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Abstract: Due to rapid urbanization and socio-economic development, fine particulate matter (PM2.5)
pollution has drawn very wide concern, especially in the Beijing–Tianjin–Hebei region, as well as in
its surrounding areas. Different socio-economic developments shape the unique characteristics of
each city, which may contribute to the spatial heterogeneity of pollution levels. Based on ground
fine particulate matter (PM2.5) monitoring data and socioeconomic panel data from 2015 to 2019,
the Beijing–Tianjin–Hebei region, and its surrounding provinces, were selected as a case study
area to explore the spatio-temporal heterogeneity of PM2.5 pollution, and the driving effect of
socioeconomic factors on local air pollution. The spatio-temporal heterogeneity analysis showed that
PM2.5 concentration in the study area expressed a downward trend from 2015 to 2019. Specifically, the
concentration in Beijing–Tianjin–Hebei and Henan Province had decreased, but in Shanxi Province
and Shandong Province, the concentration showed an inverted U-shaped and U-shaped variation
trend, respectively. From the perspective of spatial distribution, PM2.5 concentrations in the study
area had an obvious spatial positive correlation, with agglomeration characteristics of “high–high”
and “low–low”. The high-value area was mainly distributed in the junction area of Henan, Shandong,
and Hebei Provinces, which had been gradually moving to the southwest. The low values were
mainly concentrated in the northern parts of Shanxi and Hebei Provinces, and the eastern part
of Shandong Province. The results of the spatial lag model showed that Total Population (POP),
Proportion of Urban Population (UP), Output of Second Industry (SI), and Roads Density (RD) had
positive driving effects on PM2.5 concentration, which were opposite of the Gross Domestic Product
(GDP). In addition, the spatial spillover effect of the PM2.5 concentrations in surrounding areas
has a positive driving effect on local pollution levels. Although the PM2.5 levels in the study area
have been decreasing, air pollution is still a serious problem. In the future, studies on the spatial
and temporal heterogeneity of PM2.5 caused by unbalanced social development will help to better
understand the interaction between urban development and environmental stress. These findings
can contribute to the development of effective policies to mitigate and reduce PM2.5 pollutions from
a socio-economic perspective.

Keywords: PM2.5; spatio-temporal heterogeneity; socio-economic driving factors

1. Introduction

With the advancement of industrialization and urbanization, many cities around
the world are experiencing severe air pollution, especially particulate matter pollution.
On a global scale, China, India, and South Asia have the most severe particulate matter
pollution in the world [1]. In China, since 2011, Beijing–Tianjin–Hebei [2], the Yangtze
River Delta [3], and other regions have experienced frequent smog, and air pollution has
caused widespread concern. High concentrations of PM2.5 can, not only accelerate the
formation of haze but also significantly affect people’s health [4]. It has been proved that
long-term exposure to high PM levels can easily cause a variety of diseases [5] and increase

Atmosphere 2021, 12, 1324. https://doi.org/10.3390/atmos12101324 https://www.mdpi.com/journal/atmosphere

https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://doi.org/10.3390/atmos12101324
https://doi.org/10.3390/atmos12101324
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/atmos12101324
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos12101324?type=check_update&version=2


Atmosphere 2021, 12, 1324 2 of 14

the risk of death [6]. In 2017, the State Ministry of Environmental Protection issued the
“Beijing–Tianjin–Hebei and Surrounding Area Air Pollution Prevention and Control Work
Plan in 2017”, which first proposed the concept of “2 + 26 cities” and implemented a large
number of pollution control measures in these cities to alleviate air pollution in North
China. Therefore, strengthening scientific understanding of the regulations of regional air
particulate pollution will help to formulate urbanization policies and ensure that targeted
air pollution control measures are properly implemented.

