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Abstract: In the last few decades, agricultural drought (Ag.D) has seriously affected crop production
and food security worldwide. In Hungary, little research has been carried out to assess the impacts
of climate change, particularly regarding droughts and crop production, and especially on regional
scales. Thus, the main aim of this study was to evaluate the impact of agricultural drought on
sunflower production across Hungary. Drought data for the Standardized Precipitation Index (SPI)
and the Standardized Precipitation Evapotranspiration Index (SPEI) were collected from the CAR-
BATCLIM database (1961–2010), whereas sunflower production was collected from the Hungarian
national statistical center (KSH) on regional and national scales. To address the impact of Ag.D on
sunflower production, the sequence of standardized yield residuals (SSYR) and yield losses YlossAD

was applied. Additionally, sunflower resilience to Ag.D (SRAg.D) was assessed on a regional scale.
The results showed that Ag.D is more severe in the western regions of Hungary, with a significantly
positive trend. Interestingly, drought events were more frequent between 1990 and 2010. Moreover,
the lowest SSYR values were reported as −3.20 in the Hajdu-Bihar region (2010). In this sense, during
the sunflower growing cycle, the relationship between SSYR and Ag.D revealed that the highest
correlations were recorded in the central and western regions of Hungary. However, 75% of the
regions showed that the plantation of sunflower is not resilient to drought where SRAg.Dx < 1. To
cope with climate change in Hungary, an urgent mitigation plan should be implemented.

Keywords: crop resilience; food security; poverty; SPI; SPEI; SSYR; Hungary

1. Introduction

Climate change is one of the most challenging and complex issues facing the world to-
day [1]. Over the last few centuries, the burning of fossil fuels and widespread deforestation
have resulted in increased atmospheric greenhouse gas (GHG) concentrations, which have
led to significant climate shifts across the planet [2]. Since 1750, the concentrations of GHGs
such as methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) have risen by 156%,
47%, and 23%, respectively [1,3]. Due to anthropogenic activities, the average temperature
rose by 0.99 ◦C, in the first two decades of the 21st century (2001–2020), and according to
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predictions, by 2050, the temperature increase is expected to reach 1.5 ◦C, or perhaps even
higher than the average temperature in the preindustrial period (1850–1900) [1]. This accel-
erated rise in temperature has caused a spike in droughts, floods, irregular precipitation
patterns, heat waves, and other extreme climate events around the world [4,5].

According to the annual report of Weather, Climate, and Catastrophe Insight [6],
natural disasters alone caused direct losses and damage totaling over USD 268 billion
worldwide in 2020; on average, losses due to natural disasters and emergencies have
exceeded USD 200 billion per year since 2016. Approximately 95% of these losses are
linked to weather-related events, where hurricanes, floods and droughts are the major
contributors and have a direct link to climate change [6]. Overall, the impact of climate
change is extensive, but its effects are now clearly visible on the agricultural sector [7], on
which the world’s food production and economy relies. It is also important to highlight that
the world population is predicted to hit 9.7 billion by 2050 [8], which would increase the
pressure on the agricultural sector to fulfill the growing food demands already impacted
by climate change.

Among natural disasters caused by weather and climate change, drought is a unique
issue; the global trend towards more or less frequent drought episodes is still a highly
discussed topic [9–14]. This is attributed to the complicated characteristics of droughts,
which usually develop slowly but can extend for months or even years [15,16]. Furthermore,
the consequences can have a variety of effects on several sectors [17–20]. Additionally,
the lack of a unified universal definition [21,22] and the wide range of indicators used to
assess meteorological, agricultural, hydrological, and socioeconomic droughts [23] enhance
the complexity.

Drought impacts all socioeconomic and environmental systems [24], with significant
effects on anthropogenic fields including agriculture, forestry, water resource management,
energy generation, and health [25]. Drought impacts can be divided into two categories:
direct and indirect [25]. Direct effects include decreased crop production [26], increased
numbers of forest fires [27], decreased water levels [28], and increased livestock mortality
rates [29]. Indirect effects of drought include highly unstable food prices, which may be
exacerbated by market effects in the agricultural sector [30]. As a result, estimating total
costs and losses at the regional and national levels is difficult. Indirect losses are mostly
greater than direct losses [31], although they are more difficult to link to a specific event.

