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Abstract: In the recent decade, the North China Plain (NCP) has been among the region’s most heavily
polluted by PM2.5 in China. For the nonattainment cities in the NCP, joint pollution control with
related cities is highly needed in addition to the emission controls in their own cities. However, as the
basis of decision-making, the spatial characteristics of PM2.5 among these cities are still insufficiently
revealed. In this work, the spatial characteristics among all nonattainment cities in the northern
part of the North China Plain (NNCP) region were revealed based on data mining technologies
including clustering, coefficient of divergence (COD), network correlation model, and terrain and
meteorology analysis. The results indicate that PM2.5 pollution of cities with a distance of less than
180 km exhibits homogeneity in the NCP region. Especially, the sub-region, composed of Xinxiang,
Hebi, Kaifeng, Zhengzhou, and Jiaozuo, was strongly homogeneous and a strong correlation exists
among them. Compared with spring and summer, much stronger correlations of PM2.5 between cities
were found in autumn and winter, indicating a strong need for joint prevention and control during
these periods. All nonattainment cities in this region were divided into city-clusters, depending on
the seasons and pollution levels to further helping to reduce their PM2.5 concentrations effectively.
Air stagnation index (ASI) analysis indicates that the strong correlations between cities in autumn
were more attributed to the transport impacts than those in winter, even though there were higher
PM2.5 concentrations in winter. These results provided an insight into joint prevention and control of
pollution in the NCP region.

Keywords: PM2.5; clustering; coefficient of divergence; spatial characteristics; air stagnation index

1. Introduction

Fine particulate matter (PM2.5; particulate matter with an aerodynamic diameter less
than 2.5 µm) has been linked to negative impacts on human health [1–3]. As one of the
rapidly developing countries, China has experienced rapid economic growth in the past
two decades, but it has also triggered serious air pollution problems, especially in the
northern and central regions [4]. Since a record-breaking severe haze episode occurred
in January 2013, PM2.5 pollution in China has attracted wide attention [5,6]. With the
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launch of the three-year action plan in 2018 (i.e., to win the battle to protect the blue sky),
clear targets have been set to improve air quality. For instance, an 18% reduction in PM2.5
concentration is required for all nonattainment cities at the prefecture-level and above.
Moreover, compared with 2015, it is required to reduce the number of heavy pollution days
by more than 25% by the end of 2020. Although air quality has improved significantly, haze
pollution episode characterized by high concentrations of PM2.5 is still the most concerning
issue in China [7–9], especially in the North China Plain (NCP) [10,11]. Reducing PM2.5
concentration for cities that do not meet the standards will still be an important task for air
quality management in the next few years.

As revealed in many studies [12–17], the variations of PM2.5 concentrations are related
to many processes, such as emission, transport, wet deposition, dry deposition, chemical
reaction, and physical changes, but essentially these processes are controlled by emission
and meteorological conditions. Many meteorological factors have significant impacts on
PM2.5 concentrations. For instance, a shorter planetary boundary layer (PBL) usually leads
to a higher PM2.5 concentration for constant emissions [18,19]. Accordingly, PM2.5 con-
centrations of two cities with the same change pattern of PBL height are usually strongly
correlated. In addition, the transport of PM2.5 aided by winds can affect the PM2.5 concen-
tration of neighboring cities, as a result, the correlations of PM2.5 concentrations among
these cities can be enhanced. Hence, air pollution is usually not confined to certain cities
but tends to show regional transport characteristics.

Many studies have shown that the concentration of PM2.5 in one city is caused not only
by local emissions but also by transport contribution from nearby cities [20–22] For instance,
it was found that PM2.5 in Baoding, a city in Hebei Province near Beijing, was transported
to Beijing, while bidirectional PM2.5 transport was evident between Beijing and Tianjin [23].
Furthermore, PM2.5 concentration in China’s top three urban agglomerations was found to
increase by 0.34% for every 1% increase in the average urbanization level of its neighboring
cities [24], especially in Beijing–Tianjin–Hebei (BTH) where PM2.5 spillover effects were
notably strong [25,26]. Therefore, the “territorial” environmental management system can
not cope with the PM2.5 pollution problem of regional transport, and the establishment of
a regional mechanism for joint prevention and control of air pollution is urgently needed.

As the initial effort of regional prevention, the Ministry of Ecology and Environment
of the People’s Republic of China (MEEP) launched an air pollution prevention and control
project called “One City One Policy” in the BTH region and its surrounding areas. The
project involved Beijing, Tianjin, and other 26 cities (i.e., “2 + 26” cities) [27]. However, the
understanding of joint prevention and control of PM2.5 was far from sufficient, which was
attributed to the fact that the policy for joint prevention and control highly depends on
the spatial correlation features of PM2.5 pollution among cities. Thus, a number of studies
that had analyzed the spatial patterns of PM2.5 pollution in the “2 + 26” cities [27,28]. The
results showed that the pollution centers of the “2 + 26” cities were located in Xingtai
and Handan, and gradually moved southwestwards. It also stated that the reduction of
PM2.5 pollution in this region is important for the mitigation of pollution in the whole
NCP region.