At present, research on PM2.5 pollutions mainly focuses on temporal and spatial
distribution rules [7], influencing factor analyses [8], source analyses [9], and health risk
assessments [10] along with other aspects. Among them, influencing factors mainly include
meteorological factors and socio-economic factors. Meteorological factors affect PM2.5
concentration by changing its diffusion and chemical reaction conditions. Chen et al. [11]
summarized the methods to quantify the impact of meteorological factors on PM2.5 and
comprehensively reviewed their impact mechanisms. Xu et al. [12] conducted a study on
the temporal and spatial distributions of the influence of meteorological conditions on
PM2.5 concentration in China from 2000 to 2017, which showed an overall downward trend
in PM2.5 concentration, and the influence of meteorology varied greatly between different
provinces. The socio-economic factors that directly or indirectly affect PM2.5 concentration
in the process of urbanization and economic development, include the national economy,
industrial structure, population density, transportation, and other factors [13]. These factors
mainly represent the impact of human activities on PM2.5. The average urban PM2.5 level
is mainly affected by anthropogenic emissions of local air pollutants and the surrounding
ecological level. Cheng et al. [14] used a dynamic spatial panel model to analyze the impact
of foreign direct investment (FDI) on China’s PM2.5 pollutions, and the results showed that
FDI significantly aggravated China’s urban PM2.5 pollutions. The study of Yan et al. [15]
expressed that there was a heterogeneous relationship between PM2.5 concentration and
economic growth, urbanization, industrialization, and FDI and that population density
had the greatest positive impact on PM2.5 pollution. Zhang et al. [16] noted that PM2.5
pollution was positively correlated with urbanization and road density, and negatively
correlated with the proportion of tertiary industries.

Although many studies have been conducted on the temporal and spatial distributions
of PM2.5 and its influencing factors, the study areas of most studies mainly concentrate
on the level of countries, urban agglomerations, and cities, while comparisons between
regions are relatively rare. In addition, with rapid economic development, the North
China region has been experiencing severe PM2.5 pollution. Shanxi Province is located
in the central region and has a decreasing economic development. Therefore, this study
selects Beijing City, Tianjin City, Hebei Province, Henan Province, and Shanxi Province
as the study areas. There are significant distinctions of PM2.5 and economic development
levels between the different cities, which provides advantages for studying the impact
of socio-economic factors and spatial spillover effects on the PM2.5 level. The aims of
this study are: (1) explore the temporal and spatial distribution characteristics of PM2.5
levels; (2) compare the spatial heterogeneity of PM2.5 distribution characteristics in different
regions, and (3) determine the influence of socio-economic factors and spatial spillover
effects on PM2.5 levels.

2. Materials and Methods
2.1. Study Area

This study selects Beijing City, Tianjin City, Hebei Province, Henan Province, and
Shanxi Province as the study areas, which contains 56 cities in four provinces and two
municipalities, as shown in Figure 1. Among them, Hebei Province, Shandong Province,
Shanxi Province, and Henan Province have 11, 16, 11, and 18 prefecture-level cities, re-
spectively. The names and abbreviations of all cities are shown in Table S1. The study
area is located between 31◦23′ N–42◦40′ N and 110◦14′ E–122◦42.3′ E in China, with the
Loess Plateau in the west and the North China Plain in the east. With its rapid economic
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development and rapid consumption of energy, the air quality in North China is not better
and haze pollution incidents occur frequently; this area is considered one of the most pol-
luted areas of China. In addition, the study area includes, not only the eastern regions with
their rapid economic development, such as the Beijing–Tianjin–Hebei urban agglomeration
and Shandong Province but also the central regions with slower economic development
speeds, such as Shanxi Province. The socio-economic development of the study area is
very unbalanced, which provides favorable conditions for analyzing the influence of socio-
economic factors on PM2.5 concentration. Therefore, this paper selects four provinces and
two municipalities as the study areas to explore the temporal and spatial heterogeneity of
PM2.5 and the influence of socioeconomic factors on PM2.5 concentrations in 2015–2019.
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2.2. Data Sources and Validity

This study collected hourly PM2.5 concentration data from 347 automatic air quality
monitoring stations in the study area, from 1 January 2015, to 31 December 2019. This set of
data was obtained from the Urban Air Quality Distribution platform of the National Envi-
ronmental Monitoring Center (http://www.moc.cma.gov.cn, accessed on 9 October 2021).
Based on the hourly PM2.5 data, the arithmetic mean method was used to calculate the an-
nual PM2.5 concentration in each city, from 2015 to 2019. To improve the validity of the data,
we processed the missing values according to the provisions of the Ambient Air Quality
Standard (GB3095−2012). When calculating the daily average concentrations, we required
that the number of hourly average concentrations or the sampling time should be more
than 20, otherwise the daily average concentration was considered invalid. In calculating
the average monthly concentrations, we required at least 27 (February: 25) daily average
concentration values, otherwise, the monthly mean concentration was considered invalid.
At least 324 daily average concentrations were required to calculate the annual average
concentration, otherwise, the annual average concentration was considered invalid.