In order to detect, monitor, and characterize drought events, many drought indices
have been developed, such as the Palmer Drought Severity Index Standardized (PDSI) [32],
Precipitation Index (SPI) [33], and the Standardized Precipitation Evapotranspiration Index
(SPEI) [34]. Table 1 presents more details about the most commonly used drought indices
in the literature.

Table 1. Common drought indices.

Index Definition Factor Calculation Time Scale

PDSI [32] Palmer Drought
Severity Index

Precipitation, temperature,
soil moisture and

evapotranspiration
Monthly

CMI [35] Crop Moisture Index Mean temperature and
precipitation Weekly

CSDI [36] Crop Specific
Drought Index Evapotranspiration Seasonal

RI [37] National Rainfall
Index Precipitation Annually and

every century

RDI [38] Reclamation Drought
Index

Level of river water,
snowfall, stream flows,

reservoirs level
and temperature

Monthly

EPI [39] Effective Precipitation
Index Precipitation Daily
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Table 1. Cont.

Index Definition Factor Calculation Time Scale

BMDI [40] Bhalme and Mooley
Drought Index Precipitation Monthly, annually

SPI [33] Standardized
Precipitation Index Precipitation 3-, 6-, 12-, 24- and

48-month periods.

SPEI [34]

Standardized
Precipitation

Evapotranspiration
Index

Precipitation,
evapotranspiration Monthly

SRI [41] Standardized Runoff
Index Precipitation 3-, 6-, 12-, 24- and

48-month periods.

In Europe, the accelerated warming in this region [42], in comparison with many other
parts of the world, has intensified drought events for prolonged periods, accompanied
by rising temperatures and low rainfall, particularly in the center of the continent (i.e.,
Hungary) [43,44].

Hungary, similarly to other European countries in the Carpathians, is affected by
droughts and climate change [45,46]. Droughts have been common in Hungarian history,
leading to reduced crops, animal devastation, and the risk of hunger and illnesses [47]. The
frequency of drought events has also increased significantly in Hungary [47]. Generally,
every two years, Hungary experiences a moderate drought, and every three years, it
experiences a severe drought [48]; these drought conditions are projected to continue
for the rest of the 21st century [45,49]. In this sense, little research has been conducted
in Hungary to assess the impact of climate change on crop production, especially on a
regional scale. Hence, our understanding of the direct impacts of different drought cycles
on crop production is still limited. Thus, the main aims of this research were: (1) to track
agricultural drought (Ag.D) evolution across Hungarian counties between 1960 and 2010
by using the Standardized Precipitation Index (SPI) and the Standardized Precipitation
Evapotranspiration Index (SPEI); (2) to analyze the dynamic interaction between sunflower
yield and drought cycles; and (3) to identify the counties most prone to drought. In
this study, sunflower crops were chosen due to their economic importance, where it is
considered one of the most important oil crops (550,000 ha) across Hungary.

2. Materials and Methods
2.1. Data Collection and Trend Analysis

Agricultural drought (Ag.D) data were collected from the CARBATCLIM database [50].
The CARBATCLIM platform provides researchers with necessary climate data between
1960 and 2010 for the whole Carpathian Region (44◦ N and 50◦ N, 17◦ E and 27◦ E). This
project was supported by the European Commission, and the output is a climate atlas
with spatial resolution 0.1◦ × 0.1◦ [51,52]. Within the CARBATCLIM database, Hungary is
covered by 1045 grid points (Figure 1), where each point contains all climate variables. In
this study, we downloaded the data for both the Standardized Precipitation Index (SPI)
and the Standardized Precipitation Evapotranspiration Index (SPEI) for six months (i.e.,
SPI-6, SPEI-6), as a proxy of Ag.D. Notably, homogeneity of the data and their quality were
assessed by the CARBATCLIM team. Later on, gridded points were sorted into groups
according to their Hungarian counties; then, the average of each group was calculated and
adopted as a representative value of Ag.D (Figure 1).
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Figure 1. Map of Hungary: (a) Hungarian counties, and (b) distribution of 1045 gridded points across Hungary.

The sunflower database was built using information from the Hungarian national
statistical center (KSH) (https://www.ksh.hu/stadat_eng accessed on 6 May 2020). This
database contains the planted area (ha), production (thousand tons) and yield (kg/ha), at
a national scale (1990–2019), as represented in Figure 2. However, to address the specific
study goals, available sunflower yield data were collected on a county scale from 2000
to 2019.

