M
)2

. (A3)

The index of agreement is defined as:

IOA = 1 − ∑N
i=1 (Oi − Mi)

2

∑N
i=1
(∣∣Mi − M

∣∣+ ∣∣Oi − O
∣∣)2 . (A4)

An IOA value close to 1 indicates agreement between modeled and observed data.
The fraction of modeled values within a factor of two (FAC2) of the observed values are
the fraction of model predictions that satisfy the following:

0.5 ≤ Mi
Oi

≤ 2.0. (A5)

For evaluation of modeled values in rural areas, the acceptance criteria is FAC2 ≥ 0.5,
while in urban areas, it is FAC2 ≥ 0.3 [71].

Table A2. Evaluation statistics for Hamburg. We aggregated all stations of the same type to groups of stations (type).

Pollutant Type Scenario n FAC2 NMB RMSE r IOA Mean
Mod

Mean
Obs

SD
Mod

SD
Obs

NO2
urban

background

CAMS
no

proxy
78,466 0.59 −0.33 15.05 0.54 0.55 14.37 21.57 11.18 15.23

urban
background UrbEm 78,466 0.64 −0.12 15.44 0.51 0.54 19.95 21.57 16.10 15.23

urban
industrial

CAMS
no

proxy
17,362 0.75 −0.14 17.57 0.39 0.50 26.76 31.04 14.06 16.66

urban
industrial UrbEm 17,362 0.74 −0.05 17.90 0.43 0.49 29.54 31.04 16.63 16.66
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Table A2. Cont.

Pollutant Type Scenario n FAC2 NMB RMSE r IOA Mean
Mod

Mean
Obs

SD
Mod

SD
Obs

urban traffic
CAMS

no
proxy

34,754 0.19 −0.71 47.43 0.26 0.11 15.50 54.38 11.15 27.88

urban traffic UrbEm 34,754 0.58 −0.38 32.71 0.49 0.41 33.82 54.38 20.82 27.88

PM2.5
urban

background

CAMS
no

proxy
8092 0.70 −0.27 9.84 0.36 0.55 9.69 13.44 5.21 9.67

urban
background UrbEm 8092 0.71 −0.23 9.78 0.36 0.55 10.10 13.44 5.42 9.67

urban
industrial

CAMS
no

proxy
17,327 0.75 −0.21 9.42 0.34 0.54 10.56 13.32 5.62 9.17

urban
industrial UrbEm 17,327 0.76 −0.14 9.46 0.32 0.54 11.40 13.32 6.12 9.17

urban traffic
CAMS

no
proxy

16,751 0.67 −0.38 10.48 0.42 0.49 9.32 15.15 4.99 9.57

urban traffic UrbEm 16,751 0.76 −0.19 9.67 0.37 0.54 12.17 15.15 6.00 9.57

Table A3. Evaluation statistics for Athens. We aggregated all stations of the same type to groups of stations (type).

Pollutant Type Scenario n FAC2 NMB RMSE r IOA Mean
Mod

Mean
Obs

SD
Mod

SD
Obs

NO2
urban

background

CAMS
no

proxy
4131 0.29 −0.61 22.31 0.28 0.41 8.60 22.83 9.42 17.59

urban
background UrbEm 4131 0.32 −0.52 21.43 0.33 0.43 10.44 22.83 12.14 17.59

urban
industrial

CAMS
no

proxy
1166 0.47 −0.32 22.58 0.09 0.32 19.68 31.46 13.43 15.89

urban
industrial UrbEm 1166 0.73 −0.04 20.27 0.43 0.45 30.71 31.46 20.91 15.89

urban traffic
CAMS

no
proxy

3620 0.17 −0.74 39.47 0.34 0.20 10.92 42.92 7.99 24.64

urban traffic UrbEm 3620 0.45 −0.47 29.89 0.50 0.42 22.51 42.92 17.48 24.64

PM2.5
urban

background

CAMS
no

proxy
1352 0.40 −0.53 8.33 −0.01 0.09 4.92 10.82 3.45 4.83

urban
background UrbEm 1352 0.36 −0.59 8.97 −0.04 0.00 4.22 10.82 3.74 4.83

urban
industrial

CAMS
no

proxy
162 0.65 0.31 19.85 0.57 0.51 25.78 23.01 16.68 22.04

urban
industrial UrbEm 162 0.59 0.57 26.13 0.60 0.37 29.14 23.01 21.46 22.04

urban traffic
CAMS

no
proxy

1482 0.73 0.06 23.59 0.42 0.56 26.89 25.41 19.35 24.03
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Figure A1. NH3 emission fields from agriculture for Hamburg (a,b) and Athens (c,d), as originally provided by CAMS 
(left) and as produced by the UrbEm framework (right). Symbols and isopleths of the main proxies used per source type 
for the spatial disaggregation of CAMS toward the 1 km by 1 km grid are shown on the maps of the right column (UrbEm 
outputs). 

 
Figure A2. Daily PM2.5 (μg m−3) scatter plots for (a) Athens, December 2018 and (b) Hamburg, 2016. The observed (obs) 
versus modeled (mod) mass concentrations are shown, the latter when applying the original CAMS emissions (CAMS no 
proxy) and high-resolution emissions using the newly developed approach (UrbEm). 
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