The potential impact of socioeconomic indicators on PM2.5 pollution has been widely
discussed. Based on previous studies and the availability of socioeconomic data, we
selected seven indicators (Table 1): Population (POP), Gross Domestic Product (GDP),
Green Ratio of Built-up Area (GR), Output of Second Industry (SI), Proportion of Urban
Population (UP), Roads Density (RD), and Proportion of Built-up Area (BA). Among them,
POP, GDP, and GR, respectively, represent population size, economic development level,

http://www.moc.cma.gov.cn
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and urban greening; SI and RD express industrial structure and traffic factors, respectively;
UP and BA represent population urbanization and spatial urbanization. The annual
statistical data of POP, GDP, SI, and RD were acquired from the Social and Economic
Development Bulletin and Statistical Yearbook of each city in the study area, while those of
GR and BA were obtained from the China Urban Statistical Yearbook. The time span of all
socioeconomic indicators was consistent with that of PM2.5 data in this study. Figure S4
provides detailed statistical information on these socioeconomic factors, for each city.

Table 1. Socioeconomic indicators and the abbreviations and units.

Category Variable Abbreviation Units

Independent variable PM2.5 concentration PM2.5 µg/m3

Dependent variable Total Population POP 104 persons
Gross Domestic Product GDP 104 CNY

Green Ratio of Built-up Area GR %
Output of Second Industry SI 104 CNY

Proportion of Urban Population UP %
Roads Density RD km/km2

Proportion of Built-up Area BA %

2.3. Statistical Methods
2.3.1. Moran’s I Test

Air pollution usually has obvious spatial distribution characteristics with regional
aggregation. Many researchers usually use Moran’s I to test the spatial correlation of
variables. In this study, we used the Global Moran’s I to test the overall spatial effect of
PM2.5 concentrations in 58 cities, from 2015 to 2019. The Global Moran’s I model can be
explained as follows [17]:

Global Moran′s Ii =
n ∑n

i=1 ∑n
j=1 wij(yi − y)

(
yj − y

)
S0 ∑n

i=1(yi − y)2 (1)

Z =
1− E(I)√

Var(I)
(2)

E[I] = −1/(n− 1) (3)

V[I] = E
[

I2
]
− E[I]2 (4)

where yi is the PM2.5 concentration of city i, yj is the PM2.5 concentration of city j, and y is
the average PM2.5 concentration of the study area. wij is the spatial weight matrix; if two
cities share a common boundary, the weight is 1, otherwise, it is 0; S0 = ∑n

i=1 ∑n
j=1 wij is

the aggregation of all spatial weights; n = 56 is the number of cities. Z score and p values
used to judge the Moran’s I significance level; when the |Z| > 1.96 or p < 0.05, the result
is considered significant at the 95% confidence level; when the |Z| > 2.58 or p < 0.01,
the result is considered significant at the 99% confidence level. In this paper, the Global
Moran’s I was calculated using ArcGIS software.

2.3.2. Hot Spot Analysis

Hot Spot Analysis is often used to identify potential spatial agglomeration characteris-
tics of PM2.5 pollution, and PM2.5 levels are divided into cold spots, insignificant points,
and hot spots. The Getis-Ord Gi* of ArcGIS was used to calculate the Gi* of each city in the
study area. The principle formulae are as follows [18]:

G∗i =
∑n

j=1 wijxj − x ∑n
j=1 wij

S

√ [
n ∑n

j=1 w2
ij−
(

∑n
j=1 wij

)2
]

n−1

(5)
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S =

√
∑n

j=1 x2
j

n
− (x)2 (6)

where xj is the annual PM2.5 concentration of city j; ωij is the spatial weight between city i
and city j, and n = 56 represents the number of cities in the study area.

