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Abstract: Spatial analysis of the distribution of particulate matter PM10, PM2.5, PM1.0, and hydrogen
sulfide (H,S) gas pollution was performed in the area around a university library building. The
reasons for the subject matter were reports related to the perceptible odor characteristic of hydrogen
sulfide and a general poor assessment of air quality by employees and students. Due to the area of
analysis, it was decided to perform measurements at two heights, 10 m and 20 m above ground level,
using measuring equipment attached to a DJI Matrice 600 unmanned aerial vehicle (UAV). The aim
of the measurements was air quality assessment and investigate the convergence of the theory of air
flow around the building with the spatial distribution of air pollutants. Considerable differences of
up to 63% were observed in the concentrations of pollutants measured around the building, especially
between opposite sides, depending on the direction of the wind. To explain these differences, the
theory of aerodynamics was applied to visualize the probable airflow in the direction of the wind.
A strong convergence was observed between the aerodynamic model and the spatial distribution of
pollutants. This was evidenced by the high concentrations of dust in the areas of strong turbulence at
the edges of the building and on the leeward side. The accumulation of pollutants was also clearly
noticeable in these locations. A high concentration of H,S was recorded around the library building
on the side of the car park. On the other hand, the air turbulence around the building dispersed the
gas pollution, causing the concentration of H,S to drop on the leeward side. It was confirmed that in
some analyzed areas the permissible concentration of H,S was exceeded.

Keywords: air quality monitoring; H,S; PM10; PM2.5; PM1.0; outdoor air quality; airflow aerody-

namics; street canyon

1. Introduction

Air quality is one of the key environmental factors influencing the health of living
organisms, including humans. Air pollution of anthropogenic origin, in particular, is very
harmful to the environment [1]. High concentrations of pollutants generated by human
activity occur especially in industrial areas and cities, as well as in other spaces such as
agricultural or recreational areas. These pollutants directly and indirectly affect the air
quality not only around the source of the pollution, but also in the surrounding area [2-7].
The main pollutants according to criteria established for the protection of human health
and plant protection are particulate matter (PM10, PM2.5, and increasingly PM1.0) and
gaseous pollutants such as benzene, nitrogen dioxide, sulfur dioxide, carbon monoxide,
ozone, lead, arsenic, cadmium, nickel, and benzo (a) pyrene in PM10 dust, as well as
hydrogen sulfide (H,S) [8-10]. There are a number of international organizations working
to protect the environment, such as Climate Action Network-International (CAN-INT), the
Climate and Clean Air Coalition (CCAC), and the European Environment Agency (EEA).
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This article focuses on the analysis of particulate matter and H,S, because these two
types of pollutants particularly relevant at the selected location—a university campus
where large numbers of young people congregate and there is an extensive parking in-
frastructure. Researchers have received reports from employees and students related to
the perceptible odor characteristic of H,S and a general poor assessment of air quality.
Particulate matter can have a negative impact on human health when it penetrates the
body, not only directly—causing allergies and lung disease—but also indirectly, carrying
heavy metals, microorganisms, and bacteria [11,12]. The permissible particulate matter
concentration has been defined for PM10 at 50 j1g/m?3 (daily average) and 40 pug/m? (an-
nual average), and for PM2.5 at 25 ug/ m? (annual average). There are no standards for
the PM1.0 fractions. Hydrogen sulfide is also a highly poisonous gas [13]. It is released
into the atmosphere by oil refineries, natural-gas processing plants, food processing plants,
and animal husbandry plants. Small concentrations of hydrogen sulfide in the air cause
irritation to the eyes. At concentrations of 1400-2800 mg/m? it causes paralysis of the
respiratory center and, ultimately, respiratory arrest. At concentrations above 7000 mg/m?
death occurs within several seconds [14,15].

