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Abstract: Profiling the hydrological response of watershed precipitation and streamflow to large-
scale circulation patterns and astronomical factors provides novel information into the scientific
management and prediction of regional water resources. Possible contacts of El Niño–Southern Os-
cillation (ENSO), Pacific Decadal Oscillation (PDO), sunspot activity to precipitation and streamflow
in the upper Yangtze River basin (UYRB) were investigated in this work. Monthly precipitation
and streamflow were utilized as well as contemporaneous same-scale teleconnections time series
spanning a total of 70 years from 1951 to 2020 in precipitation and 121 years from 1900 to 2020 in
streamflow. The principal component analysis (PCA) method was applied so as to characterize the
dominant variability patterns over UYRB precipitation time series, with the temporal variability of
first two modes explaining more than 80% of total variance. Long-term evolutionary pattern and pe-
riodic variation characteristics of precipitation and streamflow are explored by applying continuous
wavelet transform (CWT), cross-wavelet transform (XWT) and wavelet coherence (WTC), analyzing
multi-scale correlation between hydrological variables and teleconnections in the time-frequency
domain. The results manifest that ENSO exhibits multiple interannual period resonance with pre-
cipitation and streamflow, while correlations are unstable in time and phase. PDO and sunspot
effects on precipitation and streamflow at interannual scales vary with time-frequency domains, yet
significant differences are exhibited in their effects at interdecadal scales. PDO exhibits a steady
negative correlation with streamflow on interdecadal scales of approximately 10 years, while the
effect of sunspot on streamflow exhibits extremely steady positive correlation on longer interdecadal
scales of approximately 36 years. Analysis reveals that both PDO and sunspot have significantly
stronger effects on streamflow variability than precipitation, which might be associated with the high
spatiotemporal variability of precipitation.

Keywords: precipitation and streamflow; teleconnections; wavelet transform; wavelet coherence;
multi-timescale correlation; interannual and interdecadal scale; the upper Yangtze River basin

1. Introduction

Global climate change has influenced global and regional hydrological cycles [1].
The effect of large-scale climate effects in modulating water cycle events provides the key
for anticipating variation of hydrological factors [2]. Comprehending the variability of
hydrological variables such as precipitation and streamflow is fundamental to understand-
ing water cycle dynamics [3–5], while such variability has been indicated to be associated
with climate change effects and large-scale climate anomalies [3,6]. Hence, understanding
the telecorrelated relationship between different climate indices and local hydrological
variables can provide new guidance for improving water system models and optimizing
water resources management in specific regions [7].
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Ocean–atmosphere interactions tend to be closely related to hydrological variables
and hence provide valuable information for hydrological forecasting [8]. As the main
components of hydrological cycle, precipitation [9] and streamflow [1] are influenced by
complex ocean–atmosphere interactions. Oceanic–atmospheric phenomena of different
timescales might simultaneously affect the precipitation and streamflow in several wa-
tershed around the world [3]. El Niño–Southern Oscillation (ENSO) is the outcome of
oceanic and atmospheric interactions at macroscopic spatial scales that is treated as the
strongest interannual signal of climatic changes [10,11]. ENSO dominates tropical Pacific
climate variability on interseasonal to interannual timescales, which is the primary source
of predictability of global climate variability at these timescales [12,13]. ENSO has been
recognized as the dominating climate modulator of precipitation on global scale, which
further affects streamflow and other hydrologic cycle variables [2,11]. Based on teleconnec-
tions affecting coupled ocean atmosphere and land systems, ENSO events are closely linked
to the patterns of flood and drought all around the world [11], which strongly affect local-
and regional-scale climates [1,14]. Pacific Decadal Oscillation (PDO) is a periodic pattern of
oceanic and atmospheric climate change centered on mid-latitude Pacific basins, manifest
as the predominant empirical orthogonal function (EOF) of sea surface temperature (SST)
variability in the Pacific basin poleward of 20° N [15]. Previous analysis has shown that
PDO influences precipitation and streamflow as much as ENSO [16], and the effects of PDO
and ENSO appear to be additive when both are in the same phase [17,18]. Hydrological
time series have been indicated to exist climatic variability and to partially coincide with
known climate cycles such as ENSO and PDO [19]. Therefore, relevant information of
ENSO and PDO would cause improvements in precipitation and streamflow predictions,
thereby mitigating floods and droughts in the Pacific region and elsewhere [19,20]. Since
the influences of ENSO and PDO have significant temporal variability [17,21], the value
of using climate indices such as ENSO or PDO in water resource predictions depends on
understanding of the local relationship between these indices and hydrological factors on
time [17].

Solar irradiation is the dominant driving force of the Earth’s climate system [22].
The fluctuations and distribution of hydrological signals are highly correlated with geo-
physical system [23]. Previous studies have confirmed that the variability of solar activity
influences global climate on various timescales [22,24,25], with negative anomalies of SST
in equatorial Pacific during high solar activity years [26]. Sea temperature varies in-phase
with an 11-year solar activity cycle [27–29], which could force the Pacific decadal variabil-
ity [22]. Solar activity maxima and minima refer to periods of maximum and minimum
sunspot counts, with a solar cycle spanning from one sunspot minimum to the next [27];
hence, sunspot number is a possible indicator of solar activity associated with climate.
Gaining a comprehensive understanding of the effects of oceanic–atmospheric climate
anomalies and solar activity on temporal variability of precipitation and streamflow in
specific watersheds is of great significance for hydrological simulation, climate change and
risk management as well as for addressing water-resource-related issues [3,30,31]. Due to
its proximity to the Pacific Ocean, the Yangtze River basin is prominently sensitive to such
climatic phenomena as El Niño–Southern Oscillation (ENSO) [32–36] and Pacific Decade
Oscillation (PDO) [33,35,37,38], which have significant implications for forecasting water
resources and climate conditions. In recent years, studies in the Yangtze River basin and its
tributaries have made significant advances in the influence of large-scale teleconnection
patterns on hydrological variability [33,35,37,39–45], while the temporal persistence of
these relationships is not yet wholly understood. Additionally, as global climate conditions
have changed, the intensity and frequency of ENSO events have increased since the late
1970s [26], and ocean–atmosphere forcing has become one of the most potential sources of
global natural variability [1]; however, the influence of large-scale climate variability on
precipitation and streamflow in the UYRB has rarely been examined.

