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Abstract: Kernel smoothers are often used in Lagrangian particle dispersion simulations to estimate
the concentration distribution of tracer gasses, pollutants etc. Their main disadvantage is that they
suffer from the curse of dimensionality, i.e., they converge at a rate of 4/(d + 4) with d the number
of dimensions. Under the assumption of horizontally homogeneous meteorological conditions, we
present a kernel density estimator that estimates a 3D concentration field with the faster convergence
rate of a 1D kernel smoother, i.e., 4/5. This density estimator has been derived from the Langevin
equation using path integral theory and simply consists of the product between a Gaussian kernel
and a 1D kernel smoother. Its numerical convergence rate and efficiency are compared with that
of a 3D kernel smoother. The convergence study shows that the path integral-based estimator has
a superior convergence rate with efficiency, in mean integrated squared error sense, comparable
with the one of the optimal 3D Epanechnikov kernel. Horizontally homogeneous meteorological
conditions are often assumed in near-field range dispersion studies. Therefore, we illustrate the
performance of our method by simulating experiments from the Project Prairie Grass data set.

Keywords: atmospheric dispersion; Langevin equation; kernel density estimation; path integral;
convergence; Project Prairie Grass

1. Introduction

In atmospheric dispersion modeling, one describes the transport of tracer gasses or
other scalar quantities under given meteorological conditions and release characteristics.
A Lagrangian approach is often used to model atmospheric dispersion. In this approach,
a stochastic differential equation (SDE) describes the trajectories of the pollutant particles.
The objective is to obtain the distribution of the particle positions from this SDE. Usually,
such a distribution cannot be obtained analytically and consequently, a numerical pro-
cedure is required to estimate the distribution from a finite number of particle positions.
Nonparametric density estimation has the advantage that no pre-specified functional form
for the distribution is assumed. Examples of such methods are histograms, orthogonal
series estimators, restricted maximum likelihood estimators, etc. A discussion about the
different methods can be found in [1]. The selection of a proper method depends on the
expected complexity of the distribution and the dimensionality of the data. In particular,
we will focus on the kernel smoothing approach [2,3].

Kernel smoothers have a long tradition of being used in atmospheric dispersion
modeling. Since [4] introduced them into this field, several models have incorporated
them over the course of time, e.g., [5–7]. Kernel smoothers offer a good trade-off between
complexity and performance. Since they are relatively simple to analyze mathematically,
their mathematical properties are well known. The performance of kernel smoothers
is mesh independent because of the pointwise convergence. They also use data quite
efficiently. This is illustrated by the fact that kernel smoothers converge faster than his-
tograms ([8], Section 2.8, p. 36). A vast amount of literature is dedicated to the optimal
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performance of kernel smoothers. In particular, an overview of bias and variance reduction
techniques can be found in [9]. Such techniques have a solely mathematical foundation,
i.e., they are formulated independently of the way the data were obtained. In case of
physical applications, however, the model that generates the data may yield extra infor-
mation about the underlying density. This information can also be used to improve the
performance of the kernel smoother. Despite the available computer power today, the de-
velopment of fast-converging kernel density estimators is still a topical research subject in
atmospheric dispersion modeling (see, e.g., [10]).

In this paper, a kernel estimator for dispersion in horizontally homogeneous meteoro-
logical conditions will be derived from the Langevin equation, which converges for a 3D
concentration field as fast as a 1D kernel smoother would do for a 1D field. Botev et al. [11]
proposed an adaptive kernel density estimation method based on the smoothing properties
of linear diffusion processes. This method requires the numerical solution of a diffusion
equation, which will increase the computational cost considerably in three dimensions. We
use a completely different approach by resorting to path integral theory [12]. This allows
us to derive a kernel density estimator from the 3D Langevin equation, which simply
consists of the product between a Gaussian kernel and a kernel smoother. Alvarez et al. [13]
present a path integral formalism for oceanic dispersion as an alternative to Lagrangian
simulation. The main difference with our approach is that we calculate the horizontal
particle coordinates from the vertical coordinates such that we only have to integrate over
the vertical to obtain the 3D concentration field. This dimension reduction idea also forms
the cornerstone of the particle-puff approach in [14] and our methodologies are similar.
Although, the current work provides a rigorous mathematical argument for the method
in terms of path integrals and extends it to the more general kernel smoother framework.
Moreover, its convergence behavior is also discussed. The presented path integral-based
method is not restricted to a process governed by the Langevin equation, but can be ap-
plied to any diffusion process. It also offers the flexibility to choose the kernel shape and
bandwidth selection method for the involved kernel smoother freely.

In Section 2, the path integral-based kernel density estimator is presented as well as the
kernel-smoothing framework. In Section 3.1, the superior convergence of the path integral-
based estimator w.r.t. a classical 3D kernel smoother is numerically verified. The Project
Prairie Grass dispersion experiment is simulated to demonstrate the method in Section 3.2.
Section 4 provides a discussion of the results. Finally, Section 5 concludes the paper.

2. Methodology

The essence of dispersion modeling is to simulate the concentration field due to a
pollutant source. In this work, we make the assumption of a point source at location
x0 ∈ R3. Then, it can be shown that the resulting concentration field c (kg m−3) at time t
can be characterized as [15]

c(t, x) =
∫ t

t0

Q(τ)p(t, x|τ, x0)dτ, x ∈ R3, (1)

where t0 denotes the start time of the release (s) and Q the source strength (kg s−1). The func-
tion p(t, x|t′, x′) is the transition probability density function (e.g., [16], Section 2.4, p. 68)
of the stochastic process (Xt)t>0 that describes the trajectories of the pollutant particles.
The density p gives the probability that a particle is situated in an infinitesimal volume dx
around location x at time t given an earlier position (t′, x′) with t′ ≤ t.

The process (Xt)t>0 can be modeled by a stochastic differential equation. We choose
the Langevin equation since it describes near-field range dispersion more accurately than
the diffusion equation, e.g., [17]. The Langevin equation is commonly separated into two
first-order differential equations: one describes the particle displacement and the other one
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the turbulent component of the particle velocity. Under the assumption of local Gaussian
turbulence, these are given by

Ẋt = u(Xt; Φ) +R(Φ)U′t, (2)

U̇′t = diag{α(Xt)}U′t + a(Zt, W ′t )êw + diag{b(Xt)}Ẇt, (3)

with Xt ∈ R3 the particle position (m) at time t, u = (u, v, w) ∈ R3 the mean background
velocity (m s−1), U′t = (U′t , V′t , W ′t ) ∈ R3 the particle-velocity noise vector (m s−1), Wt ∈ R3

the three-dimensional Wiener process, êw = (0, 0, 1) the unit vector in the vertical direc-
tion and

R(φ) =

cos φ − sin φ 0
sin φ cos φ 0

0 0 1


a rotation matrix that accounts for the wind direction φ (°). Further, the components
of U′t are oriented such that U′t and V′t are aligned with the streamwise and crosswind
direction with resp. to φ = 0° and W ′t points in the vertical direction. In the following, time
derivatives are notated by the dot notation, i.e., dXt = Ẋtdt and d2Xt = Ẍtdt2. Typically,
a stochastic variable will be notated by a capital letter and the corresponding state space
variable by a lower case letter. The functions u, α, b : R3 → R3 and a : R2 → R are given by
classical relations for the atmospheric surface layer and can be found in Appendix A. In the
current work, we assume that the meteorology is stationary. This assumption avoids the
technicality that is inherent to a time-varying wind direction distribution, but the presented
method can be further extended.

Equation (1) implies that the problem of determining the concentration field c comes
down to determining the density p if the source is known. This can be achieved if a kernel
representation of p is found.

2.1. Kernel Smoothing

The oldest, but still widely used, nonparametric density estimator is the histogram,
which converges at a rate of 2/(d + 2) ([8], Section 2.8, p. 36) with d the dimension of
the problem. Kernel smoothers, however, have a uniformly faster convergence rate for
all d (see below). One can show that for any bounded, compactly supported function
K : Rd → R satisfying∫

Rd
K(x)dx = 1,

∫
Rd

xK(x)dx = 0,
∫

xx>K(x)dx = µ2(K)I, (4)

where I ∈ Rd×d is the identity matrix and µ2(K) :=
∫
Rd x2

i K(x)dx is independent of i
(i = 1, . . . , d), the following relationship holds (e.g., [8], Section 2.6, p. 32)

E[ p̂(t, x; h)] = p(t, x|t′, x0) +
h2

2
µ2(K)∇2 p(t, x|t′, x0) + o(h2), h→ 0. (5)

Here, E[·] is the expectation value and the estimator

p̂(t, x; h) =
1

nphd

np

∑
i=1

K

(
x− X(i)

t
h

)
, x ∈ Rd, (6)

has been obtained by applying the strong law of large numbers. Further,∇2 is the Laplacian,
h ∈ R+

0 the bandwidth, np the number of particles released at time t′ and X(i)
t independent

stochastic variables with image in R3 and with distribution p(t, ·|t′, x0) that describes a
particle’s location. The variables X(i)

t are obtained by solving Equations (2) and (3). Ac-
cording to Equation (5), p̂(t, ·; h) is an estimator for p(t, ·|t′, x0). The functions K satisfying
the above requirements are called kernel smoothers.
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In order to measure how closely p̂ approximates p, the mean integrated squared error
(MISE) can be used, i.e.,

MISE{ p̂(t, ·; h)} =
∫
Rd

E{ p̂(t, x; h)− p(t, x|t′, x0)}2dx. (7)

One can show that the optimal bandwidth h∗ that minimizes the asymptotic MISE satis-
fies ([8], Section 2.7, p. 35)

h∗ =
[

R(K)d
µ2(K)2

∫
{∇2 p(t, x|t′, x0)}2dx np

]1/(d+4)

, R(K) =
∫
Rd

K(x)2dx, (8)

with d the dimension of the problem. Consequently, infh>0 MISE{ p̂(t, ·; h)} = O(n−4/(d+4)
p ).