Admittedly, PM2.5 pollution varies greatly with changes in meteorology conditions
and emissions, and similarly, the correlation between the PM2.5 concentrations of the two
cities also varies greatly. Some studies [26,29] provided analyses of the spatio-temporal
pattern of PM2.5 pollution but they focus on a large scale, the whole China mainland, or
only 13 cities in the BTH region. Moreover, they did not pay attention to non-nonattainment
cities and did not give city-scale suggestions for joint prevention and control that vary with
pollution seasons and pollution levels. There are other some studies [30–32] that proposed
an approach for joint control between cities in the region (i.e., BTH and surrounding cities
and the Yangtze River Delta), but they also did not pay attention to non-nonattainment cities
in their research domain. Moreover, they did not discuss more the impact of meteorological
conditions such as air stagnation index (ASI) which can greatly affect the spatial pattern
of PM2.5. In addition, these studies did not take the pollution levels into account for joint
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control. Therefore, to bridge this gap, a more specific spatial relationship of PM2.5 pollution
needs to be studied for the different seasons among these nonattainment cities to enhance
the benefits from joint prevention and control and enable timely achievement of air quality
targets in the nonattainment cities of this region.

This study applied multiple data mining techniques to reveal the spatial relationship
of PM2.5 pollution over 42 prefecture-level cities in the northern part of the North China
Plain (NNCP), expanding the coverage of the “2 + 26” cities. Section 2 describes the
methods that were used in this study, including the clustering analysis, network correlation
analysis, coefficient of divergence analysis (COD), and ASI. Section 3 presents the results on
spatial clustering, heterogeneity, and correlation, particularly for the nonattainment cities.
Different levels of joint prevention and control city groups are given for different seasons.
Besides, analyses of the terrain and meteorology conditions using ASI are conducted to
reinforce the understanding of spatial correlations of PM2.5 among these cities. Finally,
conclusions and policy implications were given in Section 4.

2. Data Source and Methods
2.1. Research Region and Data Source

The research domain covers 42 cities, composed of Beijing, Tianjin, other 11 cities in
Hebei Province, 17 cities in Shandong province, 7 cities in Henan Province, and 5 cities
in Shanxi Province, as shown in Figure 1. Most of these cities are located in the NNCP
region. Few cities in Shanxi province are outside but close to the NNCP region. The study
domain also includes the “2 + 26” cities as the important air pollution transport corridors
in the Beijing-Tianjin-Hebei region. The data of PM2.5 concentration from 1 January 2015
to 31 December 2018, were obtained from China Urban Air Quality Real-Time Publish-
ing Platform (http://106.37.208.233:20035), which is supported by the MEEP. Hourly me-
teorological data were obtained from the National Centers for Environmental Informa-
tion in the National Oceanic and Atmospheric Administration (NOAA) (https://www.
ncei.noaa.gov/access/search/data-search/global-hourly). Data are accessible from FTP
(ftp://ftp.ncdc.noaa.gov/pub/data/noaa, last access: 30 November 2020).
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2.2. Methods
2.2.1. Agglomerative Hierarchical Clustering Model

Agglomerative Hierarchical clustering (AHC) is a bottom-up statistical method that
initially treats each object as a single cluster, merges it according to certain distance algo-
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rithm and similarity algorithm criteria, and iterates until the requirements are met [33,34].
This method can be used to study spatial characteristics of air quality at the regional
scale [35–37]. In this work, the daily average concentrations of PM2.5 for each prefecture-
level city in the NNCP region were considered as one initial object. Therefore, there were
42 initial objects which were input into the clustering model.

The distance between every two clusters was computed with the Euclidean dis-
tance [38], which can be used to calculate the degree of similarity between PM2.5 concentra-
tions in two cities, as shown in Equation (1).

Euij =

√
m

∑
k=1

(
xi,k − xj,k

)2
(1)

where Euij is the Euclidean distance between the ith city and the jth city, m is the number of
daily mean concentrations of PM2.5 in city i over the study period.

2.2.2. Coefficient of Divergence

The coefficient of divergence (COD) was used to measure the relative consistency
in concentrations between cities, ranging from 0 to 1.0 in some studies [39–41]. Usually,
0.2 is considered the boundary value of COD [42,43]. Such that, COD value larger than
0.2 indicates the heterogeneous spatial distribution of PM2.5, while a COD value less than
0.2 represents a uniform spatial distribution of PM2.5. Therefore, COD points out the degree
of spatial differences in PM2.5 concentration within each city-cluster region. The COD
was defined according to Equation (2). Representative cities within the city-cluster are
selected as the benchmark by Equations (3) and (4). The city with the highest Indexi value
is regarded as the representative city of the city-cluster.

