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Abstract: Demand for water resources has increased dramatically due to the global increase in
consumption of water, which has resulted in water depletion. Additionally, global climate change has
further resulted as an impediment to human survival. Moreover, Pakistan is among the countries that
have already crossed the water scarcity line, experiencing drought in the water-stressed Thar desert.
Drought mitigation actions can be effectively achieved by forecasting techniques. This research
describes the application of a linear stochastic model, i.e., Autoregressive Integrated Moving Average
(ARIMA), to predict the drought pattern. The Standardized Precipitation Evapotranspiration Index
(SPEI) is calculated to develop ARIMA models to forecast drought in a hyper-arid environment. In
this study, drought forecast is demonstrated by results achieved from ARIMA models for various
time periods. Result shows that the values of p, d, and q (non-seasonal model parameter) and P, D,
and Q (seasonal model parameter) for the same SPEI period in the proposed models are analogous
where “p” is the order of autoregressive lags, q is the order of moving average lags and d is the order
of integration. Additionally, these parameters show the strong likeness for Moving Average (M.A)
and Autoregressive (A.R) parameter values. From the various developed models for the Thar region,
it has been concluded that the model (0,1,0)(1,0,2) is the best ARIMA model at 24 SPEI and could
be considered as a generalized model. In the (0,1,0) model, the A.R term is 0, the difference/order
of integration is 1 and the moving average is 0, and in the model (1,0,2) whose A.R has the 1st lag,
the difference/order of integration is 0 and the moving average has 2 lags. Larger values for R2

greater than 0.9 and smaller values of Mean Error (ME), Mean Absolute Error (MAE), Mean Percentile
Error (MPE), Mean Absolute Percentile Error (MAPE), and Mean Absolute Square Error (MASE)
provide the acceptance of the generalized model. Consequently, this research suggests that drought
forecasting can be effectively fulfilled by using ARIMA models, which can be assist policy planners
of water resources to place safeguards keeping in view the future severity of the drought.

Keywords: forecasting; ARIMA; Standardized Precipitation Evapotranspiration Index (SPEI); mitiga-
tion; drought

1. Introduction

With the increasing human consumption rate of water around the world, and es-
pecially in highly arid regions that have experienced water depletion, the demand for
water resources has increased dramatically [1]. Furthermore, changing patterns of global
climate have further resulted as an impediment to human survival [2]. Thus, the human
population and other species on Earth are subject to more and more droughts. In arid
as well as semi-arid regions, droughts are common and repeating. Drastic change in the
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projection of floods and droughts has been seen in the 21st century compared to the 20th
century. Mainly, the effect of prolonged droughts on natural ecosystems has highly deterio-
rated regional agriculture, water resources and the environment [3–5]. In such complex
situations, the unavailability of proper evaluation of drought may result in wrong decisions
and actions by policy makers and monitors [6,7]. For this reason, scientists divide drought
conditions into four main categories, namely meteorology [8], agriculture [9], hydrology
and socioeconomics [10]. In order to describe these drought categories, drought detection
and monitoring indicators have different natural variables over the required time period,
such as Precipitation (PCPN), soil moisture, Potential Evapotranspiration (PET), vegetation
condition, and ground water along with surface water. In simple words, a drought index
measures the actual features and their correlated effects [11]. The prominent attributes
or qualities that must be focused on in the index are the time span, intensity, magnitude
and spatial extent of the drought; nevertheless, incorporating all these features into one
index is highly an arduous task. For this, numerous indices have been put forward by
researchers. Some of them are, the Palme Drought Severity Index (PDSI) [12], Surface
Water Supply Index (SWSI) [13], Palfai Aridity Index (PAI) [14], Standardized Precipitation
Index (SPI) [15,16], and Standardized Precipitation Evapotranspiration Index (SPEI). The
examination through any of above indices is subject to the essence of the index, local
surroundings, accessibility of facts and rationality [17]. The advantages and disadvantages
of drought indices are based upon the clarity and provisional flexibilities of their adminis-
tration Standardized Precipitation Index (SPI) has been endorsed as a standard drought
index by the world meteorological organization that is likely due to its simple calculations,
as precipitation data is itself enough to direct and test without the demand of statistical
barriers. Furthermore, the SPI is also capable of showing high performance in finding
and computing drought potency [18,19]. Despite of all this ease, the SPI still has some
issues regarding water balance. This led to the development of SPEI and eliminated these
problems in the SPI release. SPEI focuses on PDSI sensitivity to PET mutations and the
multifaceted compound of SPI [20]. Both SPEI and SPI have almost the same evaluation
procedure. In this way, the use of climate water balance by SPEI is the differentiation
between the two indices [21,22]. For this purpose, now days, SPEI has been widely used as
a relevant index to observe the drought in various regions worldwide [23].

At present, the crucial challenge in the research of droughts is in the development of
reasonable techniques and methods to forecast the start and end points of droughts. Thus,
the significance of drought prediction advances from the reduction of drought effects [24].
It has been attempted multiple times to utilize statistical models in meteorological drought
forecasting, depending upon time series methods such as ARIMA models, exponential
smoothing and neural networks [25]. ARIMA is a classic model for statistical evaluation
that makes use of time series data to foresee subsequent tendencies in meteorological
variables such as annual and monthly temperature and precipitation can also be estimated
through ARIMA models [26]. In a meteorological time series, the ARIMA model approach
can exceed multiple new models such as exponential smoothing and neural network. Thus,
due to its statistical properties together with effective methodology in establishing the
model, ARIMA has relative advantage to the other models [27].