For trend analysis, Mann–Kendall (MK) [53] tests were performed and Sen slopes
(β) [54] were calculated for the studied variables. Both the MK test and Sen slope (β) are
non-parametric tests; MK is used to indicate trends (i.e., increase or decrease) in the studied
time series, whereas the Sen slope computes the value of the change (slope).

https://www.ksh.hu/stadat_eng


Atmosphere 2021, 12, 1339 5 of 18

Atmosphere 2021, 12, x FOR PEER REVIEW 5 of 19 
 

 

parametric tests; MK is used to indicate trends (i.e., increase or decrease) in the studied 
time series, whereas the Sen slope computes the value of the change (slope).  

 

 

Figure 2. Evolution of sunflower cultivation across Hungary at a national scale (1990–2019): (a) harvested sunflower land 
between 1990 and 2019 (left graph); (b) production in tons across Hungary (middle graph); and (c) sunflower yield be-
tween 1990 and 2019 (right graph). 

2.2. Agricultural Drought Indices 
To quantify drought characteristics (severity, spatial extent, duration, and fre-

quency), several drought indices could be employed, which mainly depend on the re-
search questions and data availability [55–57]. Many ecosystem elements such as rainfall, 
evapotranspiration, temperature, river discharge, soil moisture, and change in vegetation 
cover could be used as inputs for modeling and monitoring drought [58–60]. Scientifically, 
the Ag.D indicates a shortage in soil moisture, which inhibits soil from providing neces-
sary amounts of water to attain optimal crop production requirements [56,61]. In this 
study, the SPI and SPEI in a six-month time scale were adopted as a proxy for Ag.D (1961–
2010). 

2.2.1. Standardized Precipitation Index (SPI) 
The SPI [33] is one of the most common indices used for tracking and monitoring 

drought episodes [62], and is recommended by the World Meteorological Organization 
[55,63]. Monthly rainfall data are the only input for calculating drought in several time 
scales [33]. Through different transformations, from gamma distribution to normal distri-
bution, the final equations for SPI can be drawn as follows: SPI =  − t − 2.515517 + 0.802853𝑡 + 0.010328𝑡1 + 1.432788𝑡 + 0.189269𝑡 + 0.001308𝑡 𝑓𝑜𝑟 0 < 𝐻(𝑥)≤ 0.5               (1) 

SPI =  + t − 2.515517 + 0.802853𝑡 + 0.010328𝑡1 + 1.432788𝑡 + 0.189269𝑡 + 0.001308𝑡  𝑓𝑜𝑟 0 < 𝐻(𝑥)< 1                 (2) 

where:  𝐻(𝑥) =  q + (1 − q)𝐺(𝑥) (3) 

200

300

400

500

600

700

1990 1995 2000 2005 2010 2015 2020

Year

H
ar

ve
ste

d 
la

nd
 (t

ho
us

an
d 

he
ct

ar
es

)

(a)

y  = 0.0916x² + 6.1326x + 374.69
R² = 0.6996 800000

1200000

1600000

2000000

1990 1995 2000 2005 2010 2015 2020

Year

Pr
od

uc
tio

n 
(to

nn
es

)

(b)
y  = 1327.4x² + 1061.6x + 661649
R² = 0.8122

1200

1600

2000

2400

2800

3200

1990 1995 2000 2005 2010 2015 2020

Year

Y
ie

ld
 (k

g/
he

ct
ar

e)

(c)
y  = 1.817x²-13.234x + 1766.7
R² = 0.6988

Figure 2. Evolution of sunflower cultivation across Hungary at a national scale (1990–2019): (a) harvested sunflower land
between 1990 and 2019 (left graph); (b) production in tons across Hungary (middle graph); and (c) sunflower yield between
1990 and 2019 (right graph).

2.2. Agricultural Drought Indices

To quantify drought characteristics (severity, spatial extent, duration, and frequency),
several drought indices could be employed, which mainly depend on the research questions
and data availability [55–57]. Many ecosystem elements such as rainfall, evapotranspira-
tion, temperature, river discharge, soil moisture, and change in vegetation cover could
be used as inputs for modeling and monitoring drought [58–60]. Scientifically, the Ag.D
indicates a shortage in soil moisture, which inhibits soil from providing necessary amounts
of water to attain optimal crop production requirements [56,61]. In this study, the SPI and
SPEI in a six-month time scale were adopted as a proxy for Ag.D (1961–2010).