To this end, the main objective of this study is to analyze multi-timescale correlations of
tropical and mid-latitude Pacific climatic oscillations and sunspot activity with hydrological
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factors on a monthly timescale by utlizing continuous wavelet transform (CWT), cross-
wavelet transform (XWT) and wavelet coherence (WTC), and to investigate the periodic
evolution of precipitation and streamflow in the upper Yangtze River basin and their
possible link to telecorrelation factors. Tropical Pacific climate forcing is represented
by oceanic atmospheric ENSO, while mid-latitude Pacific oscillation is represented by
oceanic atmospheric climate pattern PDO. In addition, the interdecadal variability of
streamflow possibly associated with the influences of PDO and sunspot activity was
studied. Multi-timescale correlation analysis contributes to understanding relations of
hydrological response with climate forcing, providing novel information for enabling
regional water resources management. The contents of this paper are assigned as follows:
Section 2 describes the study area and presents data sources; Section 3 introduces the main
methodology; Section 4 provides study results; Sections 5 and 6 present discussion and
conclusions, respectively.

2. Materials
2.1. Study Area

With a total length of more than 6300 km [46], the Yangtze River is the longest river in
China and the third-longest river in the world, second merely to the Nile and the Amazon
river [5,43]. The upper Yangtze River is 4511 km in length, originating in the hinterland of
Qinghai–Tibetan Plateau and ending at Yichang, Hubei Province. The upper Yangtze River
basin (UYRB) is located between 90°13′–111°30′ E and 24°37′–35°54′ N, with geographical
location showing in Figure 1.

Figure 1. Geographic location and DEM map of the upstream Yangtze River basin with distribution
of hydrological and meteorological stations for research purposes.

The elevation of whole basin ranges from −22–7143 m, annual precipitation ranges from
739–1036 mm (from 1951 to 2020) and annual streamflow is approximately 440 billion m3
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(from 1900–2020). Influenced by the East Asian monsoon, South Asian monsoon and unique
topography of Qinghai–Tibet Plateau, the meteorological and hydrological characteristics
have significant seasonal variations [47]. The intra-annual distribution of precipitation and
streamflow is uneven, with 75% of precipitation and 70% of streamflow throughout the
year concentrated during the flood season from May to October, when rainstorms and
floods occur frequently, while a smaller proportion of precipitation and streamflow occurs
during the non-flood season. The upper reaches of the Yangtze River can be classified into
five main sub-basins of Jinsha River, Min-tuo River, Jialing River, Wu River and the upper
Yangtze River mainstream area, accounting for 32.8%, 22.7%, 16.1%, 11.3% and 17.0% of
total upstream flow, respectively. The Yichang hydrographic station [36,43], the export
control station of the upstream Yangtze River, controls a watershed area of 1,005,501 km2,
accounting for 55.8% of the Yangtze River basin area [48], including the Three Gorges
Reservoir and Gezhouba Reservoir, located 44 km and 6 km upstream of the Yichang
section, respectively [48]. Hydrological variability in the upstream Yangtze River affects
water fluctuations and power generation downstream, thus insights from this study are
useful for water resources planning and management in the Yangtze River basin.

2.2. Data Sources
2.2.1. Precipitation and Streamflow

Relationships between teleconnections and hydrological variables are characterized
by temporal and spatial variability that cannot be adequately evaluated without long-
term hydrological and meteorological records [17,49]. Therefore, the longest and most
complete record possible should be used when searching for secular trends in regions
that are equally affected by low-frequency climate cycles (e.g., PDO) [17]. Twenty-one
national meteorological stations in the UYRB with a 70-year span time series from January
1951 to December 2020 was utlized, and the monthly precipitation data were derived
from the National Climate Center, China Meteorological Administration (http://cmdp.ncc-
cma.net/cn/index.htm, accessed on 10 August 2021).

The controlling hydrological station for upper reaches of the Yangtze River export, the
Yichang hydrological station, with a total streamflow time series of 121 years spanning
from January 1900 to December 2020, was used in the current study. The monthly mean
streamflow data were derived from the Local Hydrographic Bureau, which has been
effectively quality-controlled and compiled.

2.2.2. ENSO

With recurring periodicities of 2–7 years, ENSO describes the movement of equatorial
Pacific waters associated with sea surface temperature variations and the fluctuations in
atmospheric pressure patterns in the tropical Indian and Pacific Oceans associated with the
Pacific trade winds [50,51]. The Nino3.4 SST index based on regional mean sea surface tem-
perature (SST) anomalies and Southern Oscillation index based on mean sea level pressure
(SLP) differences were used to characterize ENSO intensity in this study [52]. The Nino3.4
index is defined as mean monthly SST anomalies over the Nino3.4 region (5° S 5° N, 170° W
120° W) of equatorial Pacific Ocean [12,17], derived from IRI/LDEO Climate Data Library
(http://iridl.ldeo.columbia.edu/SOURCES/.Indices/.nino/, accessed on 6 August 2021).
The Southern Oscillation Index (SOI) gives an indication of the development and intensity
of El Niño or La Niña events in the Pacific Ocean region [13], derived from the Bureau
of Meteorology, Australian Government (http://www.bom.gov.au/climate/enso/soi/,
accessed on 6 August 2021).

2.2.3. PDO

Explained as the secular oceanic fluctuation of the Pacific [50], PDO is a large-scale
climate pattern of SST fluctuation between cool SST anomalies in the central-eastern North Pa-
cific Ocean, and warm SST anomalies along the central-western coast of North America [15,53].
PDO waxes and wanes approximately every 20–30 years, with longer cycles compared to

http://cmdp.ncc-cma.net/cn/index.htm
http://cmdp.ncc-cma.net/cn/index.htm
http://iridl.ldeo.columbia.edu/SOURCES/.Indices/.nino/
http://www.bom.gov.au/climate/enso/soi/
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ENSO, its periodicity recurring over decadal (around 15–25-year) to multidecadal (around
50–70-year) cycles [15,50,54]. The PDO index is defined as the dominant principal component
of North Pacific monthly SST variability, i.e., the time factor of the first mode after EOF
decomposition in North Pacific (20°–70° N, 110° E–100° W) [52] monthly time series was
derived from the National Centers for Environmental Information, National Oceanic and
Atmospheric Administration (https://www.ncdc.noaa.gov/teleconnections/pdo/, accessed
on 6 August 2021).

2.2.4. Sunspot

Solar activity has an average cycle with a duration of approximately 11 years [22,25,27].
The solar activity data, i.e., sunspot number (SSN), was obtained from the Royal Observa-
tory of Belgium, Brussels (https://wwwbis.sidc.be/silso/datafiles, accessed on 7 August
2021), which is calculated from Equation (1) [27]:

RSSN = k(10g + s) (1)

where R is the sunspot number, also referred to as SSN; k is the observatory scaling factor;
g is the number of sunspot groups; and s is the number of individual sunspots.

Figure 2 depicts monthly time series of four indexes with a time span from January
1900 to December 2020 used in this study. The black dotted line in the figure is the
original time series showing that indexes are nonststionary time series with periodical
fluctuation characteristics. To reduce the interference of intra-annual oscillations and
seasonal fluctuations, low-pass filtering was applied to original series by using 13-month
sliding average to visualize the interannual and interdecadal variability features of factor
series, which are given as red-blue envelopes in Figure 2.

Figure 2. Monthly time series of teleconnection indexes. (a) Nino3.4 Sea Surface Temperature index
(Nino3.4 SST); (b) Southern Oscillation Index (SOI); (c) Pacific Decadal Oscillation (PDO); (d) Sunspot
Number (SSN). Red signifies positive value, bule signifies negative value.

3. Methodology
3.1. Principal Component Analysis

Principal component analysis (PCA) is a technique for reducing the dimensionality of
large datasets, increasing interpretability while at the same time minimizing information
loss [55]. PCA is frequently used in rainfall data for its dimensionality reduction [3,56]
to obtain an uncorrelated orthogonal basis set derived from a climatic dataset, which is a

https://www.ncdc.noaa.gov/teleconnections/pdo/
https://wwwbis.sidc.be/silso/datafiles
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multivariate statistical technique that is widely applied to pattern recognition in climatology
time series of spatial fields [57]. One of the main purposes of PCA is to reduce the number
of series to be studied while preserving as much variability (i.e., statistical information)
as possible contained in the original set of variables in order to understand and interpret
the structure of the data [58]. Often useful insights into multivariate data arise from the
interpretation of these transformations [59]. PCA does so by creating new uncorrelated
variables that successively maximize variance, and such new variables are linear functions
of those in the original dataset, i.e., the principal components (PCs), hence being reduced to
solving an eigenvalue or eigenvector problem [55]. Each PC is characterized by its variance,
also referred to as eigenvalue, which is a measurement of its importance in explaining
variation [57].

In the present research, PCA was applied in order to characterize the dominant
variability patterns over monthly UYRB precipitation time series from 21 meteorological
stations with a time span of January 1951 to December 2020. The emphasis in PCA is almost
always on the first few PCs, and it is common practice to use some predefined percentage of
total variance explained to decide how many PCs should be retained (common for 70% of
total variability). Among such situations, the percentage of total variance accounted for is a
fundamental tool to assess the quality of these low-dimensional graphical representations
of the dataset [55]. PCA has choices associated with its use, for instance how many PCs
to retain [60]. In this work, the Kaiser–Meyer–Olkin (KMO) was calculated as a value of
0.874, which is an index evaluating multicollinearity among stations [3]. The Bartlett’s
sphericity test [61] carried out on the correlation matrix shows a calculated χ2 = 1621.861,
greater than the critical value χ2 = 146.6 (p-value = 0.05), and gained a p-value < 0.001,
manifesting that PCA can achieve a significant reduction of the dimensionality of the
original data set. The two components of those eigenvalues greater than 1 were retained,
with the first and second components’ variances accounting for 73.303% and 6.953% of
the initial data variance in precipitation series, respectively, and the cumulative variance
explained by 80.256%, which is efficient to characterize the fluctuation of precipitation
series in the UYRB.

3.2. Continuous Wavelet Transform

Continuous wavelet transform (CWT) can be used for analyzing time series containing
nonstationary power at many different frequencies, with clearly describing the dominant
patterns of variation [46,62] and analyzing the localized intermittent oscillations in hy-
drological time series [51,63]. Studies have shown that CWT is appropriate for analyzing
time series with non-normal distribution [64], which are frequently found in nonstationary
parameters, for instance such hydrological variables as precipitation and streamflow [51].
For the sake of determining the predominant mode of variability, CWT was performed on
precipitation and streamflow series in the UYRB.

CWT was applied to decompose the time series into all possible continuous scales
and generate a two-dimensional wavelet spectrum to reveal the temporal evolution and
variability of each periodicity [50,64]. With the purpose of applying wavelet as a bandpass
filter to time series, for discrete sequence (xn, n = 1, . . . , N), the CWT with uniform interval
of δt can be defined as the convolution of xn with scaled and normalized wavelet [64,65]:

WX
n (s) =

√
δt
s

N

∑
n′=1

xn′ψ0

[(
n′ − n

) δt
s

]
(2)

where
√

δt
s denotes the normalization factor that results in ψ having unit energy. Wavelet

power is defined as
∣∣WX

n (s)
∣∣2.

Due to dealing with finite-length time series, the artificial edge effects exist [64].
The cone of influence (COI) is the region of wavelet spectrum in which edge effects cannot
be ignored, which is deemed as the area in which wavelet power caused by a discontinuity
at edge has dropped to e−2 of the value at edge [64,65]. The significance levels of the
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wavelet spectrum were analyzed in a background of red noise, the appropriate stochastic
background spectrum for numerous geophysical phenomena and which can be modeled
as a univariate lag1 autoregressive process [65]. Significance at the 5% level is equivalent
to pass the 95% confidence level [24]; hence, the significance level of p < 0.05 was used to
evaluate the statistical significance of results.

The Morlet wavelet has been proven as the most appropriate wavelet function to be
used for analyzing geophysical signals [51,65] since that adequately describes the shape
of hydrological-type data and a better frequency resolution than other wavelets such as
the Mexican Hat and Paul and Daubechies wavelets [50]. Assume that a time series, xn,
has equal time intervals δt and n = 0 . . . N − 1, and a wavelet function, ψ0(η), depending
on parameter η [65]. Consisting of a Gaussian modulated plane wave, the Morlet wavelet
is a nonorthogonal complex function, which can be defined as [64–66]:

ψ0(η) = π−1/4eiω0ηe−
1
2 η2

(3)

where ω0 = 6 is dimensionless frequency, providing a good balance between time and
frequency localization, and η is the dimensionless time parameter.

3.3. Cross-Wavelet Transform and Wavelet Coherence

cross-wavelet transform (XWT) and wavelet coherence (WTC) are powerful meth-
ods for testing proposed linkages between two time series at multiple timescales [46,64].
From the CWTs of two time series, XWT and WTC can be calculated, where XWT exposes
regions with high common power and further reveals information about phase relation-
ship, while WTC can be thought of as local correlations between two time series in time
frequency space [39,51,64]. Hence, XWT identifies high common power, WTC unveils
locally phase-locked behavior [64] and the relative phase between two time series could
also be identified from XWT or WTC [39,65].

Given two time series X and Y, with wavelet transforms WX
n (s) and WY

n (s), the cross-
wavelet spectrum, which shows the covariance of two time series, can be defined as [65]:

WXY
n (s) = WX

n (s)WY∗
n (s) (4)

where ∗ indicates the complex conjugate,
∣∣WXY

n (s)
∣∣ can be defined as cross-wavelet power

and the complex argument WXY
n (s) can be interpreted as local relative phase between xn

and yn in time frequency space [64,65].
WTC quantifies the correlation and reveals regions in time frequency space where the

two time series covary but do not necessarily have high power [66,67], and the wavelet
coherence of two time series can be defined as [65]:

R2
n(s) =

∣∣S(s−1WXY
n (s)

)∣∣2
S
(

s−1|WX
n (s)|2

)
· S
(

s−1|WY
n (s)|

2
) (5)

where S is a smoothing operator defined by the wavelet type used. R2 takes a value
between (0, 1): 0 indicates no correlation between two time series, while 1 indicates two
time series that are perfectly correlated.

In the present research, the Monte Carlo approach was adopted to calculate the
statistical significance of the wavelet coherence [2]. The circular mean of phase angle over
regions with higher than 5% statistical significance that are outside COI can be utlized to
quantify the phase relationship [64]; statistically significant covariance was determined
against red noise background [65,68].
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4. Results
4.1. Temporal Patterns of Hydrological Variables

The evolution of hydrological variables has a significant characteristic of multiple
timescales. Multiple timescales of hydrological variable series, such as precipitation and
streamflow, are generally manifested as small time-scale variation cycles nested in large-
scale variation cycles, i.e., multi-level timescale structures and localized variation character-
istics exist in precipitation and streamflow variability within the time domain. Continuous
wavelet transform was applied to analyze the multi-timescale oscillations and periodic
fluctuation characteristics of monthly precipitation and streamflow series in the UYRB,
with the continuous wavelet power spectrum given in Figure 3. Thin solid lines in the
figure denote the cone of influence (COI) with wavelet boundary effects, where the edge
effects may distort calculation results [64]. Thick black contours denote 5% significance
levels, i.e., they passed the red noise test with 95% confidence levels [65]. The color denotes
the strength of wavelet power [66].

Figure 3. Continuous wavelet power spectrums of monthly precipitation and streamflow series.
(a) Precipitation (January 1951–December 2020); (b) Streamflow (January 1900–December 2020).

Continuous wavelet power spectrums indicate that precipitation and streamflow
series have highly significant 0.8–1.2-year interannual oscillation, which exhibit continuous
annual periodicity throughout the study time domain. Moreover, the precipitation series
shows intermittent 1–4-month cycle during 1950 to 1975; and the streamflow series shows
frequent 1–6-month significant cycle over the whole study time (January 1900 to December
2020), yet time of duration is short and cyclic oscillations are unstable.

Furthermore, except for an extremely significant annual cycle of about 1-year, precipi-
tation and streamflow series do not show significant cyclical variation on longer interannual
and interdecadal scales. In order to eliminate the disturbance of annual oscillation and sea-
sonal fluctuation, Morlet complex wavelet transform was utilized to analyze the continuous
multi-timescale characteristics of annual precipitation and annual streamflow evolution,
to determine the relative intensity of fluctuation and the main timescales of variability on
interannual and interdecadal scales, i.e., the main cycles.

The contour map of the wavelet coefficients’ real part reflects periodic variations of
time series at different scales and their distribution in the time domain so as to judge
the future trends of precipitation and streamflow at different timescales. Wavelet coef-
ficient contour maps of annual precipitation and annual streamflow series are given by
Figure 4, which depict multi-timescale characteristics that exist in the evolutionary process
of precipitation and streamflow. Horizontal coordinates denote years; vertical coordinates
denote timescale (a); and equivalence curves denote real part values of wavelet coefficients,
where positive values denote abundant water periods and negative values denote withered
water periods.
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Figure 4. Wavelet coefficient contour maps of annual precipitation and streamflow series. (a) Precipi-
tation (1951–2020); (b) Streamflow (1900–2020).

Figure 4 shows that four scale types of periodic variation patterns exist in precipita-
tion evolutionary process including 26–32-, 20–25-, 12–18- and 4–10-year. Quasi-3.5 os-
cillations of alternating abundance–withering occur on a 26–32-year interdecadal scale;
quasi-4.5 oscillations occur on a 20–25-year interdecadal scale, and periodic variation
of both interdecadal scales exhibits highly stability over the whole study time domain.
Moreover, periodic variations on a 12–18-year interdecadal scale show quasi-4 oscillations
during the periods of 1950 to 1975 and 2000 to 2020; a 4–10-year interannual scale shows
relatively stable performance during the 1950s and 2010s. Four scale types of periodic
variation patterns exist in streamflow evolutionary process, including 26–32-, 20–25-, 12–18-
and 4–10-year. Quasi-7.5 oscillations of alternating abundance–withering occur on an
18–32-year interdecadal scale; quasi-11 oscillations occur on a 10–17-year interdecadal
scale. Moreover, periodic variation on an 18–32-year interdecadal scale shows stability and
continuity throughout the time domain; periodic variation on a 10–17-year interdecadal
scale shows relatively stability after the 1940s; and a 4–9-year interannual scale shows
relative stability during the periods of 1900 to 1940 and 2000 to 2020.

Wavelet variance maps are given by Figure 5, which are used to determine the main
cycle present in evolutionary process of precipitation and streamflow. Horizontal coor-
dinates denote timescale (a); vertical coordinates denote wavelet variance, reflecting the
energetic distribution of time series fluctuating with scale (a). Five significant crest values
exist in wavelet variance maps of precipitation, corresponding to 31-, 24-, 17-, 8- and 5-year
timescales, respectively. The maximum peak corresponds to a 31-year timescale, indicating
the strongest cyclic oscillation around 31 years, which is first main cycle of precipitation
variation; 24-year timescale corresponds to the second peak, which is second main cycle of
precipitation variation; the third, fourth and fifth peaks correspond to 17-, 8- and 5-year
timescales, respectively, in the order of third, fourth and fifth main cycles of precipitation.
Fluctuations in these five cycles control the changing characteristics of precipitation over
the whole study time domain (from 1951 to 2020). Four distinct peaks exist in wavelet
variance maps of streamflow, corresponding to 24-, 14-, 8- and 5-year timescales in turn.
The maximum peak corresponds to a 24-year timescale, indicating the strongest cyclic
oscillation around 24 years, the first main cycle of annual streamflow variation; the second
peak corresponds to a 14-year timescale, the second main cycle of streamflow variation;
the third and fourth peaks correspond to 8- and 5-year timescales, i.e., the third and fourth
main cycles of streamflow in the UYRB, respectively. Fluctuations in these four timescales
control evolutionary characteristics of streamflow throughout the whole study time domain
(from 1900 to 2020).



Atmosphere 2021, 12, 1361 10 of 20

Figure 5. Wavelet variance maps of annual precipitation and annual streamflow series. (a) Precipita-
tion (1951–2020); (b) Streamflow (1900–2020).

Wavelet coefficient maps of the first and second main cycles controlling the evolution
of precipitation and streamflow were plotted based on the wavelet variance test results.
The principal period trend maps reflect the average period and abundant-withering varia-
tion characteristics of precipitation and streamflow series existing at different timescales.
Figure 6 shows that on a 31-year characteristic timescale, the average cycle of precipitation
variation is about 21 years, which undergoes about 3.5 periods of abundance–depletion
transitions during the study period; on a 24-year characteristic timescale, the average cycle
is about 16 years, undergoing about 4.5 cycles of abundance–depletion variation. On a
24-year characteristic timescale, the average cycle of streamflow variation is about 16 years,
which undergoes about 7.5 periods of abundance–depletion transitions during the study
period; on a 14-year characteristic timescale, the average cycle is about 9 years, undergoing
about 13.5 cycles of abundance–depletion variation.

Figure 6. Wavelet coefficient processes of the first and second main cycles in annual precipitation
and annual streamflow variations. (a) Precipitation (1951–2020); (b) Streamflow (1900–2020).

4.2. XWT between Hydrological Variables and Teleconnections

Time-frequency multiscale correlations at different phases were investigated with the
purpose of characterizing the dependency of hydrological factors on ocean–atmosphere
phenomena and sunspot activity. The thin black soild line in the cross-wavelet spectrum
and wavelet coherence spectrum denotes the cone of influence (COI) with boundary effect;
the thick black contour denotes passing the red noise inspection with 95% confidence
level, i.e., significant correlation. The arrows towards the right denote that hydrological
variables and telecorrelations vary in-phase, i.e., positive correlation; the arrows toward
the left denote anti-phase variation, i.e., negative correlation; the downward arrows denote
that hydrological variables vary 90° ahead of telecorrelations, i.e., 3 months; the updward
arrows denote lagging the variation of telecorrelations by 90°.

Figure 7 depicts cross-wavelet transform results between monthly precipitation series
in the UYRB and contemporaneous monthly scale telecorrelational indexes, among which
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Nino3.4 SST and SOI characterize ENSO; PDO characterizes PDO; and SSN characterizes
sunspot activity. Precipitation and Nino3.4 region SSTs exhibit highly significant 8–16-month
main resonance cycle throughout the study time domain, yet the phase relation varies con-
siderably with time domain variations. Furthermore, an intermittent antiphase resonance
cycle of about 28–64-months occured during 1965 to 2010, with a lag of about 4.5 months in
precipitation variation (mean phase angle about 135°), yet it was insignificant at 95% confi-
dence level. Precipitation and SOI exhibit a significant intermittent 8–14-month resonance
cycle within time domain, with phase variation over time and instability in correlation.
The continuous and significant 8–14-month resonance cycle between precipitation and
PDO exists throughout the study time domain, manifesting mainly as antiphase variation,
and a lag relative to PDO exists in precipitation during 1982 to 2018. Precipitation and
SSN exhibit intermittent 10–14-month resonance cycles during 1955 to 2005 while passing
the significance test. Precipitation shows a relatively strong antiphase resonance cycle,
with SSN on an interdecadal scale of approximately 128 months, yet insignificant at 95%
confidence level. Additionally, the cross-wavelet energy intensity discontinuously passing
the significance test exists for precipitation and telecorrelation indexes in the 1–6-month
frequency band; however, durations are short and phase relationships vary widely with
time, and the correlation is unstable.

Figure 7. Cross wavelet power spectrums between monthly precipitation series and telecorrelations.
(a) Precipitation-Nino3.4 SST; (b) Precipitation-SOI; (c) Precipitation-PDO; (d) Precipitation-SSN.

Figure 8 depicts cross-wavelet transform results between monthly streamflow series
in the UYRB and contemporaneous monthly telecorrelation indexes. Streamflow series
exhibited an intermittent and highly significant 8–16-month main resonance cycle with
Nino3.4 SST, with in-phase variation and a lag of about 1.5 months in streamflow during
1905 to 1925 and 1995 to 2015 (mean phase angle of about 45°). Moreover, streamflow
and Nino3.4 SST exhibit intermittent relatively strong resonance cycles on the interannual
scales of 28–64- and 64–128-month, yet insignificant at 95% confidence level; a continuous
strong resonance cycle exists on the interdecadal scale of 128–224-month, with the two
showing antiphase variation during 1920 to 1960 and 1990 to 2010; the period of 1960
to 1990 manifested in-phase variation, with a failure to pass red noise tests of 95% confi-
dence level. Streamflow and SOI exhibited a significant resonance cycle of intermittent
8–16-month during 1900 to 1940 and 1960 to 2010. Intermittent relatively strong resonance
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cycles existed on 32–64- and 64–128-month interannual scales and an 128–224-month in-
terdecadal scale, yet they were insignificant at 95% confidence level. Streamflow and
PDO exhibit an extremely significant 8–14-month resonance cycle throughout the study
time domain. The interannual scale resonance cycles of 48–72 and 72–128 months are
located in the period of 1930 to 1960 and 1960 to 2010, respectively, with the two varying in
antiphase, yet insignificant at 95% confidence level. Furthermore, strong resonance cycles
of 128–256- and 192–256-month interdecadal scales lie on the period of 1920 to 1960 and
1960 to 2020, respectively, while positive and negative correlations alternate before and
after 1960, with antiphase before 1960, i.e., negative correlation, and in-phase after 1960
with a lagging effect in streamflow variation. A significant resonance cycle of intermittent
8–14-month timescale existed during 1920 to 2005 between streamflow and SSN, yet the
phase dependence varies widely with time domain and correlation is unstable. A continu-
ous stronger resonance cycle of 95–192-month interdecadal scale is located in the period of
1915–2008, while the two showed in-phase, antiphase and in-phase variation during the
periods of 1935–1955, 1955–1980 and 1980–2008, respectively, yet they failured to pass red
noise tests of 95% confidence level.

Figure 8. Cross-wavelet power spectrums between monthly streamflow time series and teleconnec-
tions. (a) Streamflow-Nino3.4 SST; (b) Streamflow-SOI; (c) Streamflow-PDO; (d) Streamflow-SSN.

4.3. WTC between Hydrological Variables and Teleconnections

WTC measures the coherence of cross-wavelet transform in time-frequency domains [64],
which is a correlation coefficient localized in time and frequency space used to quantify the
degree of linear relations between hydrological variables and teleconnection index series
in the time and frequency domains [66].

Figure 9 depicts wavelet coherence calculation results between monthly precipitation
in the UYRB and contemporaneous monthly scale telecorrelation index series. Wavelet
energy intensity between precipitation and Nino3.4 SST intermittently pass the significance
test on the 1–12-month intra-annual scale and 20–64-month interannual scale, respec-
tively. A significant resonance cycle of 4–7-month scale with a lag in precipitation of about
4 months (mean phase angle of 120°) exists during 2010 to 2018; a significant resonance
cycle of 28–38-month scale with in-phase variation and a lag in precipitation of about
1 month (mean phase angle of 30°) exists during 1980 to 1985. Precipitation and SOI exhibit
intermittent significant cycles on 1–16- and 20–64-month timescales. Significant antiphase
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resonance cycles existed on 28–36- and 8–15-month scales within the 1980 to 1986 and
2000 to 2004 periods, respectively; in-phase resonance cycles existed on 56–68-, 20–64-,
and 20–48-month interannual scales during 1974 to 1994, 1994 to 1999 and 2004 to 2014
periods, respectively, which failed to pass the red noise tests at 95% significance level. Pre-
cipitation and PDO exhibit intermittent significant cycles on 1–14- and 20–64-month scales,
with significant periodic correlations on the 8–14-month scale intermittently spanning
the time domain, yet phase relationships are less stable. During the period of 1992–2002,
a significant interannual resonance cycle of 36–56-month existed with the two showing
antiphase variation and a lag of about 5 months in precipitation (mean phase angle of 150°).
Intermittent and significant resonance cycles exist between precipitation and SSN on 1–7-
and 10–14-month scales during 1962 to 1994 and 1955 to 2005, respectively, while phase
relationship remains unstable. Moreover, the significant interannual resonance cycle of
24–36-month emerges during 1976 to 1984, with antiphase variation and a lag of about
4.5 months in precipitation to SSN (mean phase angle of 135°).

Figure 9. Wavelet coherent spectrums between monthly precipitation and telecorrelation indexes time
series. (a) Precipitation-Nino3.4 SST; (b) Precipitation-SOI; (c) Precipitation-PDO; (d) Precipitation-SSN.

Figure 10 depicts wavelet coherence calculation results between monthly streamflow
in the UYRB and contemporaneous monthly scale telecorrelation index series. Streamflow
and Nino3.4 SST show intermittent significant resonance cycles on both a 1–12-month
intra-annual scale and 20–64-month interannual scale, yet with a short duration and phase
variation over time, the correlation is unstable. Furthermore, a significant interannual scale
resonance cycle of 16–64-month exists during 1980 to 2010, with antiphase variation and
a lag of about 4.5 months in streamflow response to Nino3.4 SST (mean phase angle of
135°). Wavelet energy intensity between streamflow and SOI series intermittently the pass
significance test on interannual scales of 1–16- and 16–64-month, while the significance
interval on the 1–16-month scale is short in duration with unstable phase relationship.
During the period of 1980 to 2010, significant 16–64-month interannual scale resonance
cycles exist, and the two exhibit identical phase relations, i.e., positive correlation with cor-
relation coefficients of 0.80 to 0.85. Streamflow and PDO exhibit intermittent significant
resonance cycles on both the 1–16-month scale and 18–72-month interannual scale, yet
with short duration and less stable phase relationships, with the significant resonance
cycle on the 48–72-month interannual scale occurring during the period of 1910 to 1920.
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Moreover, the interdecadal scale correlation of about 128 months occurs continuously
within the period of 1930 to 2010 and passes 95% significance test level against red noise
during the period of 1960 to 1975 and 1995 to 2002, with correlation coefficients reaching
about 0.80. Intermittent significant resonance cycles occur between streamflow and SSN on
both the 1–16-month scale and 20–72-month interannual scale. Significant and intermittent
correlation on the 8–16-month scale occur during 1940 to 2010, dominated by co-phase
variations. Significant resonance cycle on an interannual scale of 16–28-month occurs dur-
ing the period of 2010 to 2018, with a lag of about 3 months in streamflow response to SSN
(mean phase angle of 90°). A 32–64-month interannual scale exhibits significant resonance
cycles during the periods of 1915–1925, 1955–1970 and 1972–1980. Moreover, streamflow
and SSN manifest a continuous and highly significant interannual main resonance cycle of
320–448 months throughout the time domain, with the two showing in-phase variation,
i.e., positive correlation.

Figure 10. Wavelet coherent spectrums between monthly streamflow and telecorrelation index time
series. (a) Streamflow-Nino3.4 SST; (b) Streamflow-SOI; (c) Streamflow-PDO; (d) Streamflow-SSN.

4.4. XWT and WTC between Annual Streamflow and PDO/SSN

According to the aforementioned results, streamflow in the UYRB are significantly
correlated with PDO and SSN on interdecadal scales; thus, further cross-wavelet transform
and wavelet coherence were performed between annual streamflow from 1900 to 2020
and contemporaneous annual PDO and SSN time series to analyze the possible influence
of interdecadal scale periodic oscillations of PDO and sunspot activity on streamflow
evolution in the UYRB. The calculation results are given in Figure 11.

Figure 11 indicates that streamflow and PDO exhibit significant negative correlations
on a 4–7-year interannual scale and 14–18-year interdecadal scale resonance cycles at
95% confidence level, with the interdecadal scale resonance cycle being predominant.
Streamflow and SSN exhibit a longer interannual and interdecadal main resonance cycle
on the 7–14-year scale and pass the red noise test at 95% significant level during the
period of 1934 to 2008. The two show positive, negative and positive correlations during
the 1934–1955, 1955–1980 and 1980–2008 periods, respectively. Resonance cycle on the
8–16-year scale with inverse phase between streamflow and PDO occurs during 1928 to
2008, and negative correlations on the 10–12-year interdecadal scale pass 95% confidence
level of the red noise test during 1960 to 1975 and 1990 to 2005. Moreover, 3–7- and
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1–4-year interannual resonance cycles were observed during the periods of 1906–1920 and
1950–1960, respectively. Streamflow and SSN exhibit a significant 32–48-year interdecadal
scale main resonance cycle with positive correlation at 95% confidence level. Moreover, a
significant 1–6-year interannual scale resonance cycle appears during the period of 1945
to 1962, with a lagged response approximately 4 years in streamflow to SSN (mean phase
angle of 120°).

Figure 11. Cross-wavelet and wavelet coherence spectrums between annual streamflow series
and PDO/SSN. (a) XWT: Streamflow-PDO; (b) XWT: Streamflow-SSN; (c) WTC: Streamflow-PDO;
(d) WTC: Streamflow-SSN.

5. Discussion

ENSO manifests as wind field and sea surface temperature oscillations in equato-
rial east-central Pacific, originating from ocean–atmosphere interactions at low latitudes.
Nino3.4 SST and SOI were used to characterize ENSO signals, and the results indicate
that multiple significant interannual resonance cycles exist between hydrometeorological
factors in the UYRB and ENSO signals, yet the phase relationships vary with both time
and frequency domains. ENSO shows significant correlation with precipitation mainly on
the 4–12-month intra-annual scale and 12–64-month interannual scale, with streamflow
mainly on 12–64-month interannual scale; hence, anomalous interannual fluctuations of
ENSO events exert important implications for shorter interannual scale cycle variations of
both precipitation and streamflow in the UYRB.