A lot of research has focused on contemporary drought predictions. It uses a new
imitation hybrid wavelet-Bayesian regression model to develop a meteorological time series
for extended lead-time drought prediction [28], which is a combined model using wavelet
and fuzzy logic [29]. A group of authors also discussed the application of a wavelike
fuzzy logic model based on meteorological variables to PDSI measurement [30]. Mishra
also provides a drought prediction model that uses hybrid, single-neural and synthetic
randomized Artificial Neural Network (ANN) models to predict droughts based on SPI.
All these efforts are fruitful and sufficient in predicting time-series droughts [31]. The
Standardized Precipitation Index (SPI) is currently widely utilized in both scholarly and
operational applications around the world. The SPI at short time scales is lower limited,
referring to non-normally distributed for arid climates or those with a distinct dry season
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when zero values are typical. The SPI is always greater than a particular number in
certain instances, and thus fails to signal the onset of a drought. The non-normality rates
appear to be closely associated to local precipitation climates. Herein, the authors present
the Standardized Precipitation Evapotranspiration Index (SPEI) as an enhanced drought
indicator that is particularly well suited for research of the effect of global warming on
drought severity. The SPEI evaluates the effect of reference evapotranspiration on drought
severity, similar to the Palmer Drought Severity Index (PDSI), but its multi-scalar nature
allows identification of distinct drought types and drought consequences on various
systems [19].

Thus, the SPEI, like the standardized precipitation index, has the sensitivity of the PDSI
in measuring evapotranspiration demand (induced by variations and trends in climatic
variables other than precipitation), is easier to compute, and is multi-scalar (SPI). Detailed
discussions of the SPEI’s theory, computations, and comparisons to other widely used
drought indicators including the PDSI and SPI are given by [32]. The SPEI is calculated in
the same way as the SPI is calculated. However, rather than using precipitation as an input,
the SPEI employs “climatic water balance,” which is the difference between precipitation
and reference Potential evapotranspiration. At various time frames, the climatic water
balance is estimated (i.e., over three month, six months, nine months, twelve months, and
24 months). Despite the fact that the SPEI was just recently developed, it has already been
employed in a number of research looking at drought variability.

The first step in the SPI calculation is to determine the probability density function
(PDF), which describes the long-term observed precipitation. It also allows the SPI to be
computed at any location and at any number of time scales, depending upon the impacts
of interest to the user. Ratios of drought on the basis of analysis of stations across Colorado
are given in Table 1 [33].

Table 1. Ratio of drought in Colorado [33].

Drought Condition Ratio in Percentage

Mild 24%

Moderate 9.2%

Severe 4.4%

Extreme 2.3%

With the help of normal distribution of SPI above percentage are expected. The cu-
mulative probability is then applied to the inverse normal (Gaussian) function, yielding
the SPI. This approach is a transformation of equivalence. The equiprobability transfor-
mation’s key feature is that the probability of being less than a particular value of the
produced cumulative probability should be the same as the probability of being less than
the normal distribution’s equivalent value [33]. Based on the time series of drought mon-
itoring findings of the Vegetation Temperature Condition Index (VTCI), Autoregressive
Integrated Moving Average (ARIMA) models were developed. From the erecting stage
to the maturity stage of winter wheat (early March to late May in each year at a ten-day
interval) of the years 2000 to 2009, about 90 VTCI pictures produced from Advanced Very
High-Resolution Radiometer (AVHRR) data were selected to create the ARIMA models.
The ARIMA models’ category drought predictions findings in April 2009 are more severe
in the northeast of the Plain, which accord well with the monitoring results. The AR(1)
models have smaller absolute errors than the SARIMA models, both in terms of frequency
distributions and statistic findings. SARIMA models, on the other hand, are better at
detecting changes in the drought situation than AR(1) models. These findings suggest that
ARIMA models can better predict the type and extent of droughts, and that they can be
used to predict droughts in the plain [34]. Time series forecasting has been extensively
used and has emerged as a key method for drought forecasting. The Autoregressive Inte-
grated Moving Average (ARIMA) model is one of the most extensively used time series
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models. The ARIMA model’s wide application owes to its flexibility and methodical search
(identification, estimation, and diagnostic check) for an acceptable model at each stage. The
ARIMA model offers various advantages over other approaches, such as moving average,
exponential smoothing, and neural networks, including predicting and more information
on time-related changes. Hydrologic time series have also been analyzed and modelled
using ARIMA models [35]. From the literature review and retrospective analysis, it has
been found that the SPEI was not utilized as a drought index previously. Therefore, the
main focus of this research investigation is to establish the stochastic model ARIMA to lay
and predict the SPEI series on discrete time series. In addition, it also provides a subjective
method to deal with climate-related parameters for 14 years of drought, i.e., (2005–2019).

2. Research Methodology
2.1. Area of the Study

In two districts of Sindh’s Tharparkar desert, the resistance of rural households to
food insecurity was studied. Drought has been the most dangerous risk for the study
region because of its severe consequences on food, income, health, people’s adaptability,
and livestock survival. A resilience index was used by scholars to measure the inhabitants’
resilience to the severe dry circumstances. Income and food access, agricultural assets,
non-agricultural assets, access to basic services, social safety nets, sensitivity, adaptive
capability, climate change, agricultural methods and technology, and enabling institutional
environment were used to generate the household resilience index.

The Tharparkar region was vulnerable since it relied heavily on natural resources for
its livelihood. Any community’s access to water resources supported their survival even in
the most adverse conditions. Because Nagarparkar was close to publicly accessible water,
it was more robust than Islamkot, which had no water nearby [36].