2.2.1. Standardized Precipitation Index (SPI)

The SPI [33] is one of the most common indices used for tracking and monitor-
ing drought episodes [62], and is recommended by the World Meteorological Organiza-
tion [55,63]. Monthly rainfall data are the only input for calculating drought in several
time scales [33]. Through different transformations, from gamma distribution to normal
distribution, the final equations for SPI can be drawn as follows:

SPI = −
(

t− 2.515517 + 0.802853t + 0.010328t2

1 + 1.432788t + 0.189269t2 + 0.001308t3

)
f or 0 < H(x) ≤ 0.5 (1)

SPI = +

(
t− 2.515517 + 0.802853t + 0.010328t2

1 + 1.432788t + 0.189269t2 + 0.001308t3

)
f or 0 < H(x) < 1 (2)

where:
H(x) = q + (1− q)G(x) (3)

More details about SPI calculation, (t, q, G(x)), was presented in detail by McKee
et al. [33]. Drought classifications according to SPI values are presented in Table 2.

Table 2. Drought classes based on SPI and SPEI values.

SPI Value SPEI Value Ag.D Class

>0 >0 NA
−0.84–0 −0.84–0 Moderate Ag.D

−1.28–−0.84 −1.28–−0.84 Severe Ag.D
−1.65–−1.28 −1.65–−1.28 Extreme Ag.D

>−1.65 >−1.65 Very extreme Ag.D
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2.2.2. SPEI

The SPEI [34] is a developed indicator from the same background as SPI [52]. Monthly
rainfall and potential evapotranspiration are the main inputs for calculating the SPEI [34].
The final equation of SPEI could be drawn as follows:

SPEI = W − C0 + C1W + C2W
1 + d1W + d2W2 + d3W3 (4)

where W =

{ √
−2ln (P) when P ≤ 0.5√
−2ln (1− P) when P > 0.5

(5)

The equation constant (C0, C1 . . . ); and other mathematical approaches was presented
in detail by Vicente-Serrano et al. [34]. Drought classifications according to SPEI values are
presented in Table 2.

Despite the fact that both indices have the same background, the SPEI has been proven
to be superior to SPI in drought monitoring and climate change assessments [33,52].

2.3. Impact of Agricultural Drought
2.3.1. Sequence of Standardized Yield Residuals (SSYR)

To address the impact of Ag.D on crop yield, the bias attributed to technological
factors (i.e., pest control, fertilization, and high-yield varieties) should be removed. To do
so, polynomial regression was calculated for observed yield (YR (x)) on the county scale
(2000–2019); then, the data were detrended (YP (x)), and the residuals were calculated (i.e.,
YR (x)− YP (x)). Finally, the SSYR was computed using the following equation [64,65]:

SSYR =
YP (x) − ∀P (x)

∂P (x)
(6)

where YP (x) is the potential yield (detrended), ∀P (x) is the mean of YP (x), and ∂P (x) is
the standard deviation YP (x). The classifications of SSYR values are presented in Table 3.
Additionally, the correlation coefficients (r) between SSYR and both the SPI and SPEI were
calculated (2000–2010) on a monthly scale.

Table 3. Classification of the sequence of standardized yield residual (SSYR) values which ranged
from normal conditions to extreme drought impacts.

SSYR Value Impacts of Ag.D

−0.5 < SSYR ≤ 0.5 Normal
−1.0 < SSYR ≤−0.5 Mild
−1.5 < SSYR ≤−1.0 Moderate
−2.0 < SSYR <−1.5 High

SSYR ≤−2.0 Extreme

2.3.2. Yield Losses, Yloss Ag.D

The direct impacts of Ag.D on sunflower production and yield losses across the
Hungarian counties were calculated using the approach suggested by Tigkas et al. [66]:

YlossAg.D (x) =
YR (x) −YP (x)

YP (x)
× 100 (7)

where YlossAg.D (x) is the yield loss due to agricultural drought, YR (x) is the recorded yield
(observed), YP (x) is the potential yield (detrended), and x is the year. YP (x) refers to the
development of crop production without any environmental constraints such as water
shortages, heat waves, or other environmental factors [66].
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2.3.3. Sunflower Resilience to Ag.D (SRAg.D):

The SRAg.D was calculated for each county in Hungary using the equation suggested
by Sharma and Goyal [67]:

SRAg.Dx =
Yd

R (x)

Yd
P (x)

(8)

where SRAg.Dx is the sunflower resilience to Ag.D in each county, Yd
R (x) is the recorded

yield in the driest year (2000–2010), and Yd
P (x) is the potential yield. The SRAg.D ranged

from >1 (resilient) to <0.8 (severely non-resilient). The classification of SRAg.D values are
presented in Table 4.