2.3.3. Spatial Lag Model

Socioeconomic variables, such as GDP, population size, and traffic, greatly affect local
PM2.5 concentrations. In this study, the Spatial Lag Model (SLM) was used to determine
the influence of different socio-economic factors on PM2.5 concentration, which could be
explained by Formula (7):

Y = ρWY + Xβ + ε, ε ∼ N
[
0, σ2 I

]
(7)

where Y indicates the PM2.5 concentration; X expresses the independent variables, in-
cluding all introduced socioeconomic factors; ρ is the spatial effect coefficient, and its
value ranges from 0 to 1. The spatial matrix is represented by W, which indicates whether
two spatial elements have a common boundary; β represents the regression coefficient of
explanatory variables; and ε is the error term.

3. Results and Discussion
3.1. Temporal Variation Characteristics of PM2.5
3.1.1. Temporal Variation Trend of PM2.5 Concentration

The variation trend of PM2.5 concentration in the study area was determined by
calculating the Probability Density Functions (PDFs) and annual average concentrations of
PM2.5 in the study area, from 2015 to 2019. As shown in Figure 2, the PM2.5 concentration
in the study area expressed a downward trend from 2015 to 2019, which decreased by
27.17%, from 73.23 µg/m3 in 2015 to 53.34 µg/m3 in 2019. Although the annual PM2.5
concentration decreased, it still exceeded the Grade II standard of PM2.5 (35 µg/m3) in the
Ambient Air Quality Standard (GB3095-2012) in 2019, which indicated that PM2.5 pollution
in the study area was still severe. The frequency distribution of PM2.5 can be found in the
PDF graph. From 2015 to 2019, the probability density curve moved to the left as a whole,
indicating that PM2.5 concentration had decreased in all concentration intervals. The curves
of 2015 and 2016 are similar, while those of 2017, 2018, and 2019 are similar. Compared
with 2016, the occurrence probability of high concentration decreased significantly in 2017,
resulting in a significant increase in probability in the low concentration intervals, and then
remained stable. This sudden change may be related to the stricter air pollution control
measures that were implemented in 2017.
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The mitigation trend was more significant in the context of concentration levels.
In 2015, the average annual concentration of PM2.5 in all cities ranged from 34.6 to
106.42 µg/m3, but was 26.52–72.39 µg/m3 in 2019. We can find that there was a large
difference between different cities, with the maximum concentration being about three
times that of the minimum. During the period of 2015–2019, the maximum concentration
occurred in BD in 2015 and the minimum concentration occurred in WH in 2018. In ad-
dition, we also determined the statistics on the percentage of exceeding standard days in
each city, from 2015 to 2019, as shown in Figure S1. In 2015, the average percentage of
exceeding standard days in the study area was 37.45%, but it dropped to 15.66% in 2019.
This apparent mitigation of PM2.5 pollution did not just start in 2015, it had been going on
for a long time. Some studies on the long-term variation trends of PM2.5 concentrations
have shown that it had been increasing since 2000 until reaching a peak in 2008, and then it
fluctuated continuously and reached another peak in 2014 before decreasing since then [19].
It fluctuated after 2008 as the harm of PM2.5 pollution was widely known after the Beijing
Olympic Games and China gradually entered the stage of economic restructuring [20].
China’s government began to implement strict pollution control measures and regarded
PM2.5 as a routine monitoring pollutant after issuing the Action Plan for Air Pollution
Prevention and Control in 2013, which may be why PM2.5 concentration continued to
decrease after 2014 [21]. As a large number of emission reduction measures have already
been implemented, the reduction in PM2.5 will gradually reduce in the future. Therefore,
the speed of pollution mitigation may be slowed down, and the spatial difference between
cities would become narrower. From this aspect, Jiang et al. [22] reported that there was a
spatial convergence trend for PM2.5 concentrations in the Beijing–Tianjin–Hebei region.