Climate change is now a reality, exacerbating the misery of people who live in arid
ecosystems. Rainfall has decreased, temperatures have risen, and the frequency of extreme
events has increased in the semi-arid desert of district Tharparkar. People of Tharparkar
have been coping with drought and aridity of the terrain for thousands of years by employ-
ing traditional wisdom. However, global shifts in weather patterns, as well as worsening
social and economic situations, have forced the people of this desert region into a precari-
ous position. From the perspective of changing climatic patterns, this research analyzes the
link between climate-induced natural disasters, notably drought, and food insecurity and
water scarcity.

Drought in the district has shifted from its typical pattern of little or no rainfall to
increased but unpredictable rainfall, posing a greater threat to people’s livelihoods and, as
a result, a multiplier effect on water and food poverty. In the absence of social protection
and basic essentials for existence during a drought, women are particularly vulnerable.
Women, for example, have traditionally carried the burden of managing water resources,
resulting in increased workload during droughts and water scarcity [37]. The research for
this paper has been conducted on the basis of data collected from Tharparkar region of
Sindh province in Pakistan. The Figures 1 and 2 shows the directorial regions of the district
of Tharparkar, Sindh in overall map of South Asia and Pakistan, respectively.

Figure 2 shows the location of Mithi weather station. The main localities of the region
of Thar are predominately plain deserts together with some mountain peaks greater than
3000 m. The main cities of the Tharparkar where this study has been conducted are Mithi,
Diplo, Islamkot, Nagarparkar, and Dhali. Mainly the climate of all these areas is extremely
hot in daytime, but at night the temperature of the region decreases. Tharparkar is listed
among top hottest areas of Pakistan with extreme temperature in summer ranges between
35 to 45 ◦C, while in winter it ranges between 9 to 28 ◦C. Additionally, the rain gauge
station within Tharparkar is located at Mithi that has recorded 277 mm of rainfall annually,
but this differs significantly yearly [38].
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Figure 1. (a) Location of Pakistan in South Asia; (b) location of Tharparkar district in Pakistan. Both are highlighted with 
an arrow. 
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Figure 1. (a) Location of Pakistan in South Asia; (b) location of Tharparkar district in Pakistan. Both are highlighted with
an arrow.
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Figure 2. Location of Mithi weather station (Meteorological Station); the data is collected for this station that was established
in 2004.

2.2. Data Sources and Preparation

This study has been carried out on the basis of data collected from Pakistan Mete-
orological Department (PMD) Karachi. The research includes precipitation records and
varying air temperatures of Mithi Meteorological station, Tharparkar. The data also include
some facts obtained from close localities of Mithi such as Islamkot and Diplo by utilizing
linear regression methods. With the help of nonparametric tests, the parameters of the
acquired data values were thoroughly checked. In this research, data has been obtained
from the Mithi weather station for 2005–2019 period, whose altitude is 42 m (138 feet),
longitude is 69.800430 m and latitude is 24.740065 m [38].

The future climate data will be generated through ARIMA model using R-programming
language. From the collected data, a long-term dataset for SPEI series of 3, 6, 9, 12- and
24-month time scales will be established. Time-series plots provide long-term and concrete
information regarding drought situations at the regional scale with a 0.5-degree geographic
resolution and monthly time resolution. It also has a multi-scale nature that gives timescales
for the SPEI between 1 and 8 months. The potential evapotranspiration (PET) equation to
calculate the SPEI indices is given as:

PET =
0.408∆(Rn − G) + γ

( 900
T+273

)
U2(es − ea)

∆ + (1 + 0.34U2)
(1)

where ∆ is the slope of vapor pressure curve (kPa ◦C−1), Rn the surface net radian
(MJ.m−2 day−1), G the soil heat flux density (MJ.m−2 day−1), γ the psychometric con-
stant (kPa ◦C−1), T the mean daily air temperature (◦C−1), U2 the wind speed (m.s−1),
es the saturated vapor pressure and ea the actual vapor pressure [39]. Table 2 illustrates
the standard precipitation evaporation and transpiration (SPEI) value of the dry/wet
classification value [33,40,41].

2.3. Autoregressive and Moving Average Model (ARMA)

From the statistical analysis of time series, ARMA model gives a wretched represen-
tation of a static stochastic technique as far as 2 polynomials, the 1st for the A.R and the
2nd for the M.A. The A.R part contains reverting the variable all alone slacked values. The
M.A part includes modeling the error term as a linear combination of error terms arising
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contemporaneously and at changed time in earlier. The model is typically mentioned to
as the ARMA (p, q) display where p is the order of the A.R part and q is the order of the
M.A [42].

Zt = ω + ηt +
p

∑
i=1

βiZt−i +
q

∑
i=1

αiηt−i (2)

where ω is mean of the series, αi is the parameter of the moving average model, and βi
is the parameter of the autoregressive model, whereas ηt, ηt−i, and Zt−i are error terms
known as white noise and Zt is the time series.

Table 2. SPEI scale [33,40,41].

Conditions SPEI

Dry
Extremely SPEI ≤ −2
Severely −2 < SPEI ≤ −1.5

Moderately −1.5 < SPEI ≤ −1

Normal Near −1 < SPEI ≤ 1

Wet
Moderately 1 < SPEI ≤ 1.5

Severely 1.5 < SPEI ≤ 2
Extremely SPEI ≥ 2

2.4. Autoregressive Integrated Moving Average Model (ARIMA)

In econometrics and statistics and specifically in time series analysis, the ARIMA
model is speculation of ARMA model. Together the formulations are fixed to time series
data either to all the more likely comprehend the data or to forecast future outcomes in row.
ARIMA models are related sometimes where data shows non-stationarity proofs, where
an underlying differencing step can be connected at least multiple times to wipe out the
non-stationarity [43].