As atmospheric air has no physical boundaries, the movement of pollutants and
changes in their concentration occur mainly due to the movement, direction, and force
of the wind. For this reason, wind is one of the basic climatic factors affecting air quality.
Wind can have the beneficial effect of venting the urban space and removing or diluting
pollutants. On the other hand, wind may also spread pollutants across a larger area or
direct them towards human habitations. To analyze airflow in relation to buildings, the
theory of aerodynamics is used. As Hosker (1985) observed, modelling airflow even around
a single solid object (such as a building) is a very complex problem (Figure 1). On the
windward side, an object that presents an obstacle to moving air causes strong swirls
(a horseshoe vortex) and an increase in wind speed at the edges [16]. On the leeward side,
the zone of lower pressure causes back swirls (lateral edge and elevated vortex pair and
eddy edges) [17].
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Figure 1. Visualization of the theory of airflow around a solid according to Hosker.
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The situation is even more complicated when there is an uneven spatial location of
buildings of different shapes and sizes. These can cause zones of increased wind speed,
turbulence, or air stagnation. Pollutants may accumulate in zones of air turbulence and
stagnation [18] Research on the flow and spread of pollution in urban settings using
models has a number of advantages [17]. Based on such analyses, the movement of
pollutants in cities was linked to so-called street canyons, i.e., city streets surrounded
by relatively tall buildings. This insight has inspired many numerical studies, which
modeled the transport of pollutants in street canyons [19-21]. The transport of pollutants
in and above a street canyon is influenced by numerous factors, such as the layout and
aspect ratio (the street width relative to the height of the building), the building geometry
(the height, width, and type of roof), the source of pollution (height and location), and flow
conditions (wind direction and speed) [17]. However, numerical models do not allow all
the complex processes that take place in the real world to be mapped [22]. For this reason,
field studies analyzing airflow and concentrations of individual pollutants are still very
important [23-25]. The aim of the article is to present the results of air quality analysis in
relation to the permissible concentrations and to determine the convergence of the theory
of air flow around a building with the spatial distribution of air pollutants.

2. Materials and Methods
2.1. Measuring Apparatus and Sampling Location

Our research was carried out in the city of £6dz, which is the third largest city in
Poland (Central-eastern Europe) in terms of the number of inhabitants. We studied the
area around the library building on the B campus of Lodz University of Technology. This
campus is located in the south-west part of the center of £6dzZ, near the intersection of
Wolczaniska Street, Wroblewskiego Street, and Politechniki Avenue (Figure 2). The building
consists of two parts: a lower two-story section, 8 m high, and a higher five-story section,
22 m tall. Inside, there are offices, reading rooms, and a library. Around the building, within
a 50 m radius, there are green areas and car parks. On the north side, next to the Center for
Papermaking and Printing (33 m high), there is a car park with approximately 40 parking
spaces. On the north-west side, by the swimming pool building “Zatoka Sportu” (21 m
high), there is a car park with 300 parking spaces. Slightly further along Wroblewskiego
Street (on the south side), there are residential buildings with heights of 6 m to 10 m.
The entire area of campus B has an area of about 16 ha, much of which is occupied by
nineteenth-century mansions and revitalized post-factory buildings. The gross construction
intensity index for the area ranges from 0.05 to 1.0, which corresponds to the intensity of
development of single-family concentrated housing, areas of large housing estates, areas of
large industrial plants, and areas of old suburban buildings.

Measurements around the library building were made at two heights, 10 m and 20 m
above ground level, using measuring equipment mounted on a DJI Matrice 600 unmanned
aerial vehicle (UAV). The heights were selected with consideration for safety. There are
pedestrian and car routes as well as technical infrastructure around the building, and the
area is located in the CTR zone of an airport, Wladystaw Reymont, which permits UAV
flights only up to heights of 25 m. A grid of 30 points around the building, at which the
UAV stopped to take measurements, was established using GPS coordinates in the DJI
pilot application, to ensure the repeatability of the analysis (Figure 3).
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Figure 2. Map of the analyzed area and its surroundings: 1—lower part of the building; 2—higher part of the building
(photo background source: Google Earth Pro).

Figure 3. Location of measurement points around the analyzed building (photo background source: Google Earth Pro).
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The measurement apparatus was an eight-sensor module, which enabled the quantifi-
cation of particulate matter and gaseous pollutants in the atmospheric air. Using a Laser
Scattered (LS) sensor, the module measured PM10, PM2.5, and PM1.0 (10,000 particles per
second). Metal Oxide Semiconductor (MOS) type sensors measured the concentration of
organic solvents (Ethanol, Iso-Butane, Hy, 0-500 ppm) and odors (0.5-1000 ppm isobu-
tanol). ElectroChemical (EC) type sensors measured H;S (3 ppb-1 ppm), O, (0.20-100%),
and SO, (0.5-2000 ppm). The measuring apparatus was equipped with a probe, 1.5 m long,
which eliminated the influence of the UAV on air turbulence and therefore any possible
impact on the results (Figure 4). The results for parameters with significant changes were
selected for analysis. This article presents the measurement data for the concentrations
of solid air pollutants PM10, PM2.5, and PM1.0 as well as for H,S as a representative of
gaseous pollutants.