3.1.2. The Spatial Heterogeneity of Temporal Variations

Although PM2.5 concentrations in the study area have been decreasing on the whole,
they express different temporal regulations in various areas. As shown in Figure S2, Beijing,
Tianjin, and most cities in Hebei and Henan Provinces decreased from 2015 to 2019, while
a few cities showed different patterns. The average concentrations in Hebei Province and
Henan Province also had the same patterns as most of the cities under their jurisdictions.
However, the patterns of cities in Shanxi Province and Shandong Province were quite
different from the others. To be more specific, PM2.5 concentrations in Shanxi Province first
went up but then decreased, and reached their highest level in 2017, presenting an inverted
U-shaped trend. In Shandong Province, it first went down, and then it went up, reaching
the lowest level in 2018 and showing a U-shaped trend. The patterns of most cities in the
two provinces were consistent with their corresponding provinces. This heterogeneity
may be related to differences in economic development, environmental protection policies,
geographical differences, and other factors between the different provinces. The regions
with the highest PM2.5 concentration in 2015 were Beijing and Henan Provinces, and Henan
Province exhibited the highest PM2.5 concentration for the period of 2016–2019. After five
years of decline, Beijing ranked last among the four provinces and two municipalities in 2019.

Specific to the urban level, the discrepancies in the reduction rates among different
regions were more obvious, as shown in Figure S3. Specifically, BJ, BD, LF, DZ, and LC
exhibited the highest reduction rate if more than 40%. Those of TY, YQ, JC, YC, and
LFF were slightly less than 10%. The former was mainly concentrated in the Beijing–
Tianjin–Hebei region, while the latter was under the jurisdiction of Shanxi Province. To
further explore the differences in temporal variations, we plotted the PDFs of PM2.5 in each
province or municipality from 2015 to 2019, as shown in Figure 3. To facilitate comparison,
we divided the study area into the Beijing–Tianjin–Hebei region and its surrounding
regions (Shandong, Hebei, Shanxi Province). In 2015, the PDFs of each province varied
greatly. Shanxi Province had the highest peak value, while Beijing had the lowest. Although
the concentration ranges of the two peak areas were similar, the occurrence probability of high
PM2.5 concentration in Beijing was high, indicating that Beijing was prone to PM2.5 pollution
events. On the whole, the peaks in the Beijing–Tianjin–Hebei region were lower, while those
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in the surrounding region were higher, indicating that PM2.5 pollution in the Beijing–Tianjin–
Hebei region was more serious than in its surrounding areas. From the temporal point of view,
the curve variation of the Beijing–Tianjin–Hebei region is very significant, especially in terms
of BJ. The Shandong, Henan, and Shanxi regions also showed a trend of pollution alleviation.
It is worth noting that the PDFs curve of Henan Province was always at the bottom, indicating
that it had higher PM2.5 pollution. After five years of improvement, the PDFs curves of the six
regions showed a tendency to gradually coincide. Until 2019, the curves were quite similar,
showing that the spatial differences of PM2.5 concentration were narrowing, which is similar
to the research results of Jiang, He, and Zhou [22].

3.2. Spatial Variation Trend of PM2.5

To determine the spatial distribution characteristics of PM2.5 concentrations in the
study areas, we calculated the Global Moran’s I during 2015–2019. As shown in Table 2,
with p-values < 0.01 and Z-score > 2.58, the Global Moran’s I was acceptable. From 2015
to 2019, the PM2.5 concentrations in the study areas showed a significant positive spatial
correlation, which indicated that the diffusion of PM2.5 concentrations between cities
was not random, and rather showed similar spatial connections and tended to aggregate.
This spatial correlation has been gradually increasing since 2016. To better exhibit the
agglomeration characteristics of the study area, we drew a Moran scatter diagram, as
shown in Figure 4. Most cities are concentrated in the first and third quadrants, and only a
few cities appear in the second and fourth quadrants which indicate that PM2.5 pollution
in the study areas presented obvious “high–high” and “low–low” agglomeration. This
spatial characteristic is caused by the unbalanced economic development in the earlier
period. With the sustainable development of the economy and the transformation of urban
planning and layout, it would change.

Table 2. Global Moran’s I from 2015 to 2019.