2.4.1. Non-Seasonal Model

In general the non-seasonal ARIMA model is A.R having order p and M.A of order q
and operate on the time series differences zt; thus ARIMA family formulation is categorized
by three parameter (p, d, q) that can either have 0 or positive integral values.

Generally non-Seasonal ARIMA model is written as:

β(C)∇dzt = α(C)at (3)

where β(C) and α(C) are polynomials of order p and q,∇ shows the order of difference [44].

2.4.2. Seasonal Model

General multiplicative seasonal ARIMA model, which is known as SARIMA model
defined as ARIMA (p, d, q)(P, D, Q)s where (p, d, q) the non-seasonal part of model is and
(P, D, Q)s is the seasonal part of the model is given as:

βp(C)Φp(Cs)∇d∇D
s zt = αq(C)ΘQ(Cs)at (4)

where p is the order of non-seasonal auto regression, d is the number of regular differencing,
q is the order of non-seasonal MA, P is the order of seasonal auto regression, D is the number
of seasonal differencing, Q is the order of seasonal MA, s is the length of season, Φp is the
seasonal AR parameter of order P, and ΘQ is the seasonal MA parameter of order Q [45].

2.5. Model Identification

Model identification comprises recognizing the possible ARIMA model that depicts
the nature of time series. In order to ascertain the order of model, the Autocorrelation Func-
tion (ACF) and Partial Autocorrelation Function (PACF) were utilized for assistance. The
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information obtained through the utility of ACF and PACF was also helpful in advocating
various types of new models that could be established. The selection of the ultimate model
is performed by employing the penalty function statistics through the Akaike Information
Criterion (AIC) and Schwarz Bayesian Criterion (SBC). These criteria assist in ranking
the models, where the models which have the least value of criterion are considered the
best. AIC is an estimator of prediction error and thereby relative quality of statistical
models for a given set of data. Given a collection of models for the data, AIC estimates the
quality of each model, relative to each of the other models. Thus, AIC provides a means
for model selection.

AIC = 2k− 2 ln
(

L̂
)

L̂ (5)

Let k be the number of estimated parameters in the model. Let L̂ be the maximum
value of the likelihood function for the model.

In statistics, SBC is a criterion for model selection among a finite set of models; the
model with the lowest BIC is preferred. It is based, in part, on the likelihood function and
it is closely related to the AIC.

SBC = −2 ln
(

L̂
)
+ k ln(n) (6)

Here k represents number of parameters in the model, (p + q + P + Q); whereas, L
depicts likelihood function of ARIMA model. Additionally, n shows number of observa-
tions [46,47].

2.6. Parameter Estimation

After the reorganization of suitable model, the assessment of model parameters is
attained with the help of the procedure and methods proposed by Box and Jenkins, the
evaluation of model values for A.R and M.A parts were made possible. To ascertain the
statistical significance of A.R and M.A parameters, they were tested whether they are
important or not. The related parameters such as standard error of estimates and their
linked t-values are also determined [48].

2.7. Diagnostic Checking

The final step in the development of model is diagnosing the ARIMA model. It is
one of the significant steps of model development it point towards the appropriateness of
model that inspects the assumptions of model unquestionably. The acceptability or appro-
priateness of model guarantees that the time series is in the time with model assumptions
and that the prophecy of values is well founded. To examine the correlation of residuals
with error terms, various diagnostic statistics and plots of residuals have been inspected to
make it sure that whether these residuals correspond with error terms or not.

MAE =
1
N

N

∑
i=1
|(Xm)i − (Xs)i| (7)

RMSE =

√√√√ 1
N

N

∑
i=1

[(Xm)i − (Xs)i]
2 (8)

where N is the number of forecasting events, Xm the observed SPEI and Xs the predicted
SPEI [49].

MAE =
1
N

N

∑
i=1
|xi − x̂i| (9)

MPE =
100%

N

N

∑
i=1

(
xi − x̂i

xi

)
(10)
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MAPE =
100%

N

N

∑
i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣ (11)

MASE =
1
N

N

∑
i=1
|xi − x̂i|2 (12)

where 1
N

N
∑

i=1
is test set, xi predicted value and x̂i is actual value. (N is the number of total

data points).
In this research, all of the SPEI forecasting ARIMA models have been developed using

the forecasting packages already available in R-programming language. Packages used are
t series, forecast, SPEI and Uurca [50].

3. Results and Discussion
3.1. Climate Descriptive Analysis

For better understanding of the nature of drought in the area of research, a detailed
examination of climate parameters was employed to achieve more accurate results. In
Figure 3, annual means of high drought-pertinent parameters have been shown. In the
region of the Tharparkar, the monthly highest temperature is recorded mostly in June,
July and August. In this way, the lowest mean temperature occurs in December, January
and February. In general, Tharparkar is warm area in the province of Sindh. However,
due to the variability in the altitudes of various localities of the area, there is a small
rise in monthly mean temperature throughout the region which is due to lake of rain
fall and changing climatic conditions. Together with changing mean temperatures, there
has also been seen dissimilarity in the monthly mean precipitation over the year. Zero
mean precipitation is reported in the months of June, July, August and September. With
the changes of temperature and precipitation, the region also faces acute water crisis
throughout the year except in the times of monsoons. The compensation of this lack of
water availability requires to be fulfilled by utilizing alternative water resources or through
sound water management and rationalization methods. Such methods are mostly common
across globe.