CODij =

√√√√ 1
n

n

∑
k=1

(
xki − xkj

xki + xkj

)2

(2)

where xki and xkj represent the average daily PM2.5 concentration for day k at cities i and j
of the city cluster, and n is the studied days.

Eu∗i =
Eui

max(Eu i)
(3)

Indexi =
Ri

Eu∗i
(4)

where Eui is a normalized Euclidean distance and Eui ∈ (0, 1), Ri refers to Pearson’s
correlation coefficient between the PM2.5 concentration of any city i in the city-cluster and
the average PM2.5 concentration of the city-cluster.

2.2.3. Complex Network Correlation Model

The network correlation model can be used to calculate the correlation between the
research objects. It has been used in the analysis of the PM2.5 correlation on a regional
scale [44–46]. The network correlation model based on Pearson’s correlation coefficient
was applied to measure the correlation strength between every two cities in the NNCP
region, describing the direct and indirect interaction of daily mean PM2.5 concentrations.
For any two cities, their daily average PM2.5 concentration were taken as the matrixes
X = {x1,x2, . . . ,xn} and Y = {y1,y2, . . . ,yn}, respectively, and then their Pearson’s correlation
coefficient ρ (X, Y) [47] was calculated based on Equation (5). The ρ value of any two cities
is less than 1.0. The closer to 1.0, the greater the correlation. Pearson’s correlation distance
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is another distance based on the correlation coefficient [48], which was calculated by
Equation (6).

ρ(X, Y) =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(5)

Dcor(X, Y) = 1− ρ(X, Y) (6)

where ρ (X, Y) is the Pearson’s correlation coefficient between X and Y. xi and yi were daily
PM2.5 concentration of ith city and jth city. x and y were the average concentration of PM2.5
in the city i and city j.

2.2.4. Air Stagnation Index

The air stagnation index (ASI) is an important meteorological indicator of the ability
of the atmosphere to dilute air pollutants. The ASI was originally developed by the
National Oceanic and Atmospheric Administration (NOAA). Using geopotential height,
Planetary boundary layer height (PBLH), and precipitation variables from the Modern-Era
Retrospective Analysis for Research and Applications, version 2 (MERRA-2) dataset, Feng
et al. have developed the ASI for the NCP in China [49,50]. ASI data used in this study for
autumn and winter in 2018 is from the previous study by Feng et al.

3. Results and Discussion
3.1. Basic Temporal-Spatial Distribution

The annual mean concentrations of PM2.5 from 2015 to 2018 were 75.7 µg·m−3,
69.3 µg·m−3, 62.8 µg·m−3, and 54.8 µg·m−3, respectively, as shown in Figure 2. This
is synonymous with annual decrease ratios of 8%, 10%, and 13% in 2016, 2017, and 2018,
respectively. It is evident that the highest average concentration of PM2.5 were witnessed
in the seven cities of Henan Province. This is a clear indication that Henan province suffers
from severe PM2.5 pollution and therefore more attention is required. It was also worth not-
ing that, the concentration trend of PM2.5 in the five cities of Shanxi province inconsistent
with the whole NNCP region. Clearly, while PM2.5 concentrations declined year after year
since 2015–2018 in the rest of the NNCP region, PM2.5 pollution in the five cities of Shanxi
Province worsened in 2016 and 2017 with slight fluctuations in 2018. Generally, Beijing,
Tianjin, Henan, Shandong, and “2 + 26” urban agglomerations all gained significant reduc-
tion of PM2.5 concentrations between 2015–2018. Nevertheless, their PM2.5 concentrations
were still higher than the National Ambient Air Quality Standards (NAAQS) of 35 µg·m−3.

Figure 2. Average PM2.5 concentrations in the different sub-regions of NNCP (2015–2018).

The details about classification standards of air quality pollution levels and some
discussion on the variations of the number of pollution days in the whole NNCP region
during 2015–2018 (Figures S1 and S2) can be referred to the supporting information file.
As shown in Figure 3a, the number of non-excellent days shows a declining trend with
years. An average of 53% decrease is noticeable in the number of days heavily polluted
days and above in 2018 relative to 2015, indicating a great improvement in air quality.
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However, there is a notable rebound (in 2017) in Hebei, Henan, and Shanxi. The cities with
the greatest improvement in the number of non-excellent days from 2015 to 2018 were
Qingdao (−45%), Yantai (−41%), Dongying (−34%), Weihai (−32%), Rizhao (−31%), and
Linyi (−31%). Compared with the high PM2.5 concentration in 2015, non-excellent days in
2018 increased by 18% in Yangquan. In general, Shanxi Province has benefited less from
the national implementation of air quality control plans and thus require more attention.