Year I p-Value Z-Score

2015 0.372501 0.000001 4.855292
2016 0.344208 0.000006 4.532812
2017 0.363731 0.000002 4.796205
2018 0.389324 0.000000 5.123085
2019 0.414598 0.000000 5.429379

To clearly determine the high and low concentration areas of PM2.5 pollution, we
drew a Getis-Ord Gi* statistical graph for the study area during 2015–2019, as shown in
Figure 5. On the whole, the cold spots in the study area were mainly distributed in the
north of Shanxi and Hebei Provinces, and the eastern coastal areas of Shandong Province
and the hot spots were mainly concentrated in the junction area of Hebei, Shandong, and
Henan Provinces. In terms of temporal change, the cold spots gradually shifted from
the northwest to the north of the study area, while those in the eastern coastal region of
Shandong Province were composed of YT, QD, and WH with no change. Additionally, the
hot spot moved to the southwest gradually from 2015 to 2019. This moving of the PM2.5
pollution center does not mean that the air quality in hot spots city were getting worse. In
fact, almost all cities had been experiencing PM2.5 pollution alleviation at different levels.
The PM2.5 concentration in some cities, such as SJZ, JN, and DZ, decreased sharply from
hot spots to insignificant spots; some cities, such as JY, LYY, and PDS, declined slowly
from insignificant spots to hot spots. This conversion of hot and cold spots is essentially
determined by the transformation of the local industrial structure and the implementation
of environmental protection policies. In fact, the upgrading and relocation of heavily
polluting enterprises in the Beijing–Hebei–Tianjin region may also be one of the reasons for
the moving of the pollution centroid. XT, HD, LC, AY, KF, PY, HB, XX, and other cities had
always been hot spot cities during 2015–2019, indicating that the pollution in these cities
was relatively serious and that control measures still needed to be taken for reducing the
PM2.5 pollution risk level.
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3.3. Analysis of Socioeconomic Influence Factors

Different socioeconomic indicators reflect different human activities, which could
affect the spatial and temporal heterogeneity of PM2.5 concentrations to various degrees.
In this study, we used a spatial lag model (SLM) to determine the impact of various
socioeconomic factors on PM2.5 concentrations. To ensure the data conformed to the
normal distribution, a logarithmic transformation was performed on the socioeconomic
data and PM2.5 concentrations before using SLM. Table 3 shows the quantified results of
the SLM model from 2015 to 2019.

Table 3. Results of spatial lag model.

2015 2016 2017 2018 2019

Variable Coefficient Probability Coefficient Probability Coefficient Probability Coefficient Probability Coefficient Probability

ρ 0.560 0.000 ** 0.583 0.000 ** 0.739 0.000 ** 0.724 0.000 ** 0.574 0.000 **
GDP −0.405 0.005 ** −0.328 0.088 −0.489 0.001 ** −0.364 0.012* −0.415 0.002 **
POP 0.222 0.001 ** 0.195 0.047 * 0.289 0.000 ** 0.244 0.003 ** 0.243 0.002 **
UP 0.085 0.010 * 0.225 0.317 0.422 0.039 * 0.351 0.091 0.339 0.080
SI 0.375 0.007 ** 0.238 0.110 0.323 0.005 ** 0.202 0.062 0.248 0.018 *

RD 0.337 0.000 ** 0.271 0.000 ** 0.163 0.011 * 0.146 0.020 * 0.218 0.001 **
BA −0.036 0.199 −0.020 0.480 −0.029 0.193 −0.005 0.831 0.015 0.533
GR 0.217 0.332 −0.112 0.560 −0.132 0.631 −0.166 0.582 −0.163 0.595

**: Significant at 0.01 levels; *: significant at 0.05 levels.

The spatial lag model introduced the spatial effect coefficient ρ to characterize the
influence of PM2.5 levels from the surrounding areas on the local area. From 2015 to 2019,
there was a positive relationship between PM2.5 concentration in local and surrounding
regions, indicating that local PM2.5 levels were significantly influenced by surrounding
areas. This is consistent with the “high–high” and “low–low” agglomeration characteristics
of PM2.5 concentrations in the study area. Local PM2.5 pollution was not only related to
local pollutant emissions but was also affected by pollution transport from other regions.
Dong et al. [23] studied the pollution transmission contribution in the Beijing–Tianjin–
Hebei region and the results showed 32.5% to 68.4% contribution of PM2.5 transmission
in 2017. Local emission sources remain important contributors to the Beijing–Tianjin–Hebei
region but the interactions between cities are also strong.