Through the examination of drought-linked climatic parameters for the region of
Tharparkar, remarkable decrease in the level of precipitation has been proved. This contin-
uous decline in the rate of precipitation has resulted in the significant rise of temperature.
Thus, the prevailing circumstances may drive a slight increase in frequency and magni-
tude of drought patterns. Actually, the prime rationale concerned with changing drought
circumstances is that it will deplete actual water resources. In this way, lack of water
availability may further deteriorate the conditions considered fit for human survival.

3.2. Drought Frequency Variations

The SPEI time series illustrates at variable time scales that covers the period from 2005
to 2019 for Tharparkar region shown in Figure 2. The outcome of this research manifests
that the area of Tharparkar will face more and more drought in future. Figure 3. shows a
clear idea that there is a continuous rise in the conditions of drought. In the starting years,
the drought tendency proceeds towards the natural limits of close normal and reasonably.
Wet scales with few years showing irregular non-typical values. These abnormal values are
related to the shortage of rainfall, while on the contrary, in previous decade, the beginning
of drought conditions with extreme dry patterns started to occur. All the localities of the
region of Tharparkar depict time evolution, with slight deviations among others. This
situation is the result of changing climatic patterns and their effect. The other parts of
the world, e.g., Egypt [51], Turkey [52], Portugal [53], and China [54] also show such
circumstances due to climatic change impact.
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The Figure 3 has two panels, in which the right side panel shows time series graphs
of the given data, in which we can see the pattern of drought yearly; in the left side panel
the color red shows the drought and color blue means no drought. The right panel shows
time series graphs of SPEI-3, 6,9,12 and 24, showing the highest drought in the years on
the x-axis, which is different in each scale of SPEI, but most of the SPEI shows in 2009 to
2014. Moreover, the time series and annual cycle of the precipitation and PET are shown in
Figures 4–6, respectively. Our data source is Karachi Pakistan Meteorological Department
(PMD) (https://www.pmd.gov.pk/en/, accessed on 21 September 2021) and the trend of
drought is clearly shown, with the highest drought during the period of 2009 to 2014 and
the lowest trend in the period of 2017 to 2019; the same period is also verified by the SPEI
time series graph in Figure 3.

Additionally, as our selected region is desert area, there is no other source of water
such as a canal or river and there is no source of water without rain for agriculture and other
uses. Therefore, severe drought occurs, which can be seen from the annual precipitation
graph (Figures 4–6) of the Mithi weather station.

Unit Root Test

In the literature there are various tests but, in this research, we have selected the three
most important and different tests on SPEI, given below as:

1. Augmented Dickey–Fuller test
2. Phillips–Perron unit root test
3. KPSS test for level stationarity.

https://www.pmd.gov.pk/en/
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Figure 5. Annual cycle of the precipitation the input data starts from 2004 to 2019.
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Table 3 shows that the SPEI- 3, 6, 9, 12 and 24.have the 1st difference unit root test
whereas the SPEI 24 has the 2nd difference unit root test.

Table 3. Augmented Dickey–Fuller test.

SPEI Decision p-Value of Unit Root at Level Unit Root at 1st Difference Unit Root at 2nd Difference

SPEI-3 No 0.01 N/A N/A

SPEI-6 No 0.01 N/A N/A

SPEI-9 No 0.01134 N/A N/A

SPEI-12 No 0.03514 N/A N/A

SPEI-24 Yes 0.5635 0.01 N/A

Table 4 shows that the SPEI- 3, 6, 9, 12 and 24 have the 1st difference unit root test
whereas the SPEI 24 has the 2nd difference unit root test.

Table 4. Phillips–Perron unit root test.

SPEI Decision p-Value of Unit Root at Level Unit Root at 1st Difference Unit Root at 2nd Difference

SPEI-3 No 0.01 N/A N/A

SPEI-6 No 0.01 N/A N/A

SPEI-9 No 0.01 N/A N/A

SPEI-12 No 0.09258 N/A N/A

SPEI-24 Yes 0.5561 0.01 N/A

Table 5 shows that the all SPEI- 3, 6, 9, 12 and 24 has the 1st difference unit root test.

Table 5. KPSS test for level stationarity.

SPEI Decision p-Value of Unit Root at Level Unit Root at 1st Difference

SPEI-3 No 0.1 N/A

SPEI-6 No 0.1 N/A

SPEI-9 No 0.1 N/A

SPEI-12 No 0.1 N/A

SPEI-24 No 0.0469 N/A
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3.3. Estimation of Model Parameters

In Tables 6–13, the model parameters are standard error, p-value and related signif-
icance value at a significance level less than 0.05 for Tharparkar region. In comparison
with the parametric values it has been observed to be very small. The above proposition
bears exclusion of the model parametric values of SPEI at the three-month time scale. Fur-
thermore, at the significance level of less than 0.05, almost all ARIMA model parameters
are significant. Therefore, these parameters ought to be incorporated in the model. Other
models also showed identical results. Table 6 describes the generalized ARIMA seasonal
and non-seasonal models for Tharparkar.

Table 6. Seasonal ARIMA and non-seasonal ARIMA models.

Time Scales Seasonal ARIMA Models Non-Seasonal ARIMA Models

SPEI-3 ARIMA (1,1,3)(0,0,0) ARIMA (1,1,3)

SPEI-6 ARIMA (1,1,1)(0,0,2) ARIMA (1,1,1)

SPEI-9 ARIMA (1,1,1)(1,0,0) ARIMA (0,1,0)

SPEI-12 ARIMA (0,1,0)(1,0,2) ARIMA (0,1,0)

SPEI-24 ARIMA (0,1,0)(1,0,2) ARIMA (0,1,0)

Table 7. SPEI-3 ARIMA (1,1,3)(0,0,0) for Seasonal.