The convergence rate 4/(d + 4) arises, because it can be shown that

MISE{ p̂(t, ·; h)} =
∫
Rd

Var{ p̂(t, x; h)}+ Bias2{ p̂(t, x; h)}dx (9)

in which the integrated variance and integrated squared bias are of order o(n−1
p h−d) and

o(h4), np → ∞, h→ 0 resp ([8], Section 2.5, p. 28, Section 2.9, p. 37).
If h∗ is substituted for h in Equation (9) with

Var{ p̂(t, x; h)} = n−1
p h−dR(K) p̂(t, x; h) + o

(
n−1

p h−d
)

, np → ∞, h→ 0,

and the bias provided by Equation (5), then the factor

Cd(K) = {R(K)4µ2(K)2d}1/(d+4), (10)

which only depends on the kernel K, can be separated in MISE{ p̂(t, ·; h∗)}. The smaller
Cd(K), the closer MISE{ p̂(t, ·; h∗)} is to zero for a low amount of particles. Therefore,
Cd(K) is also referred to as the efficiency of the kernel K. One can show that the kernel
smoother K∗ that minimizes (10) is the so-called Epanechnikov kernel ([18], Section 6.1,
pp. 82–83), i.e.,

K∗d(x) = π−d/2Γ
(

d
2
+ 2
)(

1− x>x
)

H
(

1− x>x
)

, x ∈ Rd, (11)

with Γ(·) the gamma and H(·) the Heaviside function.
In order to determine the optimal bandwidth, the expressions

µ2(K∗d) =
1

d + 4
, R(K∗d) =

4
πd/2(d + 4)

Γ
(

d
2
+ 2
)

,

need to be inserted in Equation (8). Only
∫
{∇2 p(t, x|t′, x0)}2dx then still needs to be

determined. Unfortunately, this expression is unknown. A pragmatic way to deal with this
issue is by replacing p with a normal distribution. Typically, one assumes that the variances
in all directions are equal. In this work, we allow them to be different. Denote ϕ(x) with
x ∈ Rd the d-dimensional standard normal density function and Σ = diag{σ2

1 , . . . , σ2
d} the

covariance matrix with σ2
k the variance in the k-th coordinate direction. One can verify that

∫
Rd

{
|Σ|−1/2∇2 ϕ

(
Σ−1/2x

)}2
dx = |Σ|−1/2

∫
Rd

ϕ(x)2

[
d

∑
k=1

(x2
k − 1)σ−2

k

]2

dx

=
1

2
√

π|Σ|

∫
Rd−1

ϕ(x)2

[
d

∑
k=2

(x2
k − 1)σ−2

k −
1

2σ2
1

]2

dx

+
|Σ|−1/2

2σ4
1

(
1

2
√

π

)d

(12)
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with | · | the determinant. Proceeding by induction over the dimensions of the domain
leads to the formula

∫
Rd

{
|Σ|−1/2∇2 ϕ

(
Σ−1/2x

)}2
dx =

(
d

∏
k=1

σ−1
k

)(
1

2
√

π

)d
1

2

d

∑
k=1

σ−4
k +

1
4

(
d

∑
k=1

σ−2
k

)2
, (13)

which we substitute for
∫
{∇2 p(t, x|t′, x0)}2dx in Equation (8). Note that if the vari-

ances in all directions are equal, then this formula simplifies to the well-known formula
in ([19], Section 4.3.2, p. 86).

2.2. Path Integral-Based Kernel Density Estimator

If the estimator (6) is used, then the three-dimensional concentration field Equation (1)
will be attained with a convergence rate of 4/7. Here, we derive an estimator that con-
vergences faster, employing the assumption of horizontally homogeneous meteorological
conditions. As will be shown, dispersion in the horizontal directions, incorporating the
vertical inhomogeneity, can be represented by an unbiased Gaussian kernel-based Monte
Carlo estimator whose parameters are dependent on the vertical positions only. Conse-
quently, the kernel smoother method only needs to be applied in the vertical direction,
which will lead to the faster convergence rate of 4/5.

By invoking the definition of marginal distribution, one obtains:

p(t, x|t′, x0) =
∫ ∫

R3

+∞∫
−∞

p(t, x, ẋ0, φ, {zs, t′ < s < t}|t′, x0)dφdẋ0dz(s) (14)

where p(t, x, ẋ0, φ, {zs, t′ < s < t}|t′, x0) is the common distribution of all the stochastically
varying quantities in the model given the initial position at the release time. The differential
element dz(s) denotes the integration over the paths {zs, t′ < s < t}. In Appendix B,
one can find a more precise interpretation of the integral in Equation (14), which is con-
sistent with the classical Wiener path integral. If we now invoke the assumption of a
horizontally homogeneous meteorology (u, α, and b are only height dependent), then
Equations (2) and (3) imply that the distribution of the horizontal particle position is com-
pletely governed by the vertical ones. Consequently,

p(t, x, ẋ0, φ, {zs, t′ < s < s′}|t′, x0) = p(t, x1, x2|t′, x0, ẋ0, φ, {zs, t′ < s < t})p(t, x3, ẋ0, φ, {zs, t′ < s < t}|t′, x0). (15)

Now, the first factor can be determined analytically (further below, after Equation (17)).
Apply Equation (A14) in Appendix B to Equations (14) and (15) with the function f set equal
to the first factor in Equation (15). Using this limit interpretation with the corresponding
notations, the second factor can be decomposed as

p(t, x3, ẋ0, φ, z1, . . . , zn|t′, x0) =

+∞∫
−∞

p(t, x3|zn, żn)p(ẋ0, φ, z1, . . . , zn, żn|t′, x0)dżn (16)

where is integrated over żn to invoke the Markov property (see also Appendix B). Since
(t, x3) in the first factor in Equation (16) is conditioned on (zn, żn) at time tn with t− tn
infinitesimal, this factor approaches a Dirac distribution. This implies that the support
of this function is controlled by the infinitesimal time step t − tn, which will impose a
condition on np in discretized form: the smaller the discrete time step, the higher np should
be chosen. Therefore, this results in an ill-defined estimator, but it can be overcome by
using a kernel smoother approximation, i.e., set tn+1 = t, substitute

p(t, x3|zn, żn) =
1
h

+∞∫
0

K
(

x3 − zn+1

h

)
p(zn+1|zn, żn)dzn+1 + o(h), h→ 0,
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in Equation (16) and take the limit of this expression for n → ∞ and maxk ∆tk → 0
(see Appendix B) to obtain p(t, x3, ẋ0, φ, {zs, t′ < s < t}|t′, x0). Then inserting the latter
expression into Equation (15) and subsequently Equation (15) into Equation (14) yields

p(t, x|t′, x0) =
1
h

∫ ∫
R3

+∞∫
−∞

p(t, x1, x2|t′, x0, ẋ0, φ, {zs, t′ < s < t})K
(

x3 − zt

h

)
p(ẋ0, φ, {zs, t′ < s ≤ t}|t′, x0)dφdẋ0dz(s) + o(h), h→ 0. (17)

Note that the integral over zt has been incorporated into the integral over z(s). The ad-
vantage of the kernel smoother is that the resulting estimator has a support that is deter-
mined by the optimal bandwidth h∗ (see Equation (8)) that depends on np only.