Figure 3. The number of non-excellent days (a) and variations of annual PM2.5 concentrations (b) by
city from 2015 to 2018 in the NNCP region.

As shown in Figure S3, high PM2.5 pollution was mainly concentrated in the central
and southern parts of Hebei as well as the northern part of Henan. In 2015, only one city
(Zhangjiakou), met the target of PM2.5, and by 2018, four more cities (Chengde, Qingdao,
Yantai, and Weihai) achieved attainment. These cities with low PM2.5 concentrations are
distributed over the northernmost and easternmost parts of the entire NNCP region. It is
noted that Langfang was the city with the biggest drop rate (39%) of PM2.5 in the whole
NNCP region. In 2015, the highest annual concentration of PM2.5 in the NNCP region was
found in Baoding (106.7 µg·m−3), more than three times the PM2.5 limit value in NAAQS
(35 µg·m−3). Anyang, located in the north of Henan Province and near Hebei Province,
had a higher annual PM2.5 concentration (74.4 µg·m−3) than any other city in the NNCP
region in 2018. Overall, there were 37 nonattainment cities in the NNCP region in 2018.

3.2. Spatial Clustering Analysis

According to hierarchical clustering based on the clustering of Euclidean distance and
Pearson’s correlation distance, the NNCP region was divided into 6 sub-regions as shown
in Figure 4a,b, respectively. Determination of the number of clusters was based on the
elbow method, see Figure S4. Euclidean distance clustering grouped cities with comparable
daily average PM2.5 concentrations into one category or similar cluster. Evidently, the
first cluster comprises the eastern coastal cities and the northern cities, including Yantai,
Weihai, Qingdao, Rizhao, Chengde, and Qinhuangdao, with an annual average PM2.5
concentration ranged from 26.6 to 42.1 µg·m−3. The second cluster includes Beijing, Tianjin,
Tangshan, and Langfang, with an annual average concentration of PM2.5 ranged from
50.5 to 60.2 µg·m−3. One of the most polluted clusters covered the cities in central and
southern Hebei, and the northern city of Anyang in Henan with annual average PM2.5
concentration ranged from 55.2 to 74.4 µg·m−3.
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Figure 4. Clustering results based on daily PM2.5 concentrations of Euclidean distance (a) and
Pearson’s correlation distance (b) in 2018.

Pearson’s correlation distance clustering reveals contrasting results (Figure 4b). Basi-
cally, the Pearson’s correlation distance measures the similarity of the correlation between
cities based on PM2.5 concentrations. For instance, the stronger the correlation between
PM2.5 concentrations of two cities, the smaller the Pearson’s correlation distance. By
comparison, it is clear from Figure 4a,b that clustering results for cities close to Taishan
Mountain were different. In addition, Chengde, Zhangjiakou, Qingdao, Weihai, and Yantai,
which were attainment cities in 2018, were not in the same sub-region in Pearson’s distance
clustering results. In particular, Zhangjiakou, located in the northwest of the Taihang
Mountains, was in its own category. Moreover, Jincheng and Changzhi were no longer in
the same cluster as Jinzhong in Shanxi Province. Essentially, topographical features and
meteorological conditions were two important factors that affect the clustering results in
Pearson’s correlation distance [51]. As mentioned earlier, PM2.5 concentration is impacted
by the combined effect of emission and meteorological conditions. However, some mete-
orological conditions, especially wind speed and direction are also greatly impacted by
topographical features. Meteorological conditions (particularly PBL and wind, that control
the transport of pollutants) are the main factors that influence the correlation of PM2.5
concentration between cities.

3.3. Spatial Heterogeneity Analysis

The city with the highest representative index Si among the cities in the same region
is regarded as the representative city for that region. The representative cities of the six
clusters based on Euclidean clustering were Yantai, Langfang, Taian, Jinzhong, Xinxiang,
and Handan, respectively. However, Zhangjiakou, Rizhao, Langfang, Jinzhong, Xinxiang,
and Hengshui were the representative cities based on Pearson’s correlation distance clus-
tering. The COD was used to measure the relative consistency of PM2.5 concentrations
between cities. The COD values between these representative cities based on the two kinds
of clustering distances are shown in Tables S1 and S2. Except for Handan and Xinxiang, the
COD value of every two representative cities was greater than 0.2 (Table S1), indicating the
obvious heterogeneity of PM2.5 pollution between the representative cities. COD values of
Yantai and any other representative city were greater than 0.38, suggesting that the PM2.5
pollution in Yantai was significantly different from that of other representative cities. On
the contrary, the COD values of Handan and Xinxiang were 0.14, less than 0.2, indicating
that the pollution homogeneity of both cities was strong.