SPEI−3 Coefficient Standard Error t-Value p-Value

ARt−1 −0.0392 0.2060 −0.1902913 0.3912019

MAt−1 −0.2654 0.1910 −1.389529 0.15169

MAt−2 −0.2065 0.0991 −2.083754 0.04607481

MAt−3 −0.3757 0.1038 −3.619461 0.0006903546

Table 8. SPEI-3 ARIMA (1,1,3) for non-seasonal.

SPEI−3 Coefficient Standard Error t-Value p-Value

ARt−1 −0.0392 0.2060 −0.1902913 0.3912019

MAt−1 −0.2654 0.1910 −1.389529 0.15169

MAt−2 −0.2065 0.0991 −2.083754 0.04607481

MAt−3 −0.3757 0.1038 −3.619461 0.0006903546

Table 9. SPEI-6 ARIMA (1,1,1)(0,0,2) for seasonal.

SPEI−6 Coefficient Standard Error t-Value p-Value

ARt−1 0.6700 0.0895 7.486034 8.854317 × 10−12

MAt−1 −0.9151 0.0528 −17.33144 1.045039 × 10−39

MAt−2 −0.2601 0.1105 −2.353846 0.02562977

MAt−3 −0.2932 0.1369 −2.141709 0.04085877

Table 10. SPEI-6 ARIMA (1,1,1) for non-seasonal.

SPEI−6 Coefficient Standard Error t-Value p-Value

ARt−1 0.6939 0.0812 8.545567 1.644041 × 10−14

MAt−1 −0.9456 0.0428 −22.09346 1.130022 × 10−52
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Table 11. SPEI-9 ARIMA (1,1,1)(1,0,0) for seasonal.

SPEI−9 Coefficient Standard Error t-Value p-Value

ARt−1 0.8070 0.0717 11.25523 4.54369 × 10−22

MAt−1 −0.9619 0.0412 −23.34709 6.873699 × 10−56

MAt−2 −0.1550 0.0825 −1.878788 0.06870885

Table 12. SPEI-12 ARIMA (0,1,0)(1,0,2) for Seasonal.

SPEI−12 Coefficient Standard Error t-Value p-Value

ARt−1 0.3903 0.4020 0.9708955 0.2483222

MAt−1 −0.9433 0.4071 −2.317121 0.02786761

MAt−2 0.1335 0.2550 0.5235294 0.3471406

Table 13. SPEI-24 ARIMA (0,1,0)(1,0,2) for seasonal.

SPEI−24 Coefficient Standard Error t-Value p-Value

ARt−1 0.1253 0.1356 0.9240413 0.2596008

MAt−1 −0.0125 0.1671 −0.07480551 0.3972693

MAt−2 −0.7308 0.1208 −6.049669 2.116665 × 10−8

In the case of (1,1,3)(0,0,0) model estimation, the series is stationary and has no time
dependence so the best prediction for this kind of series is the average of the series. In
(1,1,3) model, A.R term is 1, difference/order of integration is 1 and moving average is
3, and in the model (0,0,0) whose A.R has 0 lag, difference/order of integration is 0 and
moving average has also 0 lag.

In the case of (1,1,3) model estimation, the series is stationary, and prediction for this
kind of series is the average of the series, whose A.R. term is 1 lag, difference/order of
integration is 1 and moving average is 3 lags. This is the best ARIMA model at SPEI-3.

The (1,1,1)(0,0,2) model estimation, the series is stationary, and prediction for this kind
of series is the average of the series, model (1,1,1) whose A.R. term is 1 lag, difference/order
of integration is 1 and moving average is 1 lag, and the (0,0,2) model who’s A.R has 0,
difference/order of integration is 0 and moving average has 2 lags.

In the case of (1,1,1) model estimation, the series is stationary, and prediction for this
kind of series is the average of the series, whose A.R. term is 1 lag, difference/order of
integration is 1 and moving average is 1 lag. This is the best ARIMA model at SPEI-6.

For the (1,1,1)(1,0,0) model estimation, the series is stationary, and prediction for
this kind of series is the average of the series, model (1,1,1) whose A.R. term is 1 lag,
difference/order of integration is 1 and moving average is 1 lag, and the (1,0,0) model
who’s A.R has 1 lag, difference/order of integration is 0 and moving average has 0.

For the (0,1,0)(1,0,2) model estimation, the series is stationary and prediction for
this kind of series is the average of the series, model (0,1,0) whose A.R. term is 0, differ-
ence/order of integration is 1 and moving average is 0, and the (1,0,2) model who’s A.R
has 1 lag, difference/order of integration is 0 and moving average has 2 lags.

3.4. Diagnostic Checking of Residuals

In order to test the authenticity of the model, diagnostic examination was carried
out after the assessment of model parameters. Figure 7 depicts the ACF and PACF of the
residuals at various time scales. All the values of the ACF and PACF are found within the
limit of 0.01 range for all lags. Thus, no significant association is found between residuals
in Figure 8 and the normally distributed histograms of residuals for the SPEI at varying
time scales have been represented. This result for the shaped model is sufficient for the
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SPEI time series data and residuals to error terms. The greatest accuracy predicting models
linked to every examined SPEI time scale with accuracy fit measures (ME, RMSE, MAE,
MPE, MAPE, MASE and Theil’s U) are shown in Table 14. In general, substantial results
have been obtained for drought predicting with the help of ARIMA models in Tharparkar.
In short explanation, the ARIMA models that have longer time scales shows profound
ability of forecast and fit exactly with drought prediction in upcoming times.
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Table 14. Errors of SPEI-3, 6, 9, 12 and 24.