The density p(t, x1, x2|t′, x0, ẋ0, φ, {zs, t′ < s < t}), as appears in the integrand in
Equation (17), can be derived from the Langevin equation. First, combine Equations (2) and (3)
into one differential equation, then the equation for the horizontal position and Φ = 0°
becomes

Ẍt − α(Xt)Ẋt = u̇(Xt; Φ)− α(Xt)u(Xt; Φ) + b(Xt)Ẇt. (18)

Here, the subindex of the variables Xt, α, b, u and Ws has been omitted to avoid an
overloaded notation. Since the paths of Wt (and Xt) are almost nowhere differentiable [20],
Equation (18) can only be meaningfully interpreted as an integral equation. Integrating the
derivatives out yields

Ẋt =
(
Ẋ0 − u(x0; Φ)

)
e
∫ t

t′ α(Xs)ds + u(Xt; Φ) +
∫ t

t′
b(Xs)Ẇse

∫ t
s α(Xl)dlds, (19)

Xt = x0 +
(
Ẋ0 − u(x0; Φ)

) ∫ t

t′
e
∫ q

t′ α(Xs)dsdq +
∫ t

t′
u(Xs; Φ)ds +

∫ t

t′

∫ q

t′
b(Xs)Ẇse

∫ q
s α(Xl)dldsdq. (20)

By switching the order of integration, the inner integral over s in Equation (20) can be
converted to an outer integral over Ws. This is more convenient since the distribution of
dWs is known. Let dWs = Ẇsds, then

Xt = x0 + ((Ẋ0)− u(x0; Φ))
∫ t

t′
e
∫ q

t′ α(Xs)dsdq +
∫ t

t′
u(Xs; Φ)ds +

∫ t

t′

∫ t

s
e
∫ q

s α(Xl)dldqb(Xs)dWs. (21)

Recalling that u, α and b only have height dependency, one can deduce from Equation (21)
and the definition of a Wiener process (normally distributed independent increments with
mean zero and variance dt) that the horizontal particle position is distributed, given the initial
conditions and a realization of the particle’s height, as

(X1, X2)t|(x1, x2)0, (Ẋ1, Ẋ2)0, Φ, {Zs, t′ ≤ s < t} ∼ N(µ, Σ) (22)

where N(µ, Σ) denotes a bivariate normal distribution with mean µ ∈ R2 and covariance
matrix Σ ∈ R2×2. For a non-zero Φ, the distribution of (X1, X2)t|(x1, x2)0, (Ẋ1, Ẋ2)0, 0°,
{Zs, t′ ≤ s < t} rotated by R(Φ) needs to be determined. From Equation (21) (Φ = 0°)
follows

µ = (x1, x2)0 + ((Ẋ1, Ẋ2)0 − (u, v)(zt′ ; Φ))T(λ1, λ2, Φ) +
∫ t

t′
(u, v)(Zs; Φ)ds, Σ = T(Σ1, Σ2, Φ),

with

λk =
∫ t

t′
e
∫ q

t′ αk(Zs)}dsdq, Σk =
∫ t

t′

[
bk(Zs)

∫ t

s
e
∫ q

s αk(Zl)dldq
]2

ds, (k = 1, 2)

and

T : R3 → R2×2 : (B1, B2, φ) 7→
[

B1 cos2 φ + B2 sin2 φ 1
2 (B1 − B2) sin 2φ

1
2 (B1 − B2) sin 2φ B1 sin2 φ + B2 cos2 φ

]
.
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The subindices 1 and 2 in the above expressions refer to the corresponding component of
the respective vector. Note that the density function p(t, x1, x2|t′, x0, ẋ0, φ, {zs, t′ < s ≤ t})
is determined by Equation (22).

Now, an estimator for p(t, x|t′, x0) can be derived. Note that the integral (17) can be
interpreted as an expectation value, i.e.,

p(t, x|t′, x0) =
1
h
E
[

p(t, x1, x2|t′, x0, Ẋ0, Φ, {Zs, t′ < s ≤ t})K
(

x3 − Zt

h

)]
+ o(h), h→ 0, (23)

where E[·] denotes the expectation value that should be interpreted in a classical Wiener
sense, see Appendix B. Consequently, applying the strong law of large numbers to
Equation (23) yields

p̂(t, x; h) =
1

nph∗

np

∑
i=1

p
(

t, x1, x2|t′, x0, Ẋ0, Φ, Z(i)
1 , . . . , Z(i)

ni

)
K

 x3 − Z(i)
ni+1

h∗

 (24)

with {Z(i)
1 , . . . , Z(i)

ni+1} independent discrete realizations of the process (Zt)t>t′ and p in
Equation (24) is given by Equation (30) below. Note that any bandwidth selector for h in
Equation (23) can be chosen. In Equation (24), h∗ provided by (8) has been selected as a
value for h, but only in one dimension (d = 1). Therefore, using a similar argumentation
as in Section 2.1, it can be argued that estimator (24) will have the same convergence rate
as a 1D kernel smoother, i.e., 4/5.

2.3. Boundary Condition at the Ground Surface

The imposed boundary condition should not violate the well-mixed condition. We
follow the same approach as in [21], but with the difference that by the assumption of
local Gaussian turbulence we can give an analytical treatment. Assume that the particle
distribution is well mixed, then p(t, z, w|t′, z′, w′) = p f (t, z, w) with p f the joint position-
velocity distribution of the fluid. For the sake of simplicity, let p f (w) denote the velocity
distribution in a neighborhood around the boundary when a particle hits the boundary,
then define

p+(w) =
wp f (w)∫ +∞

0 wp f (w)dw
(w > 0),

p−(w) =
wp f (w)∫ 0

−∞ wp f (w)dw
(w < 0).

In the neutral and stable atmosphere, we assume a positive correlation between the magni-
tudes of the reflected, wr, and the incident, wi, velocity. Or equivalently, for a given wi < 0
the well-mixed condition is satisfied if wr > 0 is chosen such that∫ wr

0
p+(w)dw =

∫ 0

wi

p−(w)dw. (25)

Under the assumption of local Gaussian turbulence in Equations (2) and (3), one can
verify that for a Gaussian p f (w) Equation (25) holds if wr = −wi, i.e., a perfect reflective
boundary. In an unstable atmosphere, it is physically more correct to assume a negative
correlation between the magnitudes of wr and wi [21], i.e.,∫ wr

0
p+(w)dw =

∫ wi

−∞
p−(w)dw, wr > 0, wi < 0. (26)
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Since p f (w) is Gaussian, Equation (26) implies the relationship

wr =

√√√√−2σ2
w log

(
1− exp

{
−

w2
i

2σ2
w

})
. (27)

It should be noted that the assumption of local Gaussian turbulence is strictly spoken not
valid in an unstable atmosphere, but adapting Equations (2) and (3) properly is beyond
the scope of the current work. Furthermore, if the local distribution of the turbulence is
skewed, as in an unstable atmosphere, the above expressions for wr are not appropriate
anymore. For more information, the reader is referred to [21].

2.4. Discretization

Evaluating expression (6) requires np possible positions X(i)
t (1 ≤ i ≤ np) of a particle

at time t whose trajectory is described by Equations (2) and (3). These particle positions are
determined by discretizing (2) and (3) such that np possible trajectories can be simulated.
The time-discretized trajectories, or chains, are denoted as (Xn)n∈N and (U′n)n∈N. Note that
Equation (3) is equivalent with (k = 1, 2, 3)

U′k,t = U′k,0e
∫ t

t′ αk(Xs)ds +
∫ t

t′
e
∫ t

s αk(Xl)dldŨk,s, dŨk,t = a(Zt, U′3,t)δk,3dt + bk(Xt)dWk,t.

Given the initial condition X0 = x0, this leads to the following discretization using the
Euler–Maruyama scheme for dŨk,t, i.e., for n ≥ 0:

Xn+1 − Xn = (u(Zn; Φ) + U′n)∆tn, (28)

[U′n+1]k = e−∆tn/[τL(Zn)]k

(
[U′n]k +

1
2

(
W ′2n

σ2
w(Zn)

+ 1
)

dσ2
w

dz
(Zn)∆tnδk,3

+

(
2

[τL(Zn)]k

)1/2
[σu(Zn)]k[∆Wn+1]k

)
, (29)

in which the subscript n refers to the value at the n-th time step and the increment [∆Wn+1]k
is drawn from a normal distribution with mean zero and variance ∆tn. Note that it is
also possible to apply the Euler–Maruyama scheme directly to Equation (3), but then
[∆tn]k < [τL]k should be preserved, which is not done in the current work near the ground
surface as explained in Section 2.5. We assume U′0 = u′0, see also Section 2.5.