Figure 4. Unmanned aerial vehicle (UAV) with measuring equipment: 1—measuring probe; 2—UAV, 3—measuring

equipment.

2.2. Spatial Method of Analyzing the Results

Spatial analysis of the obtained air quality data was carried out using the QGIS 3.10
program (GNU GPL license). The GPS coordinates of the measurement points obtained
from the measuring equipment were added to the program in the form of a vector layer in
the EPSG: 2180 system. The attributes of the points were the concentration values for the
measured pollutant parameters. Using the software, spatial interpolation of the data was
then performed, in order to obtain the spatial distribution of pollutants. Interpolation was
performed on the basis of the Inverse Distance Weighting (IDW) method, which is used,
inter alia, for the analysis of the distribution of pollutants in soil and groundwater [26,27].
In this way, a graphical visualization was obtained of the distribution of pollutants around
the library building at two different heights, 10 m and 20 m above the ground.

2.3. Meteorological Data of Measurements

Given that the measurements were temporary, the analysis was based on data col-
lected on the most representative day for this location in the summer period from 1 April 1
to 30 September, i.e., 20 August 2020. The data are typical results for the entire series. At the
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time of the measurements, from 9:40 a.m. to 11:00 a.m., the weather was sunny with little
cloudiness (about 10%) and no rainfall. A weak wind, not exceeding 10.5 km/h, blowing
in a south-easterly direction, was dominant (Figure 5). Detailed meteorological data are
presented in Table 1. In the winter period, particulate matter air pollution caused by the
combustion of coal is one of the most important problems in Polish cities (of the 50 most
polluted cities in the EU, 36 are located in Poland). The level of pollution in the winter
period is strongly related to the prevailing meteorological conditions (primarily air temper-
ature), and thus instantaneous measurements on a given day are often unrepresentative.
Therefore, so that the measurements would not be affected by large variability in external
conditions, it was decided to conduct the analysis in the more predictable summer period.

NNW NNE
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10 occurrences
WNW ' ENE
S0t rences

0 occurrenfes

Wsw ESE

SwW SE

SSW SSE
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12to 15km/h @ 15to 18 km/h

Figure 5. Wind rose on 20 August 2020 (data source: [28]).

Table 1. Statement of meteorological parameters of 20 August 2020 (data source: [28]).

Date: 20 August 2020 24h 9:00 AM-11:00 AM
Parameters Unit Min Max Average Min Max Average
Temperature (2 m above gnd) °C 15.82 26.88 22.10 20.51 23.04 21.77
Relative Humidity (2 m above gnd) % 29 89 54.42 58 72 65
Total Precipitation (high resolution) (sfc) mm 0 0 0 0 0 0
Total Cloud Cover % 0 49 8.7 3.9 10 7.97
Wind Speed (10 m above gnd) km/h 2.10 15.07 9.33 10.18 10.80 10.50
Wind Direction (10 m above gnd) - 29511  343.30 318.44 306.87  321.95 314.61
Wind Direction (10 m above gnd) - - - NW - - NW

3. Results and Discussions

The use of an unmanned aircraft with measuring equipment attached to it allowed
for quick, accurate, and repeatable analysis of a large space around the library building at
different heights relative to the terrain. The results made it possible to represent the changes
that took place in the concentrations of individual air pollutants not only on a plane, but
also with changing altitude. It was observed that, at a height of 10 m, the concentration of
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the smallest fraction of particulate pollutants, PM1.0, varied in the range from 2.70 pg/m?3
to 4.82 ug/m3 (Figure 6A).
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Figure 6. The spatial change in PM1.0 concentration around the library building at a height of 10 m (A) and 20 m (B) above

ground level.

The highest concentrations were measured around the higher east and south-east
parts of the building, which were on the leeward side in relation to the wind. It is likely
that the air turbulence caused by the taller part of the building caused the accumulation
and fall of wind-blown dust on the leeward side. This is compatible with the theory of
airflow around the building. Interestingly, due to the position of a 21 m high swimming
pool hall (Figure 2) close to the lower part of the building on the north-west side, the
concentration of PM pollution at a height of 10 m on that side was 38% lower than the
concentration on the leeward side of the higher part. Moreover, the concentration of PM1.0
on the north-west side of the building was almost half that on the south-east side. This was
due to the roughness of the terrain in front of the building, the formation of a horseshoe
vortex, and increased windspeed at the edges of the building.