Accuracy ME RMSE MAE MPE MAPE MASE Theil’s U

SPEI-3 Test set −0.2274 0.8534 0.7261 120.104 120.104 0.6972 0.9804

SPEI-6 Test set −0.7831 0.9648 0.8858 117.805 117.805 0.8577 1.048

SPEI-9 Test set −0.4988 0.8747 0.7941 100.101 100.101 0.7973 1.0798

SPEI-12 Test set −0.0784 1.009 0.9462 91.841 91.841 0.9632 1.067

SPEI-24 Test set 1.4086 1.4139 1.4086 206.6870 206.687 1.9954 1.067

Almost familiar results have been shown across world and put into the SPI that forms
the core of SPEI, i.e., China [54] and India [35]. These research studies have shown that the
time series of SPEI for Mithi, Tharparkar has the same nature as of Figure 3. In addition to
this, the time series of SPEI-12 and -24 has a similar trend, and likewise for the time series
of SPEI-3 and -6, respectively. The identical order seems to be for the time series depending
on 12 and 24 months however, the related 3- and 6-month scale do not show this result.

From the Figure 5 for PACF and ACF it is clearly shown that the selected data
is stationary.

3.5. Model Forecasting

In fact, forecasting is one of the prime factors in decision making. It bears significant
importance for the process about decision making and future planning. It assists in
predicting the uncertain future by utilizing the behavior of past and ongoing experiments
and observations. The forecasting that is performed using the ARIMA models lays out
a sound basis for meteorological phenomena. The forecasting of drought is carried out
by selecting the city of Tharparkar and then the data of that location has been utilized
to foresee the data series of the SPEI at various time scales, from the 2005 to 2019 period
to assess the agreement of data, where the examined and detected SPEI were plotted for
its evaluation. Through the prism of comparison within predicted and observed data in
Figures 9 and 10, high authenticity of forecasted data is observed. No doubt, with the
increase in number of SPEI time series, the forecasting ability of model will be improved.
This enhancement in the ability of model is due to rising number of SPEI time series that
filters the final values, resulting in the decline of sudden shifts in the curve of SPEI.

The comparison of A.R and M.A coefficients suggests that the ARIMA models of
24-month time scale for Tharparkar is quite accurate. ARIMA models of 3-month time scale
are similar in the surrounding regions of Tharparkar. The ARIMA models of 24-month
time scale also showed the very accurate results. In Tables 7–13, the estimation of like
parameters of developed ARIMA model has been shown. From the outcome in Table 14,
the value of p, d, q, P, D, and Q received from the models shaped for Tharparkar are almost
alike at the same time scales. Hence, the ARIMA model (0,1,0), (1,0,2) at 24-SPEI could be
summarized for the whole region of Tharparkar. In addition to this, the ARIMA model
(1,1,3)(0,0,0) at 3-SPEI is also applicable to the neighboring cities of Tharparkar as they are
very close to it. In Tables 15–19, the point forecasted values of SPEI-3, 6, 9, 12 and 24 for
five years model has been shown.

For the (0,1,0)(1,0,2) model estimation, the series is stationary and prediction for
this kind of series is the average of the series, model (0,1,0) whose A.R. term is 0, differ-
ence/order of integration is 1 and moving average is 0, and the (1,0,2) model who’s A.R
has 1 lag, difference/order of integration is 0 and moving average has 2 lags.

3.6. Comparison with Previous Study

The comparative results of present and a previous study has been shown in Table 20.
It is investigated that the present standard error and t-value of different SPEI (3, 6 and 24)
have significant coherence with previous study [39].
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Table 15. Point forecasted value of SPEI-3 for five years.

Point Forecast

January February March April May June July August September October November December

2019 −1.05594 −1.00396 −0.97157−0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729

2020 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729

2021 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729

2022 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729

2023 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729 −0.9729

Table 16. Point forecasted value of SPEI-6 for five years.

Point Forecast

January February March April May June July August September October November December

2019 −2.19456 −1.88657 −1.67284−1.52453−1.42161−1.35019−1.30063−1.26624−1.24237 −1.22581 −1.21432 −1.20635

2020 −1.20081 −1.19697 −1.19246−1.19118−1.19029−1.18967−1.18924−1.18894−1.18874 −1.18874 −1.18859 −1.18849

2021 −1.18842 −1.18838 −1.18834−1.18832−1.1883 −1.18829−1.18828−1.18828−1.18828 −1.18827 −1.18827 −1.18827

2022 −1.18827 −1.18827 −1.18827−1.18827−1.18827−1.18827−1.18827−1.18827−1.18827 −1.18827 −1.18827 −1.18827

2023 −1.18827 −1.18827 −1.18827−1.18827−1.18827−1.18827−1.18827−1.18827−1.18827 −1.18827 −1.18827 −1.18827

Table 17. Point forecasted value of SPEI-9 for five years.

Point Forecast

January February March April May June July August September October November December

2019 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

2020 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

2021 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

2022 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

2023 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

Table 18. Point forecasted value of SPEI-12 for five years.

Point Forecast

January February March April May June July August September October November December

2019 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

2020 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

2021 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

2022 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

2023 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

Table 19. Point forecasted value of SPEI-24 for five years.

Point Forecast

January February March April May June July August September October November December

2019 −1.90309 −1.90309 −1.90309−1.90309−1.90309−1.90309−1.90309−1.90309−1.90309 −1.90309 −1.90309 −1.90309

2020 −1.90309 −1.90309 −1.90309−1.90309−1.90309−1.90309−1.90309−1.90309−1.90309 −1.90309 −1.90309 −1.90309

2021 −1.90309 −1.90309 −1.90309−1.90309−1.90309−1.90309−1.90309−1.90309−1.90309 −1.90309 −1.90309 −1.90309

2022 −1.90309 −1.90309 −1.90309−1.90309−1.90309−1.90309−1.90309−1.90309−1.90309 −1.90309 −1.90309 −1.90309

2023 −1.90309 −1.90309 −1.90309−1.90309−1.90309−1.90309−1.90309−1.90309−1.90309 −1.90309 −1.90309 −1.90309
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Table 20. A comparison of the present and previous study [39].