Note that evaluating expression (24) only requires np independent chains {Z(i)
1 , . . . , Z(i)

ni+1}
of the particle height along its trajectory. These are obtained as well by discretization (28) and (29).
Denote αn

k = αk(Zn) and bn
k = bk(Zn), then

p
(
t, x1, x2|t′, x0, Ẋ0, Φ, Z1, . . . , Zn

)
=

1
2π
√
|Dn|

exp
{
−1

2
((x1, x2)− µ̂)>(Dn)−1((x1, x2)− µ̂)

}
, (30)

µ̂ = (x1, x2)0 + ((Ẋ1, Ẋ2)0 − (u, v)(x3,0; Φ))An +
n

∑
k=0

(u, v)(Zk; Φ)∆tk+1,

with An = T(An
1 , An

2 , Φ) and Dn = T(Dn
1 , Dn

2 , Φ). In fact, p in Equation (30) is a Gaussian
kernel with the path-dependent diffusion matrix Dn playing the role of bandwidth matrix
in comparison with the classical Gaussian kernel smoother. Here, An

k and Dn
k are the

discretizations of λk and Σk (k = 1, 2) resp. occurring in the distribution of (22). These
discretizations can be evaluated by the following recursive relationships, i.e., for k =
1, 2 holds
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An
k = An−1

k +
Ân−1

k

αn−1
k

(
eαn−1

k ∆tn − 1
)

(n ≥ 1), A0
k,k = 0, (31)

Ân−1
k = eαn−2

k ∆tn−1 Ân−2
k (n ≥ 2), Â0

k = 1, (32)

and

Dn
k = Dn−1

k +
(bn−1

k )2

2(αn−1
k )3

(
eαn−1

k ∆tn − 2
)2

+
(bn−1

k )2

(αn−1
k )2

(
∆tn −

1
2αn−1

k

)
(33)

+
2

αn−1
k

(
eαn−1

k ∆tn − 1
)

D̂n−1
k +

1
(αn−1

k )2

(
eαn−1

k ∆tn − 1
)2

D̃n−1
k (n ≥ 1), D0

k,k = 0,

D̃n−1
k =

(
bn−2

k

)2

2αn−2
k

(
e2αn−2

k ∆tn−1 − 1
)
+ e2αn−2

k ∆tn−1 D̃n−2
k (n ≥ 2), D̃0

k = 0, (34)

D̂n−1
k = eαn−2

k ∆tn−1 D̂n−2
k +

(
bn−2

k

)2

2(αn−2
k )2

(
1− eαn−2

k ∆tn−1
)2

+
1

αn−2
k

(
1− e−αn−2

k ∆tn−1
)

Dn−1
k

(n ≥ 2), D̂0
k,k = 0, (35)

Dn−1
k = e2αn−2

k ∆tn−1 Dn−2
k −

(
bn−3

k

)2

2αn−3
k

(
1− e2αn−3

k ∆tn−2
)

e2αn−2
k ∆tn−2 (n ≥ 3), D1

k = 0. (36)

These relationships have been obtained by applying piecewise exact integration. The
derivation of the relationships (33)–(36) can be in found in Appendix C. Relationships (31)
and (32) are derived similarly.

2.5. Computational Set-Up

Each estimator has been implemented in C++. As a random number generator,
the Mersenne Twister from Intel MKL is used to simulate the Wiener processes. Particle
trajectories are calculated completely mesh-free. Only a mesh with a cell size of 0.5 m (stack
release) or 0.2 m (ground release) is used to discretize the height-dependent profiles for
u, τL, σu and ∆t in order to reduce the computational cost. The 0.5 m cell size has been
chosen such that the lowest cell center coincides with the sand-grain roughness height
(30z0). The size of the domain is 2000× 2000× 500 m3. The timestep in the discretization of
the k-th component of the particle velocity needs to satisfy 0.01[τL]k ≤ [∆t]k ≤ 0.5[τL]k [22]
with k = 1, 2, 3. Therefore, [∆t]k/[τL]k = 0.01 has been chosen for an unstable atmosphere
and 0.02 (stack release) or 0.05 (ground release) otherwise. Below 30z0, these ratios are not
preserved anymore since the time step is kept constant then. Furthermore, σw and ū are
kept constant below this height.

In the implementation of the boundary condition at the ground surface, the time
step is split into two parts at the moment the particle ends up below the ground. Via a
linear interpolation, the time is determined at which the particle crosses the boundary.
With the remaining part of the time step, its new height position is determined using the
vertical velocities obtained via (25) or (27). The smoothing kernel K in Equation (6) has
been chosen as

K(x, y, z) = K∗2(x, y)(K∗1(z) + K∗1(−z)), (x, y) ∈ R2, z ∈ R+, (37)

with K∗d (d = 1, 2) given by (11). The reflection term in (37) accounts for the presence of
the ground surface. We chose reflection instead of local renormalization because it is a
more natural choice when a perfect reflecting ground surface is imposed. The advantage
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of this semi-product kernel is that only the bandwidth belonging to K∗1 is affected by the
boundary. The smoothing kernel in Equation (24) has been chosen similarly, i.e.,

K(z) = K∗1(z) + K∗1(−z), z ∈ R+, (38)

with K∗1 also given by Equation (11) for d = 1. Note that the chains {Z(i)
1 , . . . , Z(i)

ni+1}
required to evaluate expression (30) are only used for the evaluation of µ̂ and Dn. Instead
of storing np horizontal particle positions, µ̂ ∈ R2 is np times stored. Only extra storage
is required to store Dn ∈ R2 np times. The simulated plumes with the particle model are
in fact a superposition of instantaneous point releases. The concentrations in the current
work are estimated per instantaneous release, as suggested by Equation (1). Consequently,
the selected bandwidth h∗ provided by Equation (8) depends on the diffusion time (particle
age). If external variability is added, as described in Appendix A, a new wind direction is
sampled from a normal distribution according to Equation (A13) for each instantaneous
point release. We assume as an initial condition that the ejection velocity of the particles
equals the mean wind speed perturbed by Gaussian noise, i.e., Ẋ0 = u(x0; φ) +R(φ)U′0
with U′0 ∼ N(0, diag{σ2

u}).

3. Results

First, a convergence study will be conducted for estimators (6) and (24) to verify
their convergence rate and compare their performance. This will only be applied to
an instantaneous point release because of the computational cost. In Section 3.2, their
performance will also be compared for a more realistic setting with a continuous release.

3.1. Convergence Study

Assume an instantaneous point release, i.e., substitute Q(t) = Q0δ(t− t′) (Q0 ∈ R+)
in Equation (1) and denote cinst(t, x) = Q0 p(t, x|t0, x0) the exact corresponding concentra-
tion field. An analytical solution can be derived for p(t, x|t0, x0) in case of homogeneous
turbulence. Therefore, this will be our reference case. The derivation is as follows. As-
sume that all the model parameters (u, σu and τL) are height independent. Consequently,
Equation (21) gives an expression for the solution Xt. This allows for an analytical expres-
sion of p(t, x|τ, x0). The concentration field due to an instantaneous point release with
φ = 0°, a degenerate distribution for Ẋ0 and a perfect reflecting ground surface is then
given by

cinst−HT(t, x) =
Q0

(2π)3/2|Σ(t)|1/2

{
e−

1
2 (x−µ(t))>Σ(t)−1(x−µ(t)) + e−

1
2 (x−µ∗(t))

>Σ(t)−1(x−µ∗(t))
}

(39)

where

µk(t) = x0,k − α−1
k (ẋ0,k − uk)

(
1− eαk(t−t0)

)
+ uk(t− t0), k = 1, 2, 3,

µ∗,1 = µ1, µ∗,2 = µ2, µ∗,3 = −µ3,

Σk,k(t) =
b2

k
α2

k

(
1

2αk

((
eαk(t−t0) − 2

)2
− 1
)
+ t− t0

)
, Σk,l = 0 k 6= l, k, l = 1, 2, 3.

Furthermore, we set ẋ0 = u(x0; 0).
To parameterize the meteorology, the parameter values from case I in Table 1 are as-

sumed. These are used to evaluate the parameterizations for u, σu and τL, see Appendix A,
at release height (hstack). Since the model parameters are assumed to be constant in this case,
they are assumed to equal their value at hstack throughout the entire boundary layer. In the
following, we will refer to the homogeneous-turbulence case as case I–HT. In Figure 1a,b,
one can see that the predictions from the PI (path integral-based) estimator, Equation (24),
and KS (kernel smoother) estimator, Equation (6), coincide well. In particular, the predic-
tion from the PI estimator and the analytical solution (39) are indistinguishable, while the
KS estimator shows a slight deviation for the maximum.
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Table 1. Parameter values used in the convergence study to evaluate the parameterizations in
Appendix A. The symbol ‘/’ indicates that the parameter is not required or that the value obtained
from its parameterization is used. Case I–HT adopts the same parameter values as case I (see text).

Case L (m) u∗ (m s−1) κ (-) σu (m s−1) σv (m s−1) hi (m) z0 (m) hstack (m) Q0 (kg)

I 248 0.38 0.35 / / / 0.008 30 0.1
II 53 0.24 0.35 0.59 0.38 / 0.008 30 0.1
III −87 0.39 0.35 / / 836 0.008 30 0.1
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Figure 1. Concentration predictions due to an instantaneous point release by the PI (−.) and KS (− −) estimator
(np = 108 particles). Case I–HT (a) 20 s after release, (b) 104 s after release, exact solution (39) (−) also displayed. (c) Case I,
120 s after release. (d) Case III, 118 s after release.

We will consider three additional cases: a near-neutral (case I), stable (case II) and
unstable (case III) atmosphere. The parameter values used in each of these cases can be
found in Table 1. Again, the PI and KS estimator coincide well as can be seen in Figure 1c,d.
Just as in case I–HT, small deviations appear in the peak and near the ground between
both estimators.