GDP represents the local economic development level. Except for 2016, GDP showed
a significant negative correlation with the PM2.5 level, indicating that economic develop-
ment had a certain inhibitory effect on PM2.5 pollution in the study area. As an economy
grows, local investment in air pollution control will also increase. In addition, a relatively
developed economy is conducive to effective integration and utilization of resources, affect-
ing the local industrial structure and urban layout. Dong et al. [24] found that economic
development and industrial upgrading were the main driving forces for haze pollution im-
provement in China’s regions, while the transportation industry and construction industry
were the two major sources of PM2.5 pollution. This is consistent with our findings, but
other studies have shown different results. Yan, Kong, Jiang, Huang, and Ye [13] observed
that the impacts of economic development on PM2.5 pollution varied with the degree of
development. Economic development can alleviate PM2.5 pollution in developed areas,
while it can promote PM2.5 pollution in underdeveloped areas. As noted by the theory
of the Environmental Kuznets Curve (EKC), a later stage of urbanization is ultimately
conducive to alleviating the pollution caused by the early stage of urbanization, and there
is a threshold of an inflection point in the middle. Wang et al. [25] explained this in detail
and obtained similar results to us.

Over 2015–2019, POP and PM2.5 levels showed a positive correlation, passing the
significance test, indicating that population growth contributed to the formation of urban
PM2.5 pollution. The increase in the population size resulted in growing demands for
employment, housing, transportation, and energy consumption; thus, promoting the
emission of pollutants. Han et al. [26] analyzed the relationship between population
variations and PM2.5 levels, and the results showed that there was a positive trend between
population and PM2.5 in most cities in China and that the contribution rate of megacities
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was 5.40 ± 4.80 µg/m3 per million people. However, there was also a negative trend
between population size and PM2.5 in some regions [13], because megacities with dense
populations help to integrate resources and improve the utilization efficiency of urban
infrastructure and natural resources, thus reducing PM2.5 pollution.

UP refers to the proportion of the urban population in the total population, which is
usually used to represent the level of urbanization. The results of Table 3 indicate that UP
had a positive impact on PM2.5 pollution in 2015 and 2017, but did not pass the significance
test in other years. The growth or aggregation of an urban population usually leads to
an increase in automobiles, housing and energy consumption, industrial production, and
construction activities, which would have an impact on the increase in PM2.5 concentrations.
Relevant studies [27] showed that the relationship between the proportion of the urban
population and ecological environment pressures in the Beijing–Tianjin–Hebei region also
conformed to the EKC theory, and it could effectively alleviate ecological environment
pressure until it reached 80%, which was the turning point in EKC for most cities. By 2019,
the proportion of the urban population in BJ and TJ exceeded 80%, while others were
within the scope of 40–60%, below the threshold, indicating that we still have a long way
to go in the urbanization process.

SI is the value-added of Secondary Industry and is used to represent the industrial
structure. There was a significant positive correlation between SI and PM2.5 concentra-
tions in 2015, 2017, and 2019. According to the statistical results of the output of the
secondary industry, as shown in Figure S4, it had been decreasing or first increasing and
then decreasing in AY, BJ, BD, LC, JNN, LF, PY, SJZ, TJ, and TA during 2015–2019, while it
increased in other cities. These cities were often accompanied by severe PM2.5 pollution,
which indicated that these cities may have already carried out the elimination of backward
production capacity or the transfer of secondary industry to alleviate local PM2.5 pollution.
The national development strategy has significantly increased the proportion of tertiary
industries in the Beijing–Tianjin–Hebei region through the relocation and replacement of
traditional secondary industries, which is consistent with our results. The results of Hao
and Liu [28] are similar to ours, and they believe that PM2.5 concentrations in Chinese cities
are also strongly influenced by secondary industry. In 2019, the average ratio of secondary
industry to GDP in the study area was 41.97 percent. In addition, energy-intensive indus-
tries characterized by high emissions have a large-scale base, and the effect of industrial
transformation and upgrading is not obvious in the short term. Therefore, to effectively
reduce the level of urban PM2.5, it is necessary to accelerate the transformation of economic
structures and reduce the dependence on secondary industries, especially heavy industries.