SPEI
Standard Error

of Previous
Study

t-Value of
Previous Study

Standard Error
of Present

Study

t-Value of
Present Study

3 AR 0.105 5.84 0.2060 −0.1902913

3 MA

0.117 −3.27 0.1910 −1.38925

0.104 −3.46 0.0991 −2.083754

0.094 2.43 0.1038 −3.619461

6 AR 0.054 7.54 0.0895 7.486034

6 MA

0.048 −15.49 0.0528 −17.3314

0.054 −12.01 0.1105 −2.353846

0.052 −9.99 0.1369 −2.141709

0.043 −11.30

0.033 −16.74

24 AR 0.036 6.98 0.1356 0.9240413

24 MA
0.048 −7.47 0.1671 −0.07480551

0.034 −14.54 0.1208 −6.049669

4. Conclusions

This research proves SPEI as a unique and powerful multi-scalar drought index for
the examination of drought event variations in the region of Tharparkar, Sindh. The prime
objective of this research work is categorized into two parts. The first part deals with
the evaluation of climatic parameters and drought frequency on the basis of SPEI. This
research concluded that the water crisis are a result of overlapping of two unfavorable
factors—a decrease in precipitation amounts and an increase of temperature in the region of
Tharparkar. Therefore, due to the deficiency of water, the likelihood of drought events has
been greatly increased such situation is ultimately generating immense threat to available
water resources. In addition to this, the variation in SPEI also shows unusual course of
drought (extremely dry) since preceding decade. However, from these results, it is also
evident that the situation of hyper-arid regions could be more alarming and eye-opening.
It should be noted that the forecast of drought events is one of the most troublesome issues
faced be meteorologists.

In this way, the second objective of this research was related to the development and
test of ARIMA models for the forecast of drought by utilizing SPEI with 3, 6, 9, 12, and
24-month time scales. The identification of the ARIMA models was conducted on the
basis of AIC and SBC values. The basic point for researchers is the credibility of forecasted
values. Because the implementation of drought alleviation policies depends upon these
forecasted values. In this way, a series of diagnostic checking tests were conducted after
the inspection of the parameters of said models. The ARIMA model (0,1,0)(1,0,2) at 24-SPEI
could be selected from other possible models for the region of Tharparkar. Additionally,
the ARIMA model (1,1,3)(0,0,0) at 3-SPEI, the ARIMA model (1,1,1)(0,0,2) at 6-SPEI, the
ARIMA model (1,1,1)(1,0,0) at 9-SPEI and the ARIMA model (0,1,0)(1,0,2) at 12-SPEI can
be generalized for Tharparkar region. This is because other localities are very close to the
Mithi region. It was also observed that the result obtained through the ARIMA model at
the 24-SPEI time scale was the best forecasting model, that follows the lower values of
ME, RMSE, MAE, MPE, MAPE and MASE. The ARIMA model at SPEI 3-time scale was
found to be the worst model for the prediction of drought for the region of Tharparkar.
The best ARIMA models represent profound accuracy in foretelling the droughts, as these
can perform a very significant role for planners and water resources managers in measures
for such regions as well as in view of drought.
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In fact, the connectivity between climate change shown in droughts and the present
water resources in Tharparkar is the need of the hour. Thus, in the Tharparkar region,
it is very important to overcome the forecasted drought conditions and this should be
considered as a significant future study. Additionally, unfortunately the Tharparkar region
in Pakistan has only one meteorological station located at Mithi, which is the limitation of
our study. Therefore, this study can be extended using different models and a larger set of
data in future.
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Nomenclature

ACF Autocorrelation Function
AIC Akaike information criterion
ANN Artificial Neural Network
A.R Autoregressive
ARIMA Autoregressive Integrated moving Average
M.A Moving Average
MAE Mean Absolute Error
MAPE Mean Absolute Percentile Error
MASE Mean Absolute Square Error
ME Mean Error
MPE Mean Percentile Error
PACF Partial Autocorrelation Function
PAI Palfai aridity index
PCPN precipitation
PDSI Palme drought severity index
PET potential evapotranspiration
RMSE Root Mean Square Error
SBC Schwarz’s Bayesian criterion
SPEI Standardized Precipitation Evapotranspiration Index
SPI Standardized precipitation index
SWSI Surface water supply index
Symbols
∆ slope of vapor pressure
∇d order of difference
Rn surface net radian
G soil heat flux density
γ psychometric constant
T mean daily air temperature
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U2 the wind speed
es saturated vapor pressure
ea actual vapor pressure
ω Mean of the series
ηt error terms
ηt−i MA error terms
αi Parameter of Moving average model
βi Parameter of Autoregressive model
Zt Time series
Zt−i AR error terms
β(C) Polynomial
α(C) Polynomial
Φp seasonal AR parameter of order P
ΘQ seasonal MA parameter of order Q
Xm observed SPEI
Xs predicted SPEI
xi predicted value
x̂i actual value
d number of regular difference for Non-Seasonal Model
p Autoregressive Parameter for Non-Seasonal Model
q Moving Average Parameter for Non-Seasonal Model
D number of regular difference for Seasonal Model
P Autoregressive Parameter for Seasonal Model
Q Moving Average Parameter for Seasonal Model
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