As a next step in our analysis, the MISE is estimated. According toEquation (7),
the MISE of the estimator ĉinst(t, x) = Q0 p̂(t, x|t0, x0) is approximately given by

MISE{ĉinst(t, ·)} ≈
M

∑
i=1

E{ĉinst(t, xi)− cinst(t, xi)}2∆xi ≈
M

∑
i=1

∆xi
ns

ns

∑
j=1

(
ĉ(j)

inst(t, xi)− cinst(t, xi)
)2

(40)
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with M the number of grid points, ∆xi the volume of the i-th grid cell and ns the number of
simulations for which the random number generator was each time initialized with a differ-
ent seed. The true solution cinst in Equation (40) is estimated by ĉinst for np = 108 particles,
see Figure 1. From the discussion in Section 2.1, it follows that

inf
h>0

log10(MISE{ p̂(t, ·; h)}) ∼ −β0 log10(np) + β1, β0 =
4

d + 4
. (41)

Here, β1 is related to the efficiency of the used estimator, e.g., for (6), β1 estimates the
quantity (10). The coefficients β0 and β1 can be estimated via a least-squares approxi-
mation of log10(MISE{ p̂(t, ·; h)}). In order to construct a least-squares approximation
for log10(MISE{ p̂(t, ·; h)}) w.r.t. np, the MISE is calculated for np = 10k particles with
k = 1, . . . , 6. For each value of np, ns = 100 simulations are conducted, each time the ran-
dom number generator is initialized with a different seed. A mesh is used to evaluate (40).
Here, the mesh is constructed such that it expands away from the location of the maximum
concentration in both the horizontal and vertical directions. The refinement factor (ratio of
the length of two consecutive cells) is 1.05 around the location of the maximum concen-
tration and a mesh size of 1.0 m is used at the maximum concentration. The expansion
of the cell height is limited to a maximum size of 1.5 m near the ground surface of the
simulation domain.

The MISE for the concentration field due to the instantaneous point release is calcu-
lated at two times corresponding with a mean drift of around 200and 1000 m, respectively.
The results are presented in Table 2. The PI estimator is an unconditionally better estima-
tor than the classical KS estimator if both its efficiency and convergence rate are higher.
The convergence rate is theoretically expected to be higher, i.e., 4/5 vs. 4/7. This is con-
firmed by the numerical simulations; for the shorter travel times, see the value of the β0
parameter in Table 2 for NR. The abbreviation NR refers to the normal reference rule where
the σk in Equation (13) is estimated numerically from the solution. For the longer travel
times, convergence is slower than what is theoretically expected.

In order to obtain a better insight into this behavior, the integrated Laplacian squared
in Equation (8) also has been calculated numerically for the bandwidth of kernel K1 in
Equations (37) and (38). The objective is to investigate the influence of the boundary and
therefore, only the bandwidth of kernel K1 is modified since mainly the vertical concen-
tration distribution is affected by the boundary. The crosswind-integrated concentration
distribution for a unit source (p) has been estimated using a large number of particles
(np = 108 particles) such that the effect of the chosen kernel and bandwidth (using the
normal reference rule) can be neglected. A fourth-order central difference scheme has
been used to approximate the second derivative of the distribution over height. Before the
finite-difference scheme was applied, the concentration estimations were preprocessed
with a linear noise filter to reduce oscillations in the estimated derivative. Finally, the inte-
gration was performed with the trapezoidal rule. The values of the estimated integrals are
displayed in Table 3. Case I–HT for the 20 s travel time has been added as a benchmark,
because the normal reference rule, Equation (13), is exact then. The finite-difference es-
timate (FD) and the analytical value (NR) coincide well for the latter case and this gives
confidence that the procedure we are using is functioning properly. For cases II and III,
there is a clear deviation between the FD and the NR estimate. Using the FD estimate in
Equation (8) provides for a closer match with the theoretical convergence rate for both
estimators, e.g., case III, see Figure 2b. Only for case I, the discrepancy becomes bigger then.

For two out of four cases, the PI estimator has, next to the higher convergence rate,
also the highest efficiency (lower β1 value). For the short travel times, these are cases I–HT
and II. For the longer travel times, these are cases I–HT and I. For these cases, the MISE
of the PI estimator is always lower than of KS. For the other cases, the MISE of the PI
estimator is not unconditionally lower due to its higher β1 value, but this is mostly not
significant (np < 10 particles)—see Figure 2b as an example. Only for the short travel time
in case III, see Figure 2a, a value of np > 1000 particles is required for the PI estimator to
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have a lower MISE. Thus, one could state that the PI estimator has a nearly unconditionally
lower MISE w.r.t. the KS estimator for the considered cases. Finally, the R2 value in Table 2
confirms that the estimated MISEs are following a straight line w.r.t. np, as is expected from
the theory.

Table 2. Convergence study results. PI refers to estimator (24) and KS to (6). The case column refers
to the cases in Table 1. Column h∗ displays the method to evaluate the Laplacian in the bandwidth
of kernel K1 in Equations (37) and (38): NR refers to normal reference rule (13) and FD to finite
differences. The time column gives the simulated time at which the MISE is calculated. Columns
β0 and β1 display the estimated coefficients from Equation (41). Column R2 displays the R-squared
value of the fits.

Case Method h∗ Time (s) β0 β1 R2 (-)

I–HT

PI NR 20 0.68 5.34 0.99
NR 104 0.76 3.31 1.00

KS NR 20 0.60 6.02 1.00
NR 104 0.60 3.95 1.00

I

PI NR 20 0.75 5.29 1.00
NR 120 0.62 3.44 1.00
FD 120 0.49 3.33 1.00

KS NR 20 0.50 5.22 1.00
NR 120 0.52 3.55 1.00
FD 120 0.49 3.53 1.00

II

PI NR 27 0.77 5.51 1.00
NR 156 0.70 4.20 1.00
FD 156 0.77 4.26 1.00

KS NR 27 0.56 5.77 1.00
NR 156 0.44 4.17 0.99
FD 156 0.50 4.12 1.00

III

PI NR 24 0.81 5.99 1.00
NR 118 0.52 3.31 1.00
FD 118 0.79 3.97 1.00

KS NR 24 0.59 5.25 1.00
NR 118 0.37 3.20 0.99
FD 118 0.44 3.48 0.99

Table 3. Values of the integrated Laplacian squared in Equation (8) for the bandwidth of kernel K1

in Equations (37) and (38) with finite differences (FD) or the normal reference rule (NR). The case
column refers to the case in Table 1. The time column gives the simulated time at which the integral
is calculated.

Case Time (s) FD (m−5) NR (m−5)

I–HT 20 4.5 × 10−5 4.8 × 10−5

I 120 1.05 × 10−9 6.4 × 10−9

II 156 2.4 × 10−7 5.1 × 10−8

III 118 1.0 × 10−6 1.3 × 10−9
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Figure 2. MISE against the released number of particles np for the PI and KS estimator in an unstable atmosphere at (a) 24 s
and (b) 118 s after release, NR refers to normal reference rule and FD to the finite difference (see text). The lines represent
the least-squares estimate of the corresponding MISE.

3.2. Demonstration on Project Prairie Grass

Project Prairie Grass [23,24] was a field program comprising 70 experiments conducted
on a flat prairie in Nebraska in the summer of 1956. The program was conducted during
July and August of 1956 with an equal number of experiments during the daytime and
nighttime. Each time, the non-reactive, non-buoyant gas sulfur dioxide was released
at a constant release rate. The time-averaged concentration was registered with 10-min
samples downwind from a source release along five arcs and six towers. The arcs are
located at 50, 100, 200, 400 and 800 m from the source and the towers are positioned along
the arc at 100 m, spaced at 14 degrees intervals. The source was placed 0.46 m above
the ground and can be treated as a point source. The concentration was measured at
1.5 m above the ground on the arcs and at nine different heights from 0.5 m to 17.5 m on
the towers. In addition to the concentration measurements, the micro-meteorological
conditions, including wind and temperature profiles, were registered as well along 16 m
masts. From these profiles, Nieuwstadt [25] estimated the values of L and u∗ for various
experiments taking the measurement error into account and assuming z0 = 0.008 m.
The obtained values of L and u∗ are listed for 60 experiments in [26], which have been
adopted in the current work. In [25,26], the value κ = 0.35 was assumed from the 1968
Kansas experiments, whilst we assume κ = 0.387 [27]. Therefore, the values of u∗ in [26]
need to be increased by 11%; the values of L are invariant w.r.t. this rescaling ([28],
Equation (11.1), p. 214). The value of the mixing height for the unstable cases has been
adopted from [29]. We estimated the mixing height for the stable cases as described in
Appendix A.

We illustrate the model performance in the stable atmosphere for three experiments:
22, 29, 40. We selected experiments 15, 34 and 61 in the case of an unstable atmosphere.
Experiment 22 and 34 have been selected for the high wind speed condition and the other ex-
periments because of the greater amount of mesoscale variability. All the before-mentioned
experiments also satisfy the requirement that the wind speed should be higher than 2 m s−1

at a height of 2 m, otherwise the measurement uncertainty on the meteorological quantities
increases greatly ([23], Section 6.3, p. 207).