At a height of 20 m (Figure 6B), concentrations of PM1.0 were 10% lower on the
east side of the building compared to those measured at a height of 10 m, where the
accumulation of pollutants was stronger. This may also be related to the stronger ventilation
at a height of 20 m. It should be noted, however, that at a height of 20 m there was
a similar range (2.22-5.06 pg/m3) of PM1.0 concentration to the range at 10 m. The
highest concentration, at 5.06 ug/m3, was recorded around the higher part of the building
on the south side. The taller part (22 m) of the library building presented a barrier to
PM1.0 dust pollution moving with the wind over the surrounding buildings. Strong edge
eddies contributed to the high concentrations of particulate matter on the leeward side
of the building. Because the lower part (8 m) of the library building did not constitute a
dust barrier, at a height of 20 m the concentration of PM1.0 was on average 40% lower
than the maximum value. Based on methods described in the literature e.g., [16,29],
a visualization (Figure 7) of the probable airflow around the library building was made
during the measurements.

Figure 8 shows the concentrations around the building of PM2.5. At a height of
10 m above ground level, the concentration was in the range of 3.70-6.19 ug/ m3. High
concentrations, above 4.90 pg/ m3, occurred on the east and south-east sides of the building,
which is similar to the results for the PM1.0 particulate matter fraction. In the remaining
areas of the analyzed building, the concentration of PM2.5 was about 27% lower and
averaged 4.06 ng/m>. Again, this may have been due to the direction of the wind and
severe air turbulence on the leeward wall of the taller part of the library building, which
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caused particulate matter to accumulate. At an altitude of 20 m, the average concentration
of PM2.5 was 7% lower than that at 10 m, because heavier dust pollutants fell on the
leeward side and higher concentrations occurred at lower altitudes. Due to the movement
of dust over the surrounding buildings with the wind and the accumulation of pollutants,
the concentration of PM2.5 on the east side of the building at a height of 20 m was 12%
lower than that measured at 10 m. No significant differences were found in the remaining
areas. As with the results of the measurements at a height of 10 m, lower concentrations
of PM2.5 were measured around the lower part of the library building and on the north
(windward) side of the entire facility.

Figure 8. Spatial changes in PM2.5 concentration around the library building at heights of 10 m (A) and 20 m (B) above

ground level.
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Figure 9 shows the results for the heaviest of the analyzed fractions of particulate
matter, PM10. Significant differences in terms of spatial distribution and concentration can
be observed in comparison to the results for PM2.5 and PM1.0. The highest concentrations
of PM10 (above 10 ng/m?) were recorded in several places around the building, whereas
the highest concentrations of the smaller fractions of PM pollutants were mainly on the
south-east side. The values for PM10 ranged from 6.39 pg/m? to 11.80 pg/m? (Figure 9A).
In the north-east corner of the building, at a height of 10 m, where the space between
the buildings narrows, the concentration of PM10 (10.60 j1g/m?3) was 12% higher than at
other points on the east side, and as much as 27% higher than the average concentration
on the north side. The highest concentration of PM10 in the air was measured, as it was
for PM2.5 and PM1.0, along the south wall of the higher part of the library building (the
leeward side). However, in the case of PM10 there were very clearly visible places of
strong turbulence at the edges of the building, especially at a height of 20 m, and a large
accumulation of pollution at a height of 10 m. This is consistent with the theory of airflow
around the building. The concentration at the edge of the join between each part of the
building reached a maximum of 11.80 ug/m?.

Importantly, a higher content of PM10 was also observed in the air around the south
and west walls of the lower part of the building (8 m). This proves that it presented a barrier
to heavier PM fractions (unlike PM2.5 and PM1.0). This difference can is most noticeable in
the data from the measurements taken at 20 m (Figure 9B), where was a wider range of
variation was observed in the concentration of PM10 (4.55-12.42 ng/m?) than at a height of
10 m. In the areas behind the corners of the building in the direction of the wind, a higher
concentration of PM10 was recorded than in other places, of up to 11.75 pg/m?3. Further, at
a height of 20 m, the lower part of the building (8 m) presented a noticeable barