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Abstract: The monitoring and forecasting of particulate matter (e.g., PM2.5) and gaseous pollutants
(e.g., NO, NO2, and SO2) is of significant importance, as they have adverse impacts on human
health. However, model performance can easily degrade due to data noises, environmental and other
factors. This paper proposes a general solution to analyse how the noise level of measurements and
hyperparameters of a Gaussian process model affect the prediction accuracy and uncertainty, with
a comparative case study of atmospheric pollutant concentrations prediction in Sheffield, UK, and
Peshawar, Pakistan. The Neumann series is exploited to approximate the matrix inverse involved
in the Gaussian process approach. This enables us to derive a theoretical relationship between any
independent variable (e.g., measurement noise level, hyperparameters of Gaussian process methods),
and the uncertainty and accuracy prediction. In addition, it helps us to discover insights on how these
independent variables affect the algorithm evidence lower bound. The theoretical results are verified
by applying a Gaussian processes approach and its sparse variants to air quality data forecasting.

Keywords: Gaussian process; uncertainty quantification; air quality forecasting; low-cost sensors;
sustainable development

1. Introduction

It is generally believed that urban areas provide better opportunities in terms of
economic, political, and social facilities compared to rural areas. As a result, more and
more people are migrating to urban areas. At present, more than fifty percent of people
worldwide live in urban areas, and this percentage is increasing with time. This has led to
several environmental issues in large cities, such as air pollution [1].

Landrigan reported that air pollution caused 6.4 million deaths worldwide in 2015 [2].
According to World Health Organization (WHO) statistical data, three million premature
deaths were caused by air pollution worldwide in 2012 [3]. Air pollution has a strong link
with dementia, causing 850,000 people to suffer from dementia in the UK [4]. Children
growing up in residential houses near busy roads and junctions have a much higher
risk of developing various respiratory diseases, including asthma, due to high levels of
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air pollution [5]. Polluted air, especially air with high levels of NO, NO2, and SO2 and
particulate matter (PM2.5), is considered the most serious environmental risk to public
health in urban areas [6]. Therefore, many national and international organisations are
actively working on understanding the behaviour of various air pollutants [7]. This
eventually leads to the development of air quality forecasting models so that people can be
alerted in time [8].

Essentially, being like a time series, air quality data can be easily processed by models
that are capable of time series data processing. For instance, Shen applies an autoregres-
sive moving average (ARMA) model in PM2.5 concentration prediction in a few Chinese
cities [9]. Filtering techniques like Kalman filter are also applied to adjust data biases to
improve air quality prediction accuracy [10]. These methods, though with good results
reported, are limited by the requirement of a prior model before data processing. Machine
learning methods, on the other hand, can learn a model from the data directly. This has
enabled them to attract wide attention in recent decades in the field of air quality fore-
casting. For instance, Lin et al. propose the support vector regression with logarithm
preprocessing procedure and immune algorithms (SVRLIA) method, which outperforms
general regression neural networks (GRNN) [11] and BackPropagation neural networks
(BPNN) [12] in Taiwan air quality forecasting [13].

Recently, inspired by the fact that large scale data are accumulated, deep learning
models have been applied in air quality prediction [14]. Some work has added these
deep learning models with the ability to quantify uncertainties introduced by inputs. For
instance, Garriga-Alonso et al. endow a deep convolutional network with uncertainty
quantification, by taking it as an equivalent of a Gaussian processes (GPs) model [15]. This
is because GPs predictions are accompanied by confidence intervals, which are usually
taken as a metric to measure prediction uncertainties. Applications of GPs in air quality
forecasting can be found in [16,17]. However, the involvement of matrix inversion in GPs
limits their application in large-scale datasets [18]. This has inspired research on improving
the efficiency of GP models, and a series of efficient GP models have been published [19].
We also proposed an efficient GP model with application in air quality forecasting [17].
Despite the rich number of GP models published, there lacks work that investigates how
noise level, hyperparameters, etc. affect the performance of GP models. It is necessary
because air quality data vary due to seasonal variations and sensor degradations. A well-
trained GP model may not work when fed with new data, simply due to measurement
noise level change. By knowing how the variation of GPs performance can be attributed to
noise level and hyperparameters, etc., we will still be able perform analysis when noise
level or hyperparameters vary.

Aiming at this, a general solution is proposed in this paper. It provides insights on
how a GP model’s performance is related to measurement noise level and hyperparameters,
etc. The main contribution of this work includes (1) a general method for analysing how
noise level and hyperparameters of a GP model affect the prediction performance. The
variation of the evidence lower bound (ELBO) and the upper bound of the marginal
likelihood (UBML) with respect to the noise level and hyperparameters are also given.
(2) Neumann series is exploited to approximate the matrix inversion involved in GPs. This
helps construct an analytical relation between noise level, hyperparameters, etc., and model
performance. (3) A comparative air quality forecasting study between Sheffield, UK, and
Pershawar, Pakistan is given, demonstrating that the proposed solution is able to capture
how noise level and hyperparameters affect GPs performance.

The remaining part of this paper is as follows. Section 2 provides the theoretical funda-
mentals involved in this paper; Section 3 elaborates the proposed uncertainty quantification
solution. In Section 4, we provide a comparative study of air quality prediction in the same
period between the British city Sheffield and Pakistani city Pershawar, and the paper is
concluded in Section 5. Appendix A describes the data collection process in Peshawar,
Pakistan, and in Sheffield, United Kingdom, and presents maps of the considered areas
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of these cities. Appendix B gives the World Health Organisation (WHO) criteria for air
pollutants. Appendix C gives the approximate derivatives of the GP kernel.

2. Background Knowledge
2.1. Gaussian Processes

Given a set of training data D = {(xi, yi), i = 1, · · · , n} where xi ∈ X is the input and
yi ∈ R is the observation, we can determine a GP model f (·) to predict y∗ for a new input
x∗. For instance, when the output is one-dimensional, the GP model is formulated as

f ∼ GP
(

f̄ (x), k(x, x′)
)
, y = f (x) + ε, ε ∼ N (0, σ2), (1)

where f̄ : X → R is the mean function defined as

f̄ (x) = E
[

f (x)
]
, (2)

and k : X ×X → R is the kernel function [18] defined as

k(x, x′) = E
[
( f (x)− f̄ (x))( f (x′)− f̄ (x′))

]
, (3)

where ε is the additive, independent, identically distributed Gaussian measurement noise
with variance σ2 6= 0, and E denotes the mathematical expectation operation.

Given xi a D× 1 vector, the n inputs can be aggregated into a matrix XD×n, or briefly
X with the corresponding output vector yn×1, or y. Similarly, the function values at the
test inputs X∗ with dimensions of D× N can be denoted as f∗, and we next write the joint
distribution of y and f∗ as [

y
f∗

]
∼ N

(
0,
[

Knn + σ2I KnN
KNn KNN

])
, (4)

where I represents the identity matrix. Knn + σ2I is the n× n prior covariance matrix of y
with entry Kij = k(xi, xj) + σ2δij, where δij is one iff i = j and zero otherwise, and xi and xj
are column vectors from X. The matrix KNN denotes the N × N prior covariance matrix of
f∗ with entry Kij = k(xi, xj), where xi and xj are column vectors from X∗. The matrices KNn

and KnN satisfy KNn = KT
nN , and the entry of the N × n prior covariance matrix of f∗ and

y is Kij = k(xi, xj), where xi is a column vector from X∗ and xj is a column vector from X.
By deriving the conditional distribution of f∗ from (4), where the prior mean is set to

be zero for simplicity [20], we have the predictive posterior at new inputs X∗ as

f∗|X, y, X∗ ∼ N
(
f̄∗, cov(f∗)

)
, (5)

where
f̄∗ , E

[
f∗|X, y, X∗

]
= KNn

[
Knn + σ2I

]−1y, (6)

is the prediction at X∗, and

cov(f∗) = KNN −KNn
[
Knn + σ2I

]−1KT
Nn, (7)

denotes the covariance of f∗.
The hyperparameter θ incorporated in the mean and covariance functions underpin

the predictive performance of GP models, and they are usually estimated by maximising
the logarithm of the marginal likelihood

log p(y|X) = −1
2

yT(Knn + σ2I
)−1y− 1

2
log |Knn + σ2I| − n

2
log 2π. (8)
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2.2. Neumann Series Approximation

Given a matrix inverse A−1, it can be expanded as the following Neumann series [21]

A−1 =
∞

∑
n=0

(
X−1(X−A)

)nX−1, (9)

which holds if limn→∞
(
I− X−1A

)n
= 0 is satisfied. In our case, suppose

A = K + σ2
nI , DA + EA, (10)

where DA is the main diagonal of A and EA is the hollow. If we substitute X in Equation (9)
by DA, we get

A−1 =
∞

∑
n=0

(
−D−1EA

)nD−1
A , (11)

which is guaranteed to converge when limn→∞
(
−D−1

A EA
)n

= 0. We investigated the
convergence condition in [17], where we proved that if A is diagonally dominant, then
Neumann series can approximate A−1 both fast and accurate. In case A is not diagonally
dominant, we also provided a way to convert it into a diagonally dominant matrix in [17],
such that A−1 can still be approximated by Neumann series. When Neumann series given
in (11) converges, we can then approximate A with only the first L terms. The L-term
approximation is computed as follows:

Ã−1
L =

L−1

∑
n=0

(
−D−1

A EA
)nD−1

A , (12)

For instance, when L = 1, 2, 3, we have the approximations

Ã−1
L =


D−1

A , L = 1
D−1

A −D−1
A EAD−1

A , L = 2
D−1

A −D−1
A EAD−1

A + D−1
A EAD−1

A EAD−1
A . L = 3

(13)

3. Uncertainty Quantification in Gaussian Processes
3.1. Uncertainty in Measurements

It is intuitive that noisy measurements would result in less accurate predictions, just
as a poor model would do. However, it is not direct from Equations (6) and (7). We will
show in detail how the measurement noise would affect the prediction accuracy.

From Equations (6) and (7), we can see that the measurement noise ε affects the
prediction and the covariance by adding a term σ2

nI to the prior covariance K in comparison
to the noisy free scenario [20]. From the way that they originated, we know that both K
and σ2

nI are symmetrical. Then, a matrix P exists such that

K = P−1DKP, (14)

where DK is a diagonal matrix with eigen values of K along the diagonal. As σ2
nI a diagonal

matrix itself, we have
σ2

nI = P−1σ2
nIP. (15)

Therefore, we have the partial derivative of Equation (6) with respect to σ2
n as

∂f̄∗
∂σ2

n
= K∗P(DK + σ2

nI)−2P−1y, (16)
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The element-wise form of Equation (16) can be therefore obtained as

( ∂f̄∗
∂σ2

n

)
o
= −

n

∑
h=1

n

∑
i=1

n

∑
j=1

phj pijkohΛ−1
j yi, (17)

where Λj = (λj + σ2
n)

2. phj and pij are the entries indexed by the j-th column, h-th and i-th
row, respectively. koh is the o-th row and h-th column entry of K∗. yi is the i-th element of y.
o = 1, · · · , s denotes the o-th element of the partial derivation.

We can see that the sign of Equation (17) is determined by phj and pij. This is because
we can actually transform y to either positive or negative with a linear transformation,
which will not be an issue for the GPs model. When we impose no constraints on phj and
pij, Equation (17) could be any real number, indicating that f̄∗ is multimodal with respect
to σ2

n , which means that one σ2
n can lead to different f̄∗, or equivalently, different σ2

n can
lead to the same f̄∗. In such cases, it is difficult to investigate how σ2

n affects the prediction
accuracy. In this paper, to facilitate the study of the monotonicity of f̄∗, we constrain phj
and pij to satisfy ( ∂f̄∗

∂σ2
n

)
o


> 0, phj pij < 0,
< 0, phj pij > 0,
= 0, phj pij = 0.

(18)

Then, we can see that f̄∗ is monotonic. It means that changes of σ2
n can cause arbitrarily

large/small predictions, whereas a robust method should bound the prediction errors
regardless of how σ2

n varies.
Similarly, the partial derivative of Equation (7) with respect to σ2

n is

∂cov(f∗)
∂σ2

n
= (K∗P)(DK + σ2

nI)−2(K∗P)T =
n

∑
i=1

Λ−1
i ~pi~pT

i , (19)

where we denote the m× n dimension matrix K∗P as

K∗P = [~p1,~p2, · · · ,~pn], (20)

with~pi a m× 1 vector, and i = 1, · · · , n.
As the uncertainty is indicated by the diagonal elements, we only show how these

elements change with respect to σ2
n . The diagonal elements are given as

diag
( n

∑
i=1

Λ−1
i ~pi~pT

i

)
= diag

( n

∑
i=1

Λ−1
i p2

1i,
n

∑
i=1

Λ−1
i p2

2i, · · · ,
n

∑
i=1

Λ−1
i p2

mi

)
= diag

(
Σ11, Σ22, · · · , Σmm

)
,

(21)

with diag(·) denoting the diagonal elements of a matrix. We see that Σjj > 0 stands
for j = 1, · · · , m, which implies that cov(f∗) is non-decreasing as σ2

n increases. This
means that the increase of measurement noise level would cause the non-deceasing of the
prediction uncertainty.

3.2. Uncertainty in Hyperparameters

Another factor that affects the prediction of a GPs model is the hyperparameters. In
Gaussian processes, the posterior, as shown in Equation (5), is used to do the prediction,
while the marginal likelihood is used for hyperparameters selection [18]. The log marginal
likelihood as shown in Equation (22) is usually optimised to determine the hyperparameter
with a specified kernel function.

log p(y|X, θ) = −1
2

yT(K + σ2
nI)−1y− 1

2
log |K + σ2

nI| − N
2

log 2π. (22)
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However, the log marginal likelihood could be non-convex with respect to the hyperpa-
rameters, which implies that the optimisation may not converge to the global maxima [22].
A common solution dealing with it is to sample multiple starting points from a prior
distribution, then choose the best set of hyperparameters according to the optima of the
log marginal likelihood. Let’s assume θ = {θ1, θ2, · · · , θs} being the hyperparameter set
and θs denoting the s-th of them, then the derivative of log p(y|X) with respect to θs is

∂

∂θs
log p(y|X, θ) =

1
2

tr
((

ααT − (K + σ2
nI)−1)∂(K + σ2

nI)
∂θs

)
, (23)

where α = (K + σ2
nI)−1y, and tr(·) denotes the trace of a matrix. The derivative in Equa-

tion (23) is often multimodal and that is why a fare few initialisations are used when
conducting convex optimisation. Chen et al. show that the optimisation process with
various initialisations can result in different hyperparameters [22]. Nevertheless, the perfor-
mance (prediction accuracy) with regard to the standardised root mean square error does
not change much. However, the authors do not show how the variation of hyperparameters
affects the prediction uncertainty [22].

An intuitive explanation to the fact of different hyperparameters resulting with similar
predictions is that the prediction shown in Equation (6) is non-monotonic itself with respect
to hyperparameters. To demonstrate this, a direct way is to see how the derivative of
(6) with respect to any hyperparameter θs ∈ θ changes, and ultimately how it affects the
prediction accuracy and uncertainty. The derivatives of f̄∗ and cov(f∗) of θs are as below

∂f̄∗
∂θs

=
(

K∗
∂(K + σ2

nI)−1

∂θs
+

∂K∗
∂θs

(K + σ2
nI)−1

)
y. (24)

We can see that Equations (24) and (25) are both involved with calculating (K+ σ2
nI)−1,

which becomes enormously complex when the dimension increases. In this paper, we focus
on investigating how hyperparameters affect the predictive accuracy and uncertainty in
general. Therefore, we use the Neumann series to approximate the inverse [21].

∂cov(f∗)
∂θs

=
∂K(X∗, X∗)

∂θs
− ∂K∗

∂θs
(K + σ2

nI)−1KT
∗ −K∗

∂(K + σ2
nI)−1

∂θs
KT
∗

−K∗(K + σ2
nI)−1 ∂KT

∗
∂θs

.
(25)

3.3. Derivatives Approximation with Neumann Series

The approximation accuracy and computationally complexity of Neumann series
varies with L. This has been studied in [21,23], as well as in our previous work [17]. This
paper aims at providing a way to quantify uncertainties involved in GPs. We therefore
choose the 2-term approximation as an example to carry out the derivations. By substituting
the 2-term approximation into Equations (24) and (25), we have

∂f̄∗
∂θs
≈
(

K∗
∂
(
D−1

A −D−1
A EAD−1

A
)

∂θs
+

∂K∗
∂θs

(
D−1

A −D−1
A EAD−1

A
))

y, (26)

∂cov(f∗)
∂θs

≈∂K(X∗, X∗)
∂θs

− ∂K∗
∂θs

(
D−1

A −D−1
A EAD−1

A
)
KT
∗

−K∗
∂
(
D−1

A −D−1
A EAD−1

A
)

∂θs
KT
∗ −K∗

(
D−1

A −D−1
A EAD−1

A
)∂KT

∗
∂θs

.
(27)

Due to the simple structure of matrices DA and EA, we can get the element-wise form
of Equation (26) as (∂f̄∗

∂θs

)
o
=

n

∑
i=1

n

∑
j=1

(
koj

∂dji

∂θs
+

∂koj

∂θs
dji
)
yi. (28)
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Similarly, the element-wise form of Equation (27) is

(∂cov(f∗)
∂θs

)
oo

=
∂K(X∗, X∗)oo

∂θs
−

n

∑
i=1

n

∑
j=1

(∂koj

∂θs
djikoi + koj

∂dji

∂θs
koi − kojdji

∂koi
∂θs

)
, (29)

where o = 1, · · · , m denotes the o-th output, dji is the j-th row and i-th column entry of
D−1

A −D−1
A EAD−1

A , koj and koi are the o-th row, j-th and i-th entries of matrix K∗, respec-
tively. When the kernel function is determined, Equations (26)–(29) can be used for GPs
uncertainty quantification.

3.4. Impacts of Noise Level and Hyperparameters on ELBO and UBML

The minimisation of KL
(
q(f, u)‖p(f, u|y)

)
is equivalent to maximise the ELBO [18,24]

as shown in
Llower = −

1
2

yTG−1
n y− 1

2
log |Gn| −

N
2

log(2π)− t
2σ2

n
, (30)

where Gn = Gxx + σ2
nI, and t = Tr(Kxx −Gxx). Combining it with UBML, as shown in

Equation (31), an interval can be given to quantify the uncertainty in marginal likelihood.

Lupper =
1
2

yT
(

Gn + tI
)−1

y− 1
2

log |Gn| −
N
2

log(2π). (31)

This paper, however, focuses on investigating how ELBO and UBML change according
to σ2

n only. Because the investigation of how ELBO and UBML change with respect to
kernel hyperparameters involves multiple Neumann series approximations, which makes
the analysis less convincing. We shall leave it as an open problem for future study. The
derivatives of Equations (30) and (31) with respect to σ2

n are as follows,

∂Llower

∂σ2
n

=
1
2

[ n

∑
i=1

(λi + σ2
n)
−2( n

∑
j=1

yjvji
)2 −

n

∑
i=1

1
λi + σ2

n
+

t
σ4

n

]
, (32)

∂Lupper

∂σ2
n

= −1
2

[ n

∑
i=1

(λi + σ2
n + t)−2( n

∑
j=1

yjvji
)2

+
n

∑
i=1

1
λi + σ2

n

]
. (33)

Figure 1 shows how σ2
n affects ELBO and UBML. We set σ2

n to increase from 0.1 to
200.0 with a step of 0.01. Both ELBO and UBML are recorded step by step. From the figure,
we can see that when σ2

n is small (σ2
n ∈ [0.1, 1.5]), ELBO increases with different speeds,

however, UBML fluctuates as the derivative of UBML jumps between positive and negative.
When σ2

n is in [1.5, 3.0], ELBO still increases, but the speeds slow down significantly. In
comparison, UBML keeps decreasing with reducing speeds. The decrements of UBML
mean that when σ2

n increases, though ELBO could be increased still, but the maximum
(which is the UBML) can decrease. When σ2

n ∈ [3.0, 20.0], ELBO starts to decrease when
σ2

n ≈ 3.2, while UBML keeps decreasing. This means that as σ2
n increases, both ELBO and

UBML decrease, which indicates that the model becomes less and less effective to explain
the data. When σ2

n keeps increasing (σ2
n ∈ [20.0, 200.0]), the decreasing speeds of ELBO

and UBML becomes similar and approaches zero. This means that UBML and ELBO both
converge and together define an interval for the marginal likelihood, which however, can
result in non-optimal hyperparameters. Our conclusion is that when σ2

n increases, UBML
tends to decrease, which decreases the maximum that ELBO can reach. ELBO, on the other
hand, is robust to the change of σ2

n (as it keeps increasing when σ2
n is below∼3.2). However,

when σ2
n exceeds a certain threshold, ELBO turns to decrease, indicating that the GPs model

becomes less and less reliable. However, both ELBO and UBML converge, even when σ2
n

becomes very significant, though we can no longer trust the model.
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Figure 1. Impacts of σ2
n on ELBO and UBML: (a) σ2

n ∈ [0.1, 1.5], (b) σ2
n ∈ [1.5, 3.0], (c) σ2

n ∈ [3.0, 20.0],
(d) σ2

n ∈ [20.0, 200.0].

4. Experiments and Analysis

To verify that the proposed solution can help to identify the impacts of σ2
n and θ on the

predition accuracy and uncertainty of GPs model and its sparse variants such as the fully
independent training conditional (FITC) [25] and variational free energy (VFE) [24] models,
we conduct various experiments to process air quality data collected from Sheffield, UK,
and Pershawar, Pakistan (see Appendix A), during the time period of 24 June 2019–14 July
2019 for three weeks, which will be denoted as W1, W2, and W3 hereafter. The data were
collected with digital sensors called AQMesh pod with a 15 min time interval. Though the
sensor itself is able to measure the concentrations of quite a few atmospheric pollutants,
here we only analyse the concentrations of NO, NO2, SO2, and PM2.5. Figure 2 shows
the raw data. We can see directly that the air quality of Sheffield is much better than
Pershawar on average. Especially during daytime, concentrations of NO2 and PM2.5 in
Pershawar exceed the WHO criteria (see Appendix B). Meanwhile, those in Sheffield are
much lower than the criteria. Being a postindustrial city itself, Sheffield has improved air
quality significantly. The experience can be spread to help cities like Pershwar to improve
air quality.

4.1. Air Quality Prediction

Figures 3 and 4 show Sheffield and Pershawar forecasting results of GPs, FITC, and
VFE, with 3σ confidence intervals (denoted as Conf in the figures) indicated by the shaded
area. We can see that the GPs model reports the best results in general, in terms of absolute
error between predicts and measurements (denoted as Meas in the figures). However, the
performance of all the models varies from pollutant types to cities. This is actually one of the
reasons why the investigation of how measurement noise level and hyperparameters affect
prediction accuracy and uncertainty is necessary. To make the results more convincing, we
normalise the data from both cities for uncertainty quantification studies.
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Figure 2. Concentration of pollutants recorded at the same time period in both Sheffield and Pe-
shawar: (a) NO, (b) NO2, (c) SO2, (d) PM2.5.
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Figure 3. Prediction and absolute error of pollutants in Sheffield: (a) NO, (b) NO2, (c) SO2, (d) PM2.5.
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Figure 4. Prediction and absolute error of pollutants in Peshawar: (a) NO, (b) NO2, (c) SO2, (d) PM2.5.

4.2. Impacts of Measurement Noise Level and Hyperparameters

To demonstrate how noise level σ2
n and hyperparameters affect prediction accuracy

and uncertainty, three sets of experiments are conducted. This paper adopts the squared
exponential (SE) kernel, with hyperparameters s f and l. The analytical derivation can be
found in Appendix C. The prediction accuracy is identified by the root mean square error
(RMSE), as shown in Equation (34), while the uncertainty is identified by 1

2 σ confidence
bound. Configurations of the experiments are as follows.

Experiment 1: Impacts of σ2
n on prediction accuracy and uncertainty. Both s f and l are

fixed to be the optimised values. σ2
n varies from 0.1 through to 20.0. NO, NO2, SO2, and

PM2.5 data from both cities are processed. Six inducing points are applied to both FITC
and VFE.

Experiment 2: Impacts of s f on prediction accuracy and uncertainty. l is set to the
optimised value. s f varies from 0.1 through to 30.0. σ2

n is set to 0.5 and 1.5, respectively. NO
data from both cities are processed. Six inducing points are applied to both FITC and VFE.

Experiment 3: Impacts of l on prediction accuracy and uncertainty. s f is set to the
optimised value. l varies from 0.1 through to 30.0. σ2

n is set to 0.5 and 1.5, respectively. NO
data from both cities are processed. Six inducing points are applied to both FITC and VFE.

RMSE =

√
∑Num

i=1 (yi − ŷi)2

Num
, (34)

where yi is the ground truth value and ŷi represents predicted meant. Num is the sample
number in testing set.

Figures 5 and 6 show the results from Experiment 1. To make the results more
distinguishable, the horizontal axes of the figures are set to log(σ2

n). We can see from
Figure 5 that when σ2

n is small, GPs perform the best in general, while the performance
of FITC and VFE varies. We can also observe that as σ2

n keeps increasing, the RMSE
becomes very significant for all methods/pollutants. Similar results can be observed from
Figure 6 as well. Both comply with our theoretical conclusions, despite the fact that the
Neumann series is used to approximate the matrix inverse. We also notice that σ2

n has a
more significant impact on Sheffield data as RMSE increases ealier after log(σ2

n) reaches
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zero. From Figure 6b,c, we also see that the uncertainty bounds of Sheffield data are
greater after log(σ2

n) reaches zero. We think the reason is that Sheffield data are generally
less periodical than Pershawar data (see Figure 2), which influences the performance of
the models.
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Figure 5. Relationship of σ2
n with four pollutants prediction RMSE: (a) NO, (b) NO2, (c) SO2,

(d) PM2.5.
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Figure 6. Relationship of σ2
n with pollutants prediction uncertainty bound: (a) NO, (b) NO2, (c) SO2,

(d) PM2.5.
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4.3. Impacts of Noise Level on ELBO and UBML

Figure 7 shows the results from Experiment 2. According to our theoretical results,
the impact of s f on the uncertainty should become greater as s f increases. This is verified
by the results shown in Figure 7b,d. Our theoretical results also suggest that the variation
of s f would not affect the prediction accuracy. We can see from Figure 7a,c that when s f
is smaller, it does affect the prediction accuracy, but when it exceeds a certain value, the
impacts become negligible. Considering the Neumann series approximation, we would
say that the experimental results comply with the theoretical conclusion.

The results of Experiment 3 are shown in Figure 8. We can see that when l is smaller,
both RMSE and the uncertainty bounds change rapidly. While after it exceeds certain
values, both converge. This again complies with our theoretical conclusions and simulation
results. We should also notice from Figures 7 and 8 that the increment of s f tends to increase
the uncertainty, whereas the increment of l tends to decrease the uncertainty. Taking both
into consideration, an optimised uncertainty bound can be obtained.

We also conduct an experiment to demonstrate how the noise level σ2
n affects the

ELBO and UBML. In our experiment, we set σ2
n to vary from 0.5 to 4.5. The results

are shown in Figure 9. To make the results distinguishable, we set the vertical axes to
log(−ELBO/UBML). To make the logrithm work, we reverse the signs of both ELBO and
UBML. This is the reason why ELBO is ‘greater’ than UBML in Figure 9. The full GPs model
is trained by setting σ2

n to {1, 7, 13, 19, 25, 31, 37, 43, 49} to obtain 9 sets of hyperparameters.
For each set of them, we then set σ2

n to vary from 0.5 to 4.5. The darker the colour in
Figure 9, the smaller σ2

n is for model training. We can see that generally, greater σ2
n can slow

down the convergence speed of both ELBO and UBML, while training a model. When the
model is trained, the increment of σ2

n can lower down UBML, which is the maximum that
ELBO can reach. This implies that the increment of σ2

n can cause the failure of a sparse
GPs model, as ELBO is deeply related to determine a sparse GPs model. Nevertheless, the
experimental results again comply with our theoretical conclusions.
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Figure 7. Relationship of s f on NO prediction RMSE and uncertainty bound: (a) σ2
n = 0.5,

(b) σ2
n = 0.5, (c) σ2

n = 1.5, (d) σ2
n = 1.5.
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Figure 9. Effects of σ2
n on ELBO and UBML: (a) NO in Sheffield, (b) NO in Peshawar.

5. Conclusions

This paper proposes a general method to investigate how the performance variation of
a Gaussian process model can be attributed to hyperparameters and measurement noises,
etc. The method is demonstrated by applying it to process particulate matter (e.g., PM2.5)
and gaseous pollutants (e.g., NO, NO2, and SO2) from both Sheffield, UK, and Peshawar,
Pakistan. Experimental results show that the proposed method provides insights on how
measurement noises and hyperparameters, etc. affect the prediction performance of a
Gaussian process. The results align with the analytical derivations, which is enabled by
adopting Neuman series to approximate matrix inversions in Gaussian process models.
The theoretical findings and experimental results combined demonstrate that the proposed
method can generate air quality forecasting results. In the meantime, it provides a way to
link uncertainties in measurements and hyperparameters, etc. with the forecasting results.
This will help with forecasting performance analysis when measurement noise level or
model hyperparameters vary, making the method more general.
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Appendix A. Data Collection

Peshawar (34.015◦ N, 71.52◦ E) is a city located in Khyber Pakhtunkhwa, Pakistan,
situated at an elevation of 340 m above sea level. Peshawar covers an area of 1257 km2

and has a population of 1,218,773 making it the biggest city in Khyber Pakhtunkhwa.
Peshawar is predominantly hot during summer (May–Mid July) with an average maximum
temperature of 40 ◦C followed by monsoon and cold winter.