Atmosphere 2021, 12, 1343 15 of 26

In order to assess the degree of convergence, the mean absolute relative error (MARE),
the fractional bias (FB) and the fraction of predictions within the relative error of 5%
(FAC1.05) have been used, i.e.,

MARE =

∣∣∣∣ ĉ(∆t∗, np)

ĉ(∆t∗/2, 50np)
− 1
∣∣∣∣, FB =

ĉ(∆t∗/2, 50np)− ĉ(∆t∗, np)

0.5
(

ĉ(∆t∗/2, 50np) + ĉ(∆t∗, np)
) ,

FAC1.05 = fraction of data that satisfy 0.95 ≤
ĉ(∆t∗, np)

ĉ(∆t∗/2, 50np)
≤ 1.05,

with ĉ the estimated concentration at the sampling stations, ∆t∗ = [∆t]k/[τL]k (speci-
fied in Section 2.5) and the overbar denotes the average over the data set. The error of
5% in FAC1.05 has been chosen, because it represents the relative measurement error
([23], Section 5.6, p. 77). Note that the above measures compare two estimates of ĉ for
which the total amount of particles differ with a factor of 100 (∆t∗ also controls the release
time). The FB and FAC2 measures were introduced in [30] to compare model predictions
with measurements, but here it is used to assess the different levels of convergence as
mentioned before.

The results of the convergence study for a stable atmosphere can be found in Table 4.
All predictions lower than the detection limit of 0.1 mg m−3 ([23], Section 5.6, p. 77) are
treated as noise and they have been excluded. All statistics indicate that the PI estimator
obtains a higher degree of convergence than the KS estimator does in a stable atmosphere.
In this case, the PI estimator has a MARE that is a factor of five smaller, a FB that is a factor
of four smaller and a FAC1.05 that is a factor of 2.6 higher for np = 1000 particles per
release time and ∆t∗ = 0.05. These parameter settings correspond with a release of around
7.6 million particles in total.

In Figure 3, crosswind and vertical concentration profiles from the PI and KS estimator
are shown for the 100 m-arc. Recall from Section 3.1 that KS has a uniform slower conver-
gence in np in a stable atmosphere. As a result, we observe that it predicts the maximum
value of the crosswind profiles 6.6% lower on average than the PI estimator does at the arcs
for the chosen values of np and ∆t∗, e.g., see Figure 3a,c,e. Since this deviation exceeds the
measurement error, it cannot be neglected. The lower peak value predicted by KS results
in a broader distribution w.r.t. PI. This is also visible as higher-predicted concentrations
near the ground in the vertical profiles (not the centerline profile), see Figure 3b,d,f.

For the sake of completeness, the predictive capabilities of the PI estimator are briefly
discussed. The predictions for experiment 22 suffer from a bias in wind direction. Nonethe-
less, the magnitude of the peak value is well predicted at the 100 m-arc (Figure 3a). At the
50 m and 200 m-arc, its magnitude is under- and overestimated by 16%, respectively. In ex-
periment 29, the width of the concentration distribution is underestimated. The discrepancy
is mainly present in the left half of the distribution, see Figure 3c. The magnitude of the
maximum values tend to be overestimated at all the arcs but always less than 16%. In ex-
periment 40, the width of the distribution tends to be slightly overestimated at all the arcs,
e.g., see Figure 3e. The maximum values are approximately overestimated with 60% at the
50, 100 and 200 m-arc. Generally, one can say that the height-dependent profiles are best
predicted at the towers closest to the wind direction. These are the tower measurements
displayed in Figure 3. In experiment 40, the wind direction was positioned exactly midway
between two towers. Figure 3f only shows one of them, but a similar result has been
obtained for the other tower with an overestimation near the ground surface. The vertical
extent of the plume is reasonably predicted for experiment 22 (Figure 3b).



Atmosphere 2021, 12, 1343 16 of 26

Table 4. Convergence test, comparison of ĉ(∆t∗/2, 50np) and ĉ(∆t∗, np). Stable: experiments 22, 29
and 40 with np = 1000 particles per release time and ∆t∗ = 0.05. Unstable: experiments 15, 34 and 61
with np = 1000 particles per release time and ∆t∗ = 0.01.

Stratification Method MARE (%) FB (%) FAC1.05 (%) Number of Data Points (#)

stable PI 12 −0.71 58 370
KS 61 −3.0 22 408

unstable PI 58 −8.3 11 939
KS 147 −9.0 5.6 1135
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Figure 3. Cont.
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Figure 3. Measured (◦) and predicted concentration profiles by the PI (–) and KS (– –) estimator during a stable stratification
at the 100 m-arc for (a,b) experiment 22 (c,d) experiment 29 (e,f) experiment 40 with np = 1000 particles per release time
and ∆t∗ = 0.05. For each experiment the vertical profile from the tower closest to the wind direction is shown.

Table 4 shows that it is harder to obtain good convergence in case of an unsta-
ble atmosphere. Again, all predictions lower than the detection limit of 0.1 mg m−3

([23], Section 5.6, p. 77) have been excluded. The statistics indicate as well that the PI
estimator obtains a higher degree of convergence for an unstable atmosphere than the KS
estimator does. The PI estimator has a MARE that is a factor of 2.5 smaller, a similar FB and
a FAC1.05 that is a factor of 2 higher for np = 1000 particles per release time and ∆t∗ = 0.01.
These parameter settings correspond with a release of around 15 million particles in total.

In Figure 4, crosswind and vertical concentration profiles by the PI and KS estimator
are shown for the 100 m-arc. Just as with the stable atmosphere, the predicted profiles do
not coincide completely due to a different convergence behavior. Recall from Section 3.1
that the PI estimator convergences faster in an unstable atmosphere if the chosen number
of particles is sufficiently high. Table 4 confirms that this is the case. We observe that
the PI estimator predicts the maximum value of the crosswind profiles 22% higher on
average than the KS estimator does at the arcs for the chosen values of np and ∆t∗, e.g., see
Figure 4a,c,e. This deviation also exceeds the measurement error and therefore, it cannot
be neglected.

Finally, the predictive capabilities of the PI estimator are briefly discussed. All three
experiments show a similar pattern: at the 50 and 100 m-arc the concentrations are under-
and overestimated, respectively, with an average deviation of 45%. From the 200 m-arc,
the overestimation is more than a factor of two. In general, there seems to be a tendency to
overestimate the width of the crosswind distribution in an unstable atmosphere, as can
be seen from Figure 4a,c,e. As before, the tower measurements in Figure 4 were taken
from the towers positioned closest to the wind direction. For each experiment, the vertical
extent of the plume is underestimated with an overestimation near the ground surface as a
consequence (Figure 4b,d,f).
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Figure 4. Measured (◦) and predicted concentration profiles by the PI (–) and KS (– –) estimator during an unstable
stratification at the 100 m-arc for (a,b) experiment 15 (c,d) experiment 34 (e,f) experiment 61 with np = 1000 particles per
release time and ∆t∗ = 0.01. For each experiment, the vertical profile from the tower closest to the wind direction is shown.
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4. Discussion

In Table 2, one observes that the convergence rates for a longer travel time deviate
more from the theoretical rate than for a short travel time. Two possible hypotheses can
be formulated: (1) the convergence is slowed down due to a non-zero vertical gradient
of the underlying density at the boundary, as discussed in [31]; (2) the concentration field
deviates more from a Gaussian distribution for longer travel times, consequently the normal
reference rule used to evaluate Equation (8) is no longer appropriate. What also contributes
to the non-validity of this rule for the longer travel times is that it does not take the ground
surface into account. It can be observed that evaluating instead the integral of the Laplacian
squared for the crosswind-integrated concentration distribution (see Table 3) numerically
improves the convergence rates, except for case I. Recall that the KS estimator also uses
the normal reference rule to estimate the concentration in the horizontal plane. This may
also contribute to the discrepancy that is still present in the convergence rate of the KS–FD
estimator, for example, in case III. Small deviations from the theoretical convergence rate
that are present as well in the PI–FD estimator are most likely due to numerical errors in
the estimation of the second derivative and the integration used for the MISE. Due to the
better correspondence with the theory by avoiding the normal reference rule in the vertical
direction, the second hypothesis is plausible. This suggests that using more sophisticated
bandwidth selection methods than the normal reference rule will improve the convergence
rates. It was found in [32] that sophisticated bandwidth selection methods do not have
a superior performance for larger distances downwind of 1–50 km and higher effective
release heights of 100–300 m. It seems to us rather unlikely that the first hypothesis can
explain the discrepancy in the neutral atmosphere, since perfect reflection imposes a zero
gradient at the boundary. This cannot be seen on Figure 1c because the resolution near
the ground surface is not high enough to resolve this gradient properly. It is striking to
conclude that up to 35% of the convergence speed can be lost with the normal reference
rule. This can increase the number of particles required to gain one digit of accuracy
with a factor of five or nine, depending on the estimator. Of course, such issues have
already been addressed in the literature and numerically more intensive methods have
been developed to select the optimal bandwidth. An example is the plug-in bandwidth
selector, which is widely recommended ([8], Section 2.4, p. 26). This selector also uses the
asymptotic approximation in Equation (8), but one should realize that this comes with
the cost of evaluating (`− 1)np(np + 1)/2 kernels more per instantaneous release where
` is the selected stage. A plug-in bandwidth selector that is completely independent of a
normal reference rule is proposed by [11] for their 1D diffusion kernel, which is also a type
of kernel smoother. An alternative to the plug-in selector is provided by the smoothed
cross validation bandwidth selector, which does not rely on the asymptotic approximation
in Equation (8). Despite the added computational complexity, it is not clear whether this
selector performs better than the plug-in selector. More information and other bandwidth
selection methods that could be used can be found in ([8], Chapter 3, pp. 43–66).