Furthermore, the COD results for Pearson’s correlation distances shows that Zhangji-
akou and any other representative city had COD value greater than 0.37 (Table S2). This
signifies strongly heterogeneous PM2.5 pollution in Zhangjiakou in relation to other repre-
sentative cities in the NNCP region. Besides, Langfang, Jinzhong, and Xinxiang belong
to the same representative cities for the two kinds of clustering results but have different
PM2.5 pollution features.

Additionally, a detailed analysis of the regional homogeneity of PM2.5 concentrations
is shown in Figure 5. This was achieved by computing the COD between the representative
city and any other city in a given cluster. The values in horizontal axis are the geographical
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distances between the representative city and any other city in the same cluster. The COD
value in the cluster 1, 3, 4, and 6 (based on Euclidean distances clustering), was less than
0.2 when the geographical distance between the corresponding city and the representative
city was less than 180 km. This means that PM2.5 pollution was homogeneous. However,
when the distance exceeded 180 km, COD was greater than 0.2. Thus, the spatial scale of
PM2.5 pollution in the clusters was about 180 km. Notably, in clusters 1 and 4, COD values
increased monotonically with distance. Whereas, in cluster 2, the COD value was directly
proportional to the increase in the distance except for Beijing. Remarkably, Beijing is closest
to the representative city (Langfang, 47.2 km), but the COD value is 0.21, indicating a lack
of homogeneity in the PM2.5 pollution of Beijing and Langfang. This is mainly attributed to
the different industrial structures between these two cities, more so because Beijing is the
capital city and the cultural center of China. While, the results of clusters 3, 4, and 6 were
slightly more complicated, the results of cluster 5 present vital information. It is important
to note that, COD between Xinxiang and any other city of Hebi, Kaifeng, Zhengzhou, and
Jiaozuo were all less than 0.14, far less than the judgment standard of 0.2. This means
that there is a very strong homogeneity of PM2.5 pollution among them. In addition, the
geographical locations of Hebi, Kaifeng, Zhengzhou, and Jiaozuo are a short distance from
Xinxiang (≤70 km). Within such short distances coupled with relatively flat terrain, PM2.5
can be easily transported among these cities. Therefore, joint prevention and control among
these cities can be very important to alleviate PM2.5 pollution.

Figure 5. The variations of coefficient of divergence (COD) values with the geographical distance of any other city away
from the representative city for the six clustered regions (a–f) based on Euclidean distances clustering.

In the same way, as mentioned above, the corresponding analysis was conducted for
the clusters based on Pearson’s correlation distances clustering as shown in Figure 6. In
cluster 3, 4, and 6, the COD values (<0.2) further demonstrate a uniform distribution of
PM2.5 pollution in these clusters when the distance of one city to the representative city
is less than 180 km. In cluster 2, COD values of both Qingdao and Linyi were less than
0.2 and their distances are both about 100 km away from Rizhao. It was noteworthy that
all cities had COD values less than 0.20 in sub-region 5 except for the cities of Jincheng and
Changzhi. Similar to Figure 5e, strong homogeneity of PM2.5 pollution is also observed
in Figure 6d among Hebi, Jiaozuo, Kaifeng, Zhengzhou, and Xinxiang. In addition, there
exists a slight pollution homogeneity between Xinxiang and some northern cities of Mount
Tai, namely Liaocheng, Jinan, and Zibo, which are more than 200–450 km away from
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Xinxiang. This phenomenon is mainly due to the prevalence of northeast winds during
winter in Xinxiang. Therefore, in addition to local pollution sources, the results indicate that
the impact of transport of seriously polluted urban pollutants in this (northeast) direction
is significant [52]. Notably, all these four cities belong to the “2 + 26” city agglomeration as
the transport corridor of PM2.5. Here, the special terrain of Mount Tai plays an important
role in the transport impact of PM2.5 pollution between these cities. Ultimately, the impact
of inter-city transport of PM2.5 cannot be ignored to effectively reduce the pollution level
for these cities.

Figure 6. The variations of COD values with the geographical distance of any city relative to the representative city for the
five clustered regions (a–e) are based on Pearson’s correlation distances clustering.

3.4. Network Correlation Analysis

Essentially, the network correlation model focuses on the correlation coefficient
(ρ value) between every two cities. In principle, the larger the ρ value, the stronger the
correlation of PM2.5 concentrations in the two cities (i.e., the impact of PM2.5 transport
between the two cities is substantial). To clearly present the connection between cities, a
provisional threshold value of ρ was set at 0.88. The results of the PM2.5 network correlation
model in different seasons of the NNCP region in 2018 are presented in Figure 7. Note
that, the connection between two cities with ρ values less than 0.88 are not displayed. It is
evident that the network correlation between cities in the NNCP region is strong in autumn
and winter, as opposed to spring and summer. This shows that autumn and winter seasons
have potentially greater impacts of PM2.5 transport on surrounding cities or rather in cities
with stronger common meteorological conditions.