Local vehicular emission, fossil fuel energy plants and industrial processes are the
significant sources of air pollution in Peshawar. Wind direction and wind speed also play
a crucial role to observe transboundary pollution build-up. Furthermore, at this site, the
distribution and dispersion of air pollution are further impacted by the nearby buildings,
and its proximity to Grand Trunk Road, creating a built-up street canyon environment,
generated primarily from nearby, increasing traffic pollution.

The air quality monitoring sensor (AQMS) was installed at the University of Pe-
shawar’s Physics Department Building (see Figure A1) at 6 m height from the ground
surface level. It is described as an urban background site.

Sheffield (53◦23′ N, 1◦28′ W) is a geographically diverse city located in county South
Yorkshire, UK, built on several hills thus situated at an elevation of 29–500 m above sea level.
Sheffield covers a total area of 367.9 km2 with a growing population of 582,506. Sheffield
is claimed to be the “greenest city” in England by the local city council. Sheffield enjoys
a temperate climate with July considered the hottest month, with an average maximum
temperature of 20.8 ◦C.

The air pollution in the city is primarily due to both road transport and industry,
and to a lesser extent, fossil fuel-run processes, such as energy supply and commercial or
domestic heating systems (for example, wood burners).

The AQMS is installed at 2.5 m height from the elevated ground surface level at the
playground of Hunter’s Bar Infants School (see Figure A2), which lies in close proximity to
a busy roundabout, and at the intersection of Ecclesall Road, Brocco Bank, Sharrow Vale
Road and Junction Road; thus, traffic is the primary source of pollution. It is also described
as an urban background site.
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Figure A1. Peshawar study site © OpenStreetMap contributors.

In our case, the AQMSs are commercially low cost sensor nodes AQMesh. They
have been deployed at the two sites in Peshawar and Sheffield. A “black box” post
calibration is applied to the data by the manufacturer to eliminate the impact of humidity
and temperature on the sensor and to eliminate cross sensitivity. The data are aggregated
and sampled every 15 min. The data collected from these nodes are transferred to the
cloud-based AQMesh database via standard GPRS communication integrated. The data
are then accessed through the dedicated API.
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Figure A2. Sheffield study site © OpenStreetMap contributors.

Appendix B. The WHO Concentration Criteria for Pollutants

All data from ‘WHO Air quality guidelines for particulate matter, ozone, nitrogen
dioxide and sulfur dioxide’ [26].

WHO NO2

Table A1. WHO Nitrogen dioxide guidelines.

Nitrogen Dioxide Annual Mean 1-h Mean

NO2 40 ¯g/m3 200 ¯g/m3

WHO SO2

Table A2. WHO sulfur dioxide guidelines.

Sulfur Dioxide 24-h Mean 10-min Mean

SO2 20 ¯g/m3 500 ¯g/m3

WHO PM2.5 and PM10

Table A3. WHO particulate matter guidelines.

Particulate Matter Annual Mean 24-h Mean

PM2.5 10 ¯g/m3 25 ¯g/m3

PM10 20 ¯g/m3 50 ¯g/m3
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WHO O3

Table A4. WHO Ozone guidelines.

Ozone 8-h Mean

O3 100 ¯g/m3

Appendix C. Approximated Derivatives of SE Kernel

By specifying a kernel function, we can obtain analytical forms of Equations (28) and
(29) immediately. In this paper, we adopt the widely used SE kernel shown in Equation (A1)
as an example.

kSE(x, x′) = s2
f exp

(
− (x− x′)2

2l2

)
. (A1)

There are two hyperparameters, i.e., the signal variance s f and length-scale l are in-
volved. Equations (A2) and (A3) show the expectation (prediction mean) partial derivative
(EPD) and covariance partial derivative (CPD) of s f ,
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