Whether the PI or KS estimator is better does not only depend on the convergence rate
but also on the efficiency of the estimator (parameter β1 in Table 2). As already remarked in
Section 3.1, the proposed PI estimator has a comparable efficiency as the 3D Epanechnikov
estimator, used in the KS estimator. Consequently, it can be considered as the better
estimator due to the predominantly higher convergence rate. The main advantage of the
proposed PI estimator is that it allows for faster dispersion simulations over homogeneous
terrain since it reduces the sampling cost for the particles and it converges faster. Profiling
the code of the KS estimator during the simulation of experiments 22, 40, 15 and 34 showed
that the calls to the random number generator represent up to 35% of the total runtime.
Thus, this cost is definitely not negligible. The PI estimator reduces this cost with a factor
of three for a given number of particles. The cost reduction for a given accuracy can be
expected to be much higher due to the improved convergence rate. Table 4 supports
this argument. Note that this improved convergence has been obtained by exploiting
the assumptions of horizontally homogeneous meteorological conditions. On top of this,
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additional mathematical techniques can be applied for further improvements. As an
example, it might be interesting to choose the kernel smoother in Equation (24) as the
geometric extrapolated bias-reduced kernel of [9] such that the convergence rate to estimate
the 3D concentration can even be further improved up to 12/13. Because of the improved
accuracy, the PI estimator would be an excellent validation tool for Langevin models that
can take more complex terrain configurations into account. After all, if such models are
applied to horizontally homogeneous terrain, then their results should coincide with those
of the PI estimator over such terrain in the near-field range.

Table 4 makes clear that obtaining the same degree of convergence for the KS as for the
PI estimator requires some additional resources. Note that in order to make a qualitative
comparison with measurements, the convergence error should preferably be below the
relative measurement error of 5%. We found that convergence is easier obtained in the
near-field range with the parameterization for the stable atmosphere than for the unstable
one. In the latter, the larger Lagrangian time scales in the horizontal directions lead to
time steps, which cannot be made sufficiently small as required for numerical convergence
due to the physical restriction on the time step, see Section 2.5. Thus, the physical and
numerical requirements are conflicting. It is not clear to us how this issue can be overcome.

5. Conclusions

A new kernel density estimator derived from the Langevin equation has been pre-
sented for dispersion assuming local Gaussian turbulence and horizontally homogeneous
meteorological conditions. The latter assumption is often relevant for near-field range
dispersion studies. The new estimator has the special property that only the vertical particle
positions need to be calculated numerically. Consequently, the convergence rate of a 1D
kernel smoother is inherited.

The convergence study confirms the higher convergence rate. We found that for longer
travel times, the numerical convergence rate deviates from the theoretical one for both
estimators. We argued that this may be due to the use of the normal reference rule in the
bandwidth calculation. The efficiency of the newly proposed estimator has been found to
be comparable with the one of the optimal 3D Epanechnikov kernel, except possibly in an
unstable atmosphere. For this type of stratification, the efficiency of the proposed estimator
may be lower. Consequently, it has been found that the convergence in MISE sense is
only conditionally faster, depending on the released number of particles. For a stable
or neutral atmosphere, the convergence of the proposed estimator has been found to be
unconditionally faster w.r.t. the 3D kernel smoother. In the Project Prairie Grass experiment,
the improved convergence allows obtaining the convergence error for at least twice as
many predictions below the relative measurement error than with the 3D kernel smoother.

It still needs to be verified whether the theoretical convergence rate can be more closely
resembled if a more sophisticated bandwidth selection method is used, such as the plug-in
bandwidth selector. It may also be interesting to conduct a sensitivity study of the model
input parameters in order to quantify what part of the observed discrepancies between the
model predictions and the measurements is due to the measurement error.
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Appendix A. Atmospheric Parameterization

The form of the input functions α, a and b in Equation (3) is chosen such that particle
dispersion in a vertically inhomogeneous flow is adequately parameterized. It is sufficient
to demand that the model satisfies the well-mixed condition, i.e., if the particles of a tracer
are initially well mixed, then they should remain so. The following parameterization is
adopted such that this criterion is satisfied [33] (k = 1, 2, 3)

αk(z) = −
1

[τL(z)]k
, a

(
z, w′

)
=

1
2

(
w′2

σ2
w(z)

+ 1
)

dσ2
w

dz
(z), bk(z) = [σu(z)]k

√
2

[τL(z)]k
,

with τL ∈ R3 the Lagrangian time scale vector (s) and σu = (σu, σv, σw) ∈ R3 the variance
vector (m s−1) of the particle velocity. Here, the operator [·]k returns the k-th component of
the input vector.

The meteorological quantities u, τL and σu are parameterized to represent the different
atmospheric conditions. In the current work, a conventional open-field model based on
Monin–Obukhov similarity theory (MOST) is used. The Eulerian wind profile according to
MOST is given by (e.g., [34], Section 9.7.5, p. 385)

u = ūêφ, ū(z; u∗, L) =
u∗
κ

(
ln
(

z
z0

)
−ΨM(z/L) + ΨM(z0/L)

)
, (A1)

with êφ the unit vector aligned with the wind direction φ, u∗ the friction velocity (m s−1),
κ = 0.387 the von Kármán constant (-) [27], z0 the roughness length (m), L the Monin–
Obukhov length (m) and ΨM the integrated stability kernel, i.e.,

ΨM(ξ) = −4.7ξ, ξ > 0,

ΨM(ξ) = ln

[(
1 + x2

2

)(
1 + x

2

)2
]
− 2 arctan x +

π

2
, x = (1− 15ξ)1/4, ξ < 0.

In the surface layer, the variance of the horizontal wind components can be assumed
to be independent of height for every stratification regime. The variance of the vertical
wind component is also height independent, except in an unstable atmosphere according
to local free convection similarity theory. These variances are parameterized as follows

σ2
u = 6.3u2

∗, σ2
v = 4.1u2

∗, σ2
w = 1.7u2

∗, |L| > 200 m, (A2)

σ2
u = 8.5u2

∗ − σ2
v , σv = 1.7u∗, σ2

w = 2.5u2
∗, 0 < L < 200 m, (A3)

σu = σv = 0.6
(
− u3
∗

κL
hi

)1/3

, σw(z) = 1.4
(
− u3
∗

κL
z
)1/3

, −200 m < L < 0. (A4)

The relationship σv = 1.7u∗ for a stable stratification has been adopted from [35] for short
grassland. The unstable parameterization can be found in ([28], Section 11.5, p. 237,
Equation (11.1), p. 214, Equation (9.41), p. 183, Equation (9.43), p. 184). The rest has been
adopted from [34].

The Lagrangian time scale τL is considered to be a three-dimensional vector; a param-
eterization for each component can be found in [36], i.e.,
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[τL]1 = [τL]2 = [τL]3 =
0.5z/σw

1 + 15 fCz/u∗
, |L| ≥ 200 m, (A5)

τL =

(
0.15
σu

√
hiz,

0.07
σv

√
hiz,

0.1
σw

h0.2
i z0.8

)
, 0 m < L < 200 m, (A6)

[τL]1 = [τL]2 = 0.15
hi
σu

,−200 m < L < 0 m, (A7)

[τL]3 =
0.1z

σw[0.55 + 0.38(z− z0)/L]
,−200 m < L < 0 m and z < 0.1hi and z− z0 < −L, (A8)

[τL]3 = 0.59z/σw ,−200 m < L < 0 m and z < 0.1hi and z− z0 > −L, (A9)

[τL]3 = 0.15
hi
σw

[
1− exp

(
−5z

hi

)]
,−200 m < L < 0 m and z > 0.1hi. (A10)

The expression for τL in stable and unstable conditions requires the height of the
mixed layer, hi, as an input. Preferably, this quantity is measured, but if this is not the case,
then it needs to be parameterized. In case of a stable atmosphere, the height is estimated
as hi = 0.4

√
u∗L/ fC (0 m < L < 200 m) [37] with fC the Coriolis parameter. In case of

an unstable atmosphere, we assume that hi is known (see Section 3.2). According to the
above formulas, note that [τL]1 = [τL]2 is immediately satisfied for a neutral and unstable
stratification throughout the entire boundary layer. According to (A3), σu = 1.4σv and
[τL]1σv ≈ 0.1

√
hiz. For implementation technical reasons, we assume that [τL]1 = [τL]2 ≈

0.085
√

hiz/σv for 0 m < L < 200 m, which is only a minor modification.
One should realize that Equations (A2)–(A4) only represent the turbulence velocity

variance. These variances do not necessarily explain all the measured variability (σtot),
because there might be a contribution from mesoscale motions. Vickers and Mahrt [35]
discuss this phenomenon in particular for the stable boundary layer. They also argue
that turbulence motions have a different effect on dispersion than mesoscale motions
do. Therefore, one should distinguish between both types of variability. The turbulence
component will be treated as internal variability generated by the model and the mesoscale
component will be added as external variability (σe). There holds [35]

σ2
tot = σ2

e + σ2
v . (A11)

Denote σφ (°) the wind direction standard deviation and presume that σφ ≈ σtot/ū(180°/π)
is sufficiently small, then by Equation (A11) the mesoscale component of the standard
deviation σφ,e (°) satisfies

σ2
φ,e ≈ σ2

φ − TI2 180°2

π2 (A12)

with TI = σv/ū [−] the lateral turbulence intensity. If (A12) is negative, then the distribu-
tion of Φ is assumed to be degenerated in φ̄, the time-averaged wind direction. Otherwise,
the wind direction is modeled as

Φ = φ̄ + Φ′, Φ′ ∼ N(0, σ2
φ,e). (A13)

Section 2.5 provides more details about the application of Equation (A13) in the particle
model. Vervecken et al. [38] used a similar approach in the framework of the advection-
diffusion equation.