Table 4. Classification of sunflower resilience to Ag.D (SRAg.D) values, which ranged from resilient
to severely non-resilient.

SRAg.D Value SRAg.D

SRAg.D > 1 Resilient
0.9 < SRAg.D < 1 Slightly non-SRAg.D

0.8 < SRAg.D < 0.9 Moderately non-SRAg.D
SRAg.D < 0.8 Severely non-SRAg.D

For simplification, Figure 3 depicts a flowchart of the study steps.
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Figure 3. Flowchart of the study process from obtaining the data through to providing conclusions and recommendations.
SPI, SPEI: drought indices. Trend: MK test. YR (x) : observed yield (2000–2019), YP (x): potential yield (detrended). SSYR:
sequence of standardized yield residuals, Yloss Ag.D: yield losses, SRAg.Dx: sunflower resilience to Ag.D.
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3. Results
3.1. Trend in Ag.D across Hungarian Counties:

Hungary experienced Ag.D cycles several times, as can be seen in Figure 4. Figure 4a,d
demonstrate that Ag.D episodes were more intense in western and central Hungary (i.e.,
ZA, VE, VA, and GY) compared with the eastern region of the country (i.e., HB, HE, JN,
and SS). Notably, Ag.D cycles have become more frequent since 1990, when more negative
values were recorded (Figure 4a,d).

Trend analyses by MK test and Sen slope also indicate that western Hungarian counties
are more prone to Ag.D compared with other country regions (Table 5). In terms of SPI-6
(1960–2010), the majority of the counties (14 out of 20) exhibited a positive trend, which
indicate less susceptibility to Ag.D. In fact, only four counties, HB, HE, JN, and SS, which
are located in eastern Hungary, exhibited a significantly positive trend (p < 0.05) (Table 5).

For SPEI, most of counties exhibited a negative trend for SPEI-6 (1960–2010), except
for HB, HE, JN, and SS. Nonetheless, significantly negative (p < 0.05) trends in SPEI-6
(1960–2010) were recorded in GY, SO, VA, VE, and ZA (western regions) (Table 5). Notably,
both drought indices agreed on negative trends in each of the following counties: GY, SO,
TO, VA, VE, and ZA, as shown in Figure 4b.

Table 5. Trends in Ag.D indices (SPI-6, SPEI-6) and sunflower production (kg/ha) across Hungary.

County Code
SPI-6 SPEI-6 Sunflower

MK and β p MK and β p MK and β p
Bács-Kiskun BC 0.0005 0.05 −5 × 10−5 0.83 +55.83 0

Baranya BA 0.0002 0.32 −2 × 10−4 0.40 +48.04 0
Békés BE 0.0005 0.05 6 × 10−5 0.79 +59.03 <0.0001

Borsod-Abaúj-Zemplén BO 0.0005 0.06 7 × 10−5 0.75 +75.19 <0.0001
Budapest BU 0.0003 0.28 −3 × 10−4 0.27 +70.28 0

Csongrád-Csanád CS 0.0003 0.21 −1 × 10−4 0.55 +32.18 0.01
Fejér FE 0.0001 0.67 −4 × 10−4 0.06 +47.99 0.01

Győr-Moson-Sopron GY 0.0001 0.74 −5 × 10−4 0.03 +38.33 0.01
Hajdú-Bihar HB 0.0006 0.01 2 × 10−4 0.46 +71.6 <0.0001

Heves HE 0.0005 0.02 1 × 10−4 0.60 +71.34 0
Jász-Nagykun-Szolnok JN 0.0007 0.00 2 × 10−4 0.44 +60 <0.0001
Komárom-Esztergom KE 0.0003 0.21 −2 × 10−4 0.26 +58.06 <0.0001

Nógrád NO 0.0003 0.24 −1 × 10−4 0.65 +65 0.01
Pest PE 0.0003 0.16 −2 × 10−4 0.48 +65.15 0

Somogy SO −0.0004 0.07 −8 × 10−4 0.00 +61.46 0
Szabolcs-Szatmár-

Bereg SS 0.0008 0.00 3 × 10−4 0.15 +72.58 0

Tolna TO 0.0000 0.94 −4 × 10−4 0.06 +53.54 0
Vas VA −0.0008 0.00 −1 × 10−3 <0.0001 +44.77 0

Veszprém VE −0.0001 0.69 −6 × 10−4 0.01 +56.57 0
Zala ZA −0.0007 0.01 −1 × 10−3 <0.0001 +50 <0.0001

* Gray and bold values indicate a significance level of 0.05 (p < 0.05). MK, trend; β, Sen slope.