For two nonattainment cities, the greater the impact of PM2.5, the greater the need for
joint prevention and control. On the contrary, when more cities unite, the more difficult it is
to implement a joint control strategy. According to the necessity and difficulty of the joint
prevention and joint control between cities, different threshold values of ρ s can be used to
further categorize city-clusters into three levels. The threshold for the first level of joint
control with the least difficulty is 0.92, the second level is 0.90 and the third level is 0.88.
Results of the complex network correlation model also suggest that, for nonattainment
cities to realize the timely achievement of PM2.5 targets in NAAQS, then joint prevention
and control need to be implemented in city-clusters. Therefore, cities with daily average
concentrations of PM2.5 between 35–75 µg·m−3 need to implement the first level joint
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prevention and control, while those with PM2.5 concentrations between 75 µg·m−3 and 115
µg·m−3 are recommended to execute the second level, along with the first level of joint
prevention and control. However, cities with PM2.5 concentrations above 115 µg·m−3 are
recommended to perform the third level, besides the first and second levels.

Figure 7. Network correlations between cities in different seasons (a): Spring, (b): Summer,
(c): Autumn, (d): Winter, in the NNCP region (ρ ≥ 0.88).

The city-clusters of the first, second, and third levels of joint prevention and control
are presented in Figures 8 and 9, and Figure S5 for all the seasons in 2018. Comparatively,
the number of city-clusters in the first level is highest but lowest in the third level. It worth
mentioning that, when the city-cluster of a certain level is not presented, it means that there
was no proposed city-cluster of joint control for that level. What is more, there were no
city-clusters for all levels during summer. In general, the average PM2.5 concentrations of
city-clusters in winter were much higher than those in autumn. Besides, there were most
city-clusters in autumn, followed by winter.

The results of the first-level joint prevention and control are presented in Figure 8.
Clearly, in spring, Tianjin-Tangshan, Tangshan-Langfang, and Tianjin-Lanfang city-clusters
all have higher ρ values (>0.94), indicating a strong correlation between them. However,
there were only two city-clusters in the second level and one city-cluster in the third level,
due to the relatively low PM2.5 concentration. During autumn, the ρ values for many
city-clusters in the first-level, including Handan-Anyang, Xingtai-Handan, Hebi-Anyang,
Taian-Laiwu, Hengshui-Dezhou, Tianjin-Tangshan, Tianjin-Cangzhou, Dezhou-Binzhou,
Zibo-Jining, Dongying-Binzhou, Taiyuan-Jinzhong, Rizhao-Linyi, were obviously higher
than 0.94, with even more than five city-clusters whose ρ values were higher than 0.96. For
the first-level city-clusters in autumn and winter, the most polluted city-clusters are located
in adjacent areas of Henan and Hebei provinces.

For the second-level in autumn, the PM2.5 concentrations in the city-cluster of Xingtai-
Anyang-Handan were the highest, followed by the city-cluster of Xinxiang-Anyang-Puyang
(Figure 9). For the third-level, the city-cluster of Heze-Puyang-Liaocheng-Jinan-Handan-
Hebi-Xinxiang-Zhengzhou suffered from severe PM2.5 pollution in autumn (Figure S5). The
cities in this city-cluster belong to different provinces (i.e., Henan, Hebei, and Shandong
Provinces, respectively). This is an indication that joint control between cities across
provincial boundaries is feasible and essential in autumn.
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Figure 8. The city-clusters with their average PM2.5 concentrations and ρ values for the first level in
seasons (a): Spring, (b): Autumn, (c): Winter.

Figure 9. The city-clusters with their average PM2.5 concentrations and ρ values for the second-level
in seasons (a): Autumn, (b): Winter, (c): Spring.

During the winter, the two city-clusters exhibiting severe PM2.5 pollution include Heze-
Kaifeng-Puyang and Kaifeng-Xinxiang-Zhengzhou for the second-level (Figure 9). For the
third-level, there were only two city-clusters. Handan-Shijiazhuang-Xingtai-Hengshui-
Dezhou ranked first and Hebi-Jiaozuo-Kaifeng-Puyang-Zhengzhou-Xinxiang city cluster
ranked second in terms of average PM2.5 concentrations, as shown in Figure S5. Except for
Dezhou, all four cities in the first city-cluster belong to Hebei Province, and all six cities
in the second city-cluster belong to Henan Province, indicating that pollution control in



Atmosphere 2021, 12, 77 12 of 17

Hebei and Henan Provinces should be paid more attention. As mentioned above, Xinxiang
was the representative city of the fifth cluster according to both the Euclidean distance
and Pearson’s correlation distance. The COD values between Xinxiang and any other
city in the same city-cluster, such as Hebi, Jiaozuo, Kaifeng, Puyang, and Zhengzhou,
were all less than 0.14. This is proof that cities in the city-cluster of Hebi-Jiaozuo-Kaifeng-
Puyang-Zhengzhou-Xinxiang were strongly related to each other. Based on the clustering
of Pearson’s correlation distances, Hengshui was the representative city in the city-cluster,
and the COD value was less than 0.15 for Dezhou, which is about 50 km away from
Hengshui. The COD values of Shijiazhuang, Xingtai, and Handan, which are 100–180 km
away from Hengshui, were also less than 0.18. This indicates a strong homogeneity and
strong correlation between these five cities. In addition to the emission reduction of their
own cities, strengthening joint prevention and control is highly needed to mitigate PM2.5
pollution, not only for themselves but also for other cities.

3.5. Topographic, Meteorological, and Air Stagnation Index Analysis

Mountain terrain significantly changes the wind speed and direction, and thus affects
the transport strength and pathway of PM2.5. As shown in Figure 10 and Figure S6 for
autumn and winter, respectively, Taihang Mountains and Yan Mountain are located in the
west and northwest of Hebei. The two cities of Jinan and Taian are separated by Mount
Tai, and the transport impact between them is relatively small. The dominant wind of
Zhangjiakou in autumn and winter was the northwest wind, and 16% of the frequency
wind in Beijing came from the direction of Zhangjiakou, mostly on days when the air
quality was excellent. The transport between Zhangjiakou and Beijing was weak due to
the low PM2.5 concentration in Zhangjiakou and the interference from Yan Mountain. As a
result, Zhangjiakou alone became one cluster according to Pearson’s correlation clustering.
Correspondingly, the ρ value between Zhangjiakou and Beijing was not large, which was
not high enough to be combined with other cities in the first-level.

Figure 10. Topographic map and winds rose diagrams of some cities for the autumn of 2018 in the NNCP region.
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In autumn, the wind frequency from the northwest direction in Tangshan was rela-
tively high, and the fastest wind speed about 10 m s−1, (Figure 10). Such, high wind speed
is very beneficial to diffuse PM2.5 and to prevent the formation of heavy haze pollution.
In addition, there also exists northwest winds around 2 m s−1 in the path of Langfang,
(northwest of Tangshan) with the potential of a large impact on PM2.5 transport. This is
consistent with the result of the network correlation model, indicating a strong correlation
between PM2.5 concentrations in Tangshan and Langfang. The significant frequency of the
winds from northeast and southwest of Tangshan with moderate speeds influences Tianjin,
an adjacent city to Tangshan. This is also evidenced by the fact that wind frequencies in
the southwest direction of Tangshan predominantly occur on non-excellent days. This was
consistent with the results of the autumn in third-level based on the network correlation
model. The terrain of Zhengzhou, Xinxiang, Hebi, Kaifeng, and Puyang is very flat, and
the distances between cities are very close. The high frequency of northeast winds in
Zhengzhou facilitates obvious transport impact on Xinxiang and Kaifeng cities, which is
consistent with the results of the network correlation model. Similarly, Zhengzhou was
also strongly related to cities like Xinxiang and Kaifeng in winter.

In addition, the Air Stagnation Index (ASI) is also a very important factor of mete-
orology to describe the ability of the atmosphere to dilute air pollutants. Neighboring
cities with high ASI usually show a similar change pattern of PM2.5 concentrations. Hebi
and Anyang were grouped into one city-cluster with the strongest correlation in autumn
(0.98) (Figure 8), while their mean PM2.5 concentration and ASI were 77.5 µg·m−3 and
1.31, respectively. In winter, the ASI of 1.69 was much higher than that in autumn, sug-
gesting that weather conditions in winter were closer to stagnation, as a result, their mean
PM2.5 concentration (103.1 µg·m−3) was much higher than that in autumn. However, the
correlation of PM2.5 concentrations between the two cities in winter was 0.97, which was
slightly lower than that in autumn. Zhengzhou and Kaifeng are also a noteworthy city-
cluster, with a mean ASI of 1.39 in autumn and 2.10 in winter, and corresponding average
PM2.5 concentrations of 80.9 µg·m−3 and 103.1 µg·m−3 in autumn and winter, respectively.
However, the correlation (0.95) in autumn was significantly higher than that in winter
(0.91). Therefore, it can be concluded that higher ASI does not always contribute to a higher
correlation of PM2.5 concentrations. In other words, the transport of PM2.5 concentrations
can be attributed to the higher correlation of PM2.5 concentrations between cities.