PDO represents a strong periodic pattern of ocean–atmospheric variability centered on
the mid-latitude Pacific basin. The PDO index was used to characterize PDO signals, and
the results indicate that PDO primarily affects periodic variation on a longer interannual
scale of precipitation and about 10-year interdecadal scale of streamflow in the UYRB. PDO
exhibits a significant negative correlation with precipitation on a 48–64-month interannual
scale, yet the covariance varies over time-domain, while there is a steady and continuous
negative correlation with streamflow on about 10-year interdecadal scale. Previous research
has shown that among numerous oceanic–atmospheric signals, PDO was the ocean signal
that best explained variations in the Yangtze streamflow [66]. Positive PDO corresponds
to a low precipitation period, further affecting long-term water discharge of the Yangtze
River [69]. Moreover, water discharge from the Yangtze River consists of cycles that are
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close to the typical PDO cycles (i.e., 15- to 20-year cycles, on average) [52,66], which is
consistent with the conclusion of the present research.

Furthermore, interdecadal scale periodic oscillations of PDO have stronger and more
consistently significant effects on streamflow than precipitation in the UYRB. This con-
clusion could be supported by the view that on account of the variability in precipitation
that is more enhanced than in streamflow, and that streamflow integrates information
spatially, the relationship between streamflow and telecorrelation might be stronger than
that between precipitation and telecorrelation [11,70]. According to Beebee and Manga [17],
this may be due to the spatial advantage of streamflow that stream discharge represents a
more coherent spatial average over a smaller area than scattered climate stations, or because
runoff depends on both precipitation and temperature associated with evapotranspiration,
and hydrologic cycle amplifies the combined effects of precipitation and temperature, or
both included.

The 11-year quasi-periodic oscillations in sunspot activity affect climatic variations
on global scales. Sunspot number (SSN) was adopted to characterize sunspot activity, and
the results indicate that sunspot activity has significant effects on the interdecadal scale
cyclic variation of streamflow more than precipitation variation, which mainly manifests in
that SSN exhibits significant negative yet unstable correlation with precipitation mainly on
a 24–36-month interannual scale, while it has extremely stable and consistently significant
positive correlation with streamflow on a 32–48-year interdecadal scale. Additionally,
the main resonance cycles of SSN and both annual precipitation and streamflow are located
on an 8–14-year timescale, suggesting that the 11-year cycle fluctuations of sunspots
have important effects on the interdecadal scale periodic variability of precipitation and
streamflow in the UYRB. Consequently, investigations on the possible effects of interannual
scale variability of ENSO and interdecadal scale variability of PDO and sunspot activity on
hydrometeorological factors in the UYRB should be strengthened in the future.

Under changing climate scenarios and changing atmospheric and oceanic conditions,
an effective and promising approach to forecast hydrological factors is to focus on the
best predictors [66]. The results contribute to better understanding of long-term trends in
precipitation and streamflow over the UYRB and their multi-scale correlations with Pacific
oceanic–atmospheric singals and astronomical factor, further providing meaningful infor-
mation for planning and implementing operational strategies for sustainable utilization of
local water resources.

6. Conclusions

The possible effects of different time-scale periodic oscillations in both oceanic at-
mospheric signals and solar activity on the evolution of precipitation and streamflow in
specific watersheds provide useful information for scientifically forecasting local water
resources and water-related management. The present research estimated the main vari-
ability timescales of the precipitation and streamflow in the Upper Yangtze River Basin
(UYRB) and their relations to the large-scale climate variablity, with the research results
summarized as follows.

(1) Continuous wavelet transform results indicate that both precipitation and stream-
flow series exhibit significant interannual oscillations during the whole study period,
with continuous annual periodicity spanning the entire time domain. The first and second
principal periods of annual precipitation variation correspond to 31- and 24-year timescales,
respectively, and the first and second principal periods of annual streamflow correspond to
24- and 14-year timescales, respectively. In addition, significant periodic oscillations exist
in both precipitation and streamflow on 8- and 5-year time scales.

(2) Cross-wavelet and wavelet coherence spectrums indicate that significant corre-
lation between precipitation and ENSO are mainly located on an interannual scale of
1–4 years; significant correlation with PDO are located on an interannual scale of 1–5 years
and the two exhibit stable antiphase variation, i.e., negative correlation, on an interannual
scale of 3–5 years; an intermittent significant correlation with SSN lies on an interan-
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nual scale of 1–3 years, while an interdecadal correlation lies at approximately 11 years,
insignificant at 95% confidence level.

(3) Cross-wavelet and wavelet coherence spectrums indicate that a significant correla-
tion between streamflow and ENSO is located on interannual scale of 1–5 years, with in-
significance on an interdecadal scale of approximately 10 years; intermittent significant
correlation with PDO on an interannual scale of 1–6 years, while a stable negative correla-
tion is located on an interdecadal scale of 10–16 years, passing the 95% significance test;
intermittent significant correlation with SSN on an interannual scale of 1–6 years, with
a consistent and continuous significant positive correlation located on a relatively long
interdecadal scale of 32–48 years.

(4) Overall, ENSO mainly affects short interannual periodic fluctuations of precipita-
tion and streamflow in the UYRB, with phase relationships varying widely over time; PDO
and SSN mainly affect interannual periodic variability of precipitation and interannual
and interdecadal periodic variability of streamflow, where the interdecadal scale is affected
more steadily and consistently than the interannual scale. Analysis indicates that PDO and
SSN have stronger influences on streamflow variability than precipitation in the UYRB,
and interdecadal scale correlations of both PDO and SSN to streamflow continuously act
on interdecadal periodic variability of streamflow.
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