Finally, we remark that the above relations relate to classical Monin–Obukhov theory
for flat open terrain. Other parameterizations of homogeneous terrain that can be relevant
may, e.g., be the forest. See, for instance, [39].
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Appendix B. The Wiener Measure Applied to the Langevin Equation

In Equation (14), we integrate over the paths of the stochastic process (Zs)s>t′ . The aim
of this section is to properly define such an integral if (Zs)s>t′ satisfies the Langevin
equation. Denote the space of all paths [t′, t] 7→ R by X . Consider a function f : X 7→ R
whose image depends on the entire path {Zs, t′ ≤ s ≤ t}. Its functional average can be
evaluated if one can properly integrate over all the possible paths. In order to do this,
an appropriate measure dWz(s) should be formulated such that∫

f ({zs, t′ ≤ s ≤ t})dWz(s), dWz(s) = p({zs, t′ ≤ s ≤ t})dz(s),

is well defined. In the above formula, p({Zs, t′ ≤ s ≤ t}) represents the time-dependent
distribution of the paths and dz(s) denotes the integration over the paths. Determining the
measure dWz(s) comes down to interpreting the path distribution meaningfully.

We follow the approach of [12]. Discretize the paths: let the Eulerian variable zk denote
the value of a path at time tk such that tk−1 < tk < tk+1 (k = 1, . . . , n− 1) with t′ = t0 and
tn = t, then∫

f ({zs, t′ ≤ s ≤ t})dWz(s) = lim
n→∞

maxk ∆tk→0

+∞∫
0

· · ·
+∞∫
0

f (z0, . . . , zn)p(z0, . . . , zn)dz0 . . . dzn (A14)

with
f ({zs, t′ ≤ s ≤ t}) = lim

n→∞
maxk ∆tk→0

f (z0, . . . , zn) (A15)

and p(z1, . . . , zn) the common distribution of (Z0, . . . , Zn). If (Zs)s>t′ is a Wiener process,
then dWz(s) coincides with the classical Wiener measure [12], which measures the proba-
bility that a path is realized. The Wiener measure is well defined as a probability measure,
because the Chapman–Kolmogorov property is satisfied for the Wiener process (and Itô
processes in general), see ([40], Section 1.1.3, p. 36), due to its Markov property, i.e., its
transition probability density function satisfies the relationship

p(t, z|t′, z0) =
∫ +∞

0
p(t, z|t′′, z′′)p(t′′, z′′|t′, z0)dz′′. (A16)

Now, the functional average can be meaningfully defined as

E
[

f ({Zs, t′ ≤ s ≤ t})
]
=
∫

f ({Zs, t′ ≤ s ≤ t})dWz(s)

= lim
n→∞

maxk ∆tk→0

+∞∫
0

· · ·
+∞∫
0

f (z0, . . . , zn)p(z0)
n

∏
k=1

p(zk|zk−1)dz0 . . . dzn.

In the case of the Langevin process, the evolution of the state of (Zs)s>t′ can be con-
sidered as a Markov process in the position-velocity phase space, as was done previously
by [41]. Consequently, a similar relationship as in Equation (A16) holds, which is also
integrated over the speed (Żs)s>t′ . There follows,

E
[

f ({Zs, t′ ≤ s ≤ t})
]
= lim

n→∞
maxk ∆tk→0

+∞∫
0

+∞∫
−∞

+∞∫
0

· · ·
+∞∫
−∞

+∞∫
0

f (z0, . . . , zn)

p(z0, ż0)

{
n−1

∏
k=1

p(zk, żk|zk−1, żk−1)

}
p(zn|zn−1, żn−1)dz0dż0 . . . dzn−1dżn−1dzn

with f (z0, . . . , zn) as in Equation (A15). Note that p(z0, . . . , zn) is considered as the marginal
distribution of p(z0, . . . , zn, ż0, . . . , żn). The principles set out in this section apply to
Equations (14), (17) and (23).
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Appendix C. Derivation of the Recursion Formula for Dn
k,k

Consider times t′ < t1 < . . . < tn and discretize the functions αk and bk such that their
values are constant over the intervals [tm, tm+1] (m = 0, . . . , n− 1), denoted by αm

k and bm
k ,

then

Dn
k,k =

∫ tn−1

t′

[∫ tn

s
e
∫ q

s αk(zl)dldq(bk)
2(zs)

]2
ds +

(
bn−1

k

)2 ∫ tn

tn−1

[∫ tn

s
e
∫ q

s αk(zl)dldq
]2

ds. (A17)

In the second term on the left-hand side, one can write
∫ q

s αk(zl)dl = αn−1
k (q− s),

consequently

(
bn−1

k

)2 ∫ tn

tn−1

[∫ tn

s
eαn−1

k (q−s)dq
]2

ds =
(bn−1

k )2

2(αn−1
k )3

(
eαn−1

k ∆tn − 2
)2

+
(bn−1

k )2

(αn−1
k )2

(
∆tn −

1
2αn−1

k

)
.

By splitting the integral inside the square in the first term on the left-hand side of Equa-
tion (A17) over the intervals [s, tn−1] and [tn−1, tn], one obtains

Dn−1
k,k +

∫ tn−1

t′

[∫ tn

tn−1

e
∫ q

s αk(zl)dldq(bk)
2(zs)

]2
ds + 2

∫ tn−1

t′
(bk)

2(zs)
∫ tn−1

s
e
∫ q

s αk(zl)dld q
∫ tn

tn−1

e
∫ q

s αk(zl)dldqds. (A18)

The second term in (A18) can be written as

∫ tn−1

t′
(bk)

2(zs)e2
∫ tn−1

s αk(zl)dlds
[∫ tn

tn−1

e
∫ q

s αk(zl)dldq
]2

=
1

(αn−1
k )2

(
eαn−1

k ∆tn − 1
)2

D̃n−1
k , (A19)

D̃n−1
k :=

∫ tn−1

t′
(bk)

2(zs)e2
∫ tn−1

s αk(zl)dlds. (A20)

The third term in (A18) equals

2
∫ tn

tn−1

eαn−1
k (q−tn−1)dq

∫ tn−1

t′
(bk)

2(zs)
∫ tn−1

s
e
∫ q

s αk(zl)dldqe
∫ tn−1

s αk(zl)dlds =
2

αn−1
k

(
eαn−1

k ∆tn − 1
)

D̂n−1
k ,

D̂n−1
k :=

∫ tn−1

t′
(bk)

2(zs)
∫ tn−1

s
e
∫ q

s αk(zl)dldqe
∫ tn−1

s αk(zl)dlds. (A21)

The expression for D̂n−1
k can be rewritten as

D̂n−1
k = eαn−2

k ∆tn−1 D̂n−2
k +

(
bn−2

k

)2 ∫ tn−1

tn−2

∫ tn−1

s
e
∫ q

s αk(zl)dldqe
∫ tn−1

s αk(zl)dld s

+
∫ tn−1

t′
(bk)

2(zs)
∫ tn−1

tn−2

e
∫ q

s αk(zl)dldqe
∫ tn−1

s αk(zl)dlds. (A22)

The second term in the sum in (A22) equals(
bn−2

k

)2

2(αn−2
k )2

(
1− eαn−2

k ∆tn−1
)2

.
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The third term in the sum in (A22) equals

∫ tn−1

tn−2

eαn−1
k ∆tn−1dq

n−3

∑
i=0

∫ ti+1

ti

(
bi

k

)2
e2
∫ ti+1

s αk(zl)dldse
2
∫ tn−1

ti+1
αk(zl)dl

=
1

αn−2
k

(
1− e−αn−2

k ∆tn−1
)

Dn−1
k ,

Dn−1
k :=

n−3

∑
i=0

−
(
bi

k
)2

2αi
k

(
1− e2αi

k∆ti+1
)

e
2
∫ tn−1

ti+1
αk(zl)dl

.

It can be easily verified that the recursive scheme for Dn−1
k is given by (36).
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