Clustering analyses based on PM2.5 concentrations and ASI for autumn and winter
are shown in Figure 11, respectively. In autumn, only Baoding and Shijiazhuang had both
the highest concentrations and ASI. Cities in northeastern Shandong have the lowest ASI
and also the lowest concentrations. However, cities in Henan belong to cluster 5 in the
concentration clustering, and cluster 3 in the ASI clustering. The main reason for the big
difference between the two clustering results is that pollutant transport was strong in
these cities in Henan, which is consistent with the above analysis. In winter, the difference
between the two clustering results in these cities in Henan is minimal, indicating a static
stability index in winter with a significant effect on the correlation of PM2.5 concentrations.

Table 1 shows the mean distribution of PM2.5 concentration, ρ value, and air stagnation
index for the different sub-regions with the Euclidian distance in autumn and winter
respectively. It can be seen that the ASI is significantly higher in winter than autumn,
indicating that the NNCP region is more prone to stagnant weather, correspondingly with
higher PM2.5 concentrations, during winter. However, from Figures 7 and 8, we can see
that the correlations between cities are usually stronger in autumn than those in winter,
suggesting that the strong correlations between cities in autumn are more attributed to the
transport impacts than those in winter. Nevertheless, the transport contribution to high
correlations in winter cannot be ignored due to the existing winds. Overall, the spatial
correlation of PM2.5 concentrations between neighboring cities is not only influenced by
the common stationary meteorological conditions but also impacted by the transport
between cities.
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Figure 11. Clustering results based on Euclidean distance for average daily PM2.5 concentrations (a,c) and daily air
stagnation index (ASI) (b,d) in autumn 2018.

Table 1. Mean of PM2.5 concentrations, ρ value, and ASI for cluster sub-regions based Euclidian distance in autumn and winter
2018, respectively.

Sub-Region
Autumn Winter

PM2.5 Concentration
(µg·m−3) ρ Value ASI PM2.5 Concentration

(µg·m−3) ρ Value ASI

1 33.4 0.62 0.98 44.0 0.55 1.43
2 57.5 0.64 1.26 78.5 0.82 1.74
3 63.5 0.85 1.39 81.4 0.72 1.51
4 66.5 0.89 1.37 86.9 0.81 1.79
5 77.1 0.88 1.36 96.3 0.89 1.90
6 84.5 0.88 1.49 114.6 0.90 1.61

4. Conclusions

This work focused on the spatial characteristics of PM2.5 pollution in the NNCP region,
one of the key PM2.5 pollution regions in China. Through data mining technologies, insight
was provided for better joint prevention and control in nonattainment cities. The main
conclusions include:

(1) The distance between cities with PM2.5 pollution homogeneity in the NNCP region
is less than 180 km based on the clustering analysis and coefficient of divergence analysis. It
is necessary to strengthen joint prevention and control for cities with strong PM2.5 pollution
homogeneity in the same clustering region.

(2) The COD values between Xinxiang and any one of Hebi, Kaifeng, Zhengzhou, and
Jiaozuo were all less than 0.14, far lower than the judgment standard, indicating that there
was a strong PM2.5 pollution homogeneity among them. Geographically, PM2.5 in these
four cities was easily transported to neighboring cities due to such a short distance and flat
terrain. It is very important to carry out joint prevention and control between these cities.

(3) According to the correlation of PM2.5 concentration between cities, three levels of
city-clusters were proposed. City-clusters for the nonattainment cities were recommended
to perform joint prevention and control depending on seasons and PM2.5 pollution levels.
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(4) Overall, the spatial correlation of PM2.5 concentrations between neighboring cities
is not only influenced by the common meteorological conditions but also impacted by
the transport between cities. However, the correlations of PM2.5 between cities were
generally stronger in autumn than those in winter but there were higher ASI values in
winter, suggesting that the strong correlations between cities in autumn are more attributed
to the transport impacts than those in winter. Therefore, these above policy implications are
reasonable based on the spatial characteristics of PM2.5 concentrations in the NNCP region.
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3/12/1/77/s1. Figure S1: The occurrence frequency of different PM2.5 pollution levels in NNCP
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variations of the monthly average concentration of PM2.5 in the NNCP region in different years,
Figure S3: The spatial distribution of PM2.5 average annual concentrations in the NNCP region from
2015 to 2018, Figure S4: Elbow method for determining the number of clusters based on Euclidean
distance (a) and Pearson’s correlation distance (b), Figure S5: The city-clusters with their average
PM2.5 concentrations and ρ values for the s third-level in seasons (a): Autumn, (b): Winter, (c): Spring,
Figure S6: Topographic map and winds rose diagrams of some cities for the winter of in 2018 in the
NNCP region, Table S1: The COD values for six sub-regions based on Euclidean distance clustering,
Table S2: The COD values for six sub-regions based on Pearson’s correlation distance clustering.
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