RD, road length per unit area, is often used to represent the impact of traffic factors
on PM2.5. During the study period, there was a significant positive relationship between
PM2.5 concentration and RD. According to the statistical results, as shown in Figure S4, the
road length of most cities in the study area kept increasing in 2015–2019, except for BJ and
TJ. A dense urban road traffic network promotes the increase in vehicle ownership, and
pollutants from vehicle exhaust, such as NOx, are important sources of PM2.5 [29,30]. In
addition, the increase in roads also enhances road dust, which is also a source of PM2.5 [31].
In this regard, traffic will continue to have an impact on continuing PM2.5 levels. There
are also related studies [24] that use other indicators to characterize the influence of traffic
factors and obtain similar results. Ding et al. [32] used per capita vehicle ownership to
characterize traffic impacts, which determined that this factor had a driving effect on PM2.5
pollution and that it fluctuated during the study period.

In this study, BA and GR did not pass the significance test and were not statistically
significant, so the results were not credible. BA is the ratio of the built-up area to the
area of the municipal district. Due to the jurisdiction of the county, BA cannot completely
represent the overall situation of cities in the research region. The GR of all cities was about
40% with slight distinctions. This may be why the results were not statistically significant.
In addition, some studies used related indicators to explore the influence on PM2.5. For
example, Wang, Yao, Xu, Sun, and Li [25] found an inverted U-shaped relationship between
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built-up area and PM2.5 levels but lacked in-depth discussions. Qin et al. [33] simulated
the impact of urban greening on atmospheric particulate matter, and the results showed
that reasonable tree cover could reduce PM by 30%. In addition, there are still many
deficiencies in this study. First, in addition to socio-economic factors, PM2.5 is also affected
by topography, meteorology, pollution emissions, and other factors, which are not involved
in this study. Secondly, the social and economic data used in this study are from various
statistical yearbooks and bulletins, which may have certain deviations and bring certain
uncertainties. In future studies, more factors should be considered to ensure the accuracy
of the results.

4. Conclusions

This study used PDFs to analyze the temporal variation trends and spatial distribution
differences of PM2.5 concentrations in the Beijing–Tianjin–Hebei region and its surrounding
provinces from 2015 to 2019. Then, the spatial distribution characteristics of PM2.5 concen-
trations were analyzed using Moran’s I and Getis-Ord-Gi*. Finally, SLM was adopted to
quantify the driving effect of socioeconomic factors on PM2.5 levels. The main results were
as follows:

(1) From 2015 to 2019, PM2.5 in the study area showed an overall downward trend.
The Beijing–Tianjin–Hebei region and Henan Province decreased for the period of 2015 to
2019; Shanxi and Shandong Provinces expressed a variation trend of an inverted U-shape
and U-shape, respectively. In a word, air quality in the study area had been improving
from 2015 to 2019.

(2) From the perspective of spatial distributions, PM2.5 concentrations in the study
area indicated an obvious positive spatial correlation with “high–high” and “low–low”
agglomeration characteristics. The high-value area of PM2.5 was mainly concentrated in the
junction of Henan, Shandong, and Hebei Provinces, which had a characteristic of moving
to the southwest. The low values were mainly distributed in the northern part of Shanxi
and Hebei Provinces, and the eastern part of Shandong Province.

(3) Socio-economic factor analysis showed that POP, UP, SI, and RD had a positive
effect on PM2.5 concentration, while GDP had a negative driving effect. In addition, PM2.5
was also affected by PM2.5 pollution levels in surrounding areas.

Although PM2.5 levels in the study area decreased, PM2.5 pollution was still a seri-
ous problem until 2019. The significance of this study is to highlight the spatio-temporal
heterogeneity of PM2.5 concentration distributions and the driving role of socioeconomic
factors on PM2.5 pollution in the Beijing–Tianjin–Hebei region and its surrounding areas.
Identifying the differences in PM2.5 concentration caused by socioeconomic development
is helpful to better understand the interaction between urbanization and ecological envi-
ronmental problems.
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