Despite the differences in identifying drought events between SPI-6 and SPEI-6 due to
different inputs and mathematical equations, both indices highlighted the following years:
1962, 1968, 1972, 1983, 1986, 1990, 1992–1993, 2000–2003, and 2007 as drastic periods (SPI-6
and SPEI-6 values of less than −1.28) in terms of Ag.D (Figure 4a,d).

The lowest recorded values of SPI-6 and SPEI-6 (i.e., the highest recorded levels of
drought) in each county are presented in Figure 4c. For SPI-6, the lowest values were
recorded in CS (−3.33), GY (−2.96), VA (−2.95), and TO (−2.8). Unexpectedly, the lowest
values of SPEI-6 were recorded in central and southern counties. For instance, the lowest
value of SPEI-6 was recorded in Csongrád-Csanád (CS) (−4.71), which is located in southern
Hungary, followed by BU (−4.21) (central), then GY (−4.04) (western) (Figure 4c).

As depicted in Figure 4c, the SPEI-6 (red line) represents higher Ag.D values than the
SPI-6 (blue line); this can mainly be explained by the fact that the SPEI-6 employs both
evapotranspiration and rainfall for drought computation, whereas the SPI-6 depends only
on the monthly changes in rainfall. Notably, the conjunction of evapotranspiration and
rainfall inflated the drought values in the study area.
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Figure 4. Ag.D evolution across Hungary (1960–2010): (a) Evolution of SPI-6 across Hungarian counties (1960–2010);
(b) trends in SPI-6 and SPEI-6 based on MK tests and Sen slopes; (c) lowest recorded values of SPI-6 and SPEI-6 across
Hungarian counties (1960–2010); (d) Evolution of SPEI-6 across Hungarian counties (1960–2010).

3.2. Sequence of Standardized Yield Residuals (SSYR)

According to the MK tests and Sen slopes, sunflower yield (kg/ha) exhibited a positive
trend across Hungarian counties between 2000 and 2019 (Table 5, Figure 5). The greatest
increase in sunflower yield was observed in BO (+75.19 kg/ha, p < 0.05), followed by SS
(+72.58 kg/ha, p < 0.05), then HB (+71.6 kg/ha, p < 0.05). Notably, these counties are located
in eastern Hungary, and experienced positive but non-significant trends for both SPI-6 and
SPEI-6 (Table 5, Figure 5).

Thus, to isolate the positive impact of human intervention which include, but are
not limited to, the selection of new varieties, pest control, advance field irrigation tech-
nology, and precision agriculture, the sequence of standardized yield residuals (SSYRs)
was applied.
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Figure 5. Sunflower yield in the studied Hungarian counties (2000–2019). (a) BA, (b) BC, (c) BE, (d) BO, (e) BU, (f) CS,
(g) FE, (h) GY, (i) HB, (j) HE, (k) JN, (l) KE, (m) NO, (n) PE, (o) SO, (p) SS, (q) TO, (r) VA, (s) VE, (t) ZA.

The output of the SSYR analysis highlighted the yeEars 2000, 2010, and 2012 as the
years most affected by Ag.D (SSYR ≤ −1) in terms of sunflower production, as shown in
Figure 6. The lowest SSYR was recorded in HB (−3.2, extreme impact in 2010), followed by
TO (−2.41, extreme impact in 2012), and VA (−2.34, extreme impact in 2010) (Figure 6).
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Figure 6. Evolution of SSYR in the studied Hungarian counties (2000–2019). (a) BA, (b) BC, (c) BE, (d) BO, (e) BU, (f) CS,
(g) FE, (h) GY, (i) HB, (j) HE, (k) JN, (l) KE, (m) NO, (n) PE, (o) SO, (p) SS, (q) TO, (r) VA, (s) VE, (t) ZA.
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During the growing cycle (April–October), a high correlation between SSYR and Ag.D
was observed, especially in summer seasons (Figures 7 and 8). For SPI-6, the highest
correlation (Max. r SSYR vs. SPI-6) was recorded in VA (r SSYR vs. SPI-6 = 0.6, July, western
Hungary) and BC (r SSYR vs. SPI-6 = 0.55, August, central Hungary) (Figure 7). Similarly,
central and western counties exhibited the highest r values between SSYR and SPEI-6. For
instance, the Max. r SSYR vs. SPEI-6 was obtained in PE (r SSYR vs. SPEI-6 = 0.63, July, central
Hungary), BC (r SSYR vs. SPEI-6 = 0.59, July, central Hungary), and VE (r SSYR vs. SPEI-6 = 0.51,
July, western Hungary) (Figure 8). However, both Ag.D indices indicate that drought cycles
affected the sunflower yield during the summer months, where the western counties were
classified as the most affected by drought.
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3.3. Yield Losses Yloss Ag.D

Between 2000 and 2010, the loss of sunflower yield was distinguished in two dif-
ferent years, as depicted in Figure 9. In 2004, the highest Yloss Ag.D was recorded in VE
(Yloss Ag.D = −38.32%, western Hungary), followed by HE (Yloss Ag.D = −33.95%, eastern
Hungary) and then BE (Yloss Ag.D = −32.89%, central Hungary) (Figure 9). However, in
2008, all counties across Hungary experienced yield losses, where the highest losses were
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observed in NO (Yloss Ag.D = −42.03%, northern Hungary), JN (Yloss Ag.D = −33.49%, central
Hungary), and SS (Yloss Ag.D = −29.37%, eastern Hungary).
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Figure 9. Sunflower resilience to Ag.D (SRAg.D) (right), and max yield losses (left).

By calculating the SRAg.D, the resistance of sunflower crops to drought events could
be distinguished across Hungarian counties (Figure 10). The results showed that the crop
yields in central and western regions were more prone to loss due to drought events. The
SRAg.D value reached 0.74 (severely non-SRAg.D) in HE, and 0.79 (also severely non-
SRAg.D) in PE. In contrast, the highest value was recorded in eastern Hungary (BE; 1.11).
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Figure 10. Resilience of sunflower production to Ag.D across Hungarian counties (2000–2010).

4. Discussion

In the last few decades, drought cycles have become more intense and frequent all
over the world due to rapid climate change [9,68–70]; for instance, in Brazil [71], Syria [63],
Hungary [52], China [72], and southern Europe [73]. Subsequently, many industries
have been affected either directly or indirectly, such as the agricultural sector [74–79],
hydrology [80–83], the economy [76,84], human health [85–87], and tourism [88–90]. In
this sense, our research shows a negative trend in agricultural drought episodes across
Hungarian counties (Figure 4; Table 5). Additionally, the results emphasize the direct
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impact of Ag.D on sunflower production (Figure 6), where the yield losses reached 40% in
some counties (Figure 9).

Many studies have been carried out across Europe for monitoring and assessing
drought evolution, identifying a positive trend, especially in southern and central re-
gions [73,91–93]. Hungary, which is in the center of the Pannonian basin (central Europe),
suffers from drought episodes. For instance, Alsafadi et al. [52] reported an increase in
drought trends in western Hungary comparing with the east; however, drought frequency
was more intense in central Hungary. Mohammed et al. [49] indicated a positive strong
correlation between Ag.D (SPI-3, SPI-6) and NDVI (Normalized Difference Vegetation
Index). However, future climate projections indicate an increase in drought cycles due
to changing future rainfall patterns (2071–2100) [45]. At the regional scale (county scale),
drought evolution has been more intense in central and western Hungary than the east.
Similar results were reported by Szabó et al. [94], where western Hungary was identified
as being more susceptible to climate change. This issue could be explained by the fact
that the central region receives less rainfall than other areas [52]; thus, the SPI and SPEI
values are decreased, which directly lead to the evolution of drought. In this case, soil
moisture will be decreased, and less water will be available for use on agricultural crops
(i.e., sunflowers), which will lead to water stress and yield losses (Figures 6, 9 and 10)
due to the inhibition of physiological functioning in some crops [69]. Interestingly, this
phenomenon could affect all crops, especially maize, which is very sensitive [79]. In this
sense, Adrienn and Janos [95] reported that agricultural drought is the main constraint for
crop production across Hungary.

Both SPI and SPEI have drawbacks, which generates some uncertainty in the results.
For SPI, using only monthly rainfall data without considering their temporal distribution
could affect the interpretation of results, along with failure in predicting the exact times
of the drought evolution cycle (i.e., start and end) [34,96]. For SPEI, heat waves can be
misinterpreted as droughts in some areas [97]. Additionally, calculating evapotranspiration
based only on temperature is not sufficient [98]. However, both indices are widely used all
over the world, and their outputs can be used for monitoring drought [72,99–101].

The interaction between crop yield and drought indices during the growing cycle
(April–October) could be linked to increasing crop evapotranspiration (crop-ET0) and
temperature. In this sense, Stagge et al. [73] reported an increase in crop-ET0 and tem-
perature. However, the resistance of sunflower to drought was tracked across Hungarian
counties. The results also showed that crop yield in central and eastern Hungary was
less resilient to drought, where the SRAg.D value reached 0.74 (severely non-SRAg.D) in
Heves and 0.79 (severely non-SRAg.D) in Pest. However, the highest value was recorded in
eastern Hungary (Bekes, 1.11). In fact, climate change has affected crop production for both
irrigated and rainfed agricultural systems, where drought has significantly reduced crop
yield [79,102,103]. Globally, temperature and rainfall directly influence crop production,
where they behave nonlinearly [103–106]. Thus, any changes in these climate variables
or even the interaction between them will affect agricultural production, not only for
sunflowers, but for all crop types. Shortage of rainfall is linked to abnormal atmospheric
circulation (at high pressure) that prevents clouds and precipitation from forming [68,107],
or a change in the rain belt [68]. However, less cloud and precipitation lead to drier
conditions, increased temperature, decreased humidity, and increased evapotranspiration
demand, which amplify drought conditions [68]. Scientifically, drought causes a shortage in
soil water content and leads to a water deficit which directly affects crop yields [65,79,108].
Unfortunately, most agricultural land across Hungary is cultivated as a rainfed agricul-
tural system; thus, climate change (precipitation patterns), and especially drought, will
negatively affect the agricultural sector and crop production [49].

There were some limitations to this study, such as drought trends being assessed
based on the average of gridded point data that represent each county, instead of using the
whole gridded points. Additionally, only 10 years were available as a record of sunflower
yield across Hungarian counties, which used to calculate the direct impact of Ag.D on
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sunflower yields; more years would have been better for interpreting the relationship
between drought and crop production. On the other hand, both SPI and SPEI have their
own limitations in identifying drought cycles. In this context, for calculating drought
by using SPI, we only need monthly rainfall data; other climate variables are neglected,
which could affect the credibility of the SPI [52]. Even though SPEI involves more climate
variables (rainfall and potential evapotranspiration (PET)), and is based on the Thorn
Thwaite equation, other climate variables are not considered [52]. However, the output
from our analysis is enough to draw the attention of decision makers to the evolution of
drought and climate change in central Europe.

5. Conclusions

Drought is a multifaceted and complicated natural hazard, which slowly evolves in
the ecosystem and is affected by a multitude of physical and biological factors. Hungary,
which is located in central Europe (Pannonian basin), frequently suffers from drought
events and climate change. However, little research has been conducted in Hungary to
assess the impacts of climate change on crop production, especially on a regional scale. In
this context, this study was designed to track the evolution of agricultural drought (SPI-6,
SPEI-6) across Hungary (1960–2010), and to investigate the dynamic interactions between
sunflower yield and drought cycles. The results showed that agricultural drought episodes
were more intense in western and central Hungary (i.e., ZA, VE, VA, and GY) compared
with the eastern region of the country. Nonetheless, the Ag.D cycles had become more
frequent since 1990, where more negative values of Ag.D were recorded.

Sunflower production was badly affected by agricultural drought in 2000, 2010, and
2012, where SSYR≤−1. The lowest SSYR values were recorded in HB (−3.2, extreme
impact in 2010), followed by TO (−2.41, extreme impact in 2012), and VA (−2.34, extreme
impact in 2010). Notably, yield losses (Yloss Ag.D) were experienced in all Hungarian
counties in 2004 and 2008 due to agricultural drought. The results also reveal that crop
yield in central and western Hungary were more prone to yield loss due to drought events.

The outputs of this study will be of great interest to stakeholders and decision makers
for formulating climate mitigation and adaptation plans for the agricultural sector in
Hungary. However, more research to develop new varieties of sunflowers, which are
tolerant to drought and other extreme climate events, is highly recommended. In our
future research, we will involve other drought indices such as the Crop Moisture Index
and Crop Specific Drought Index to highlight the impacts of drought on sunflowers and
other strategic crops in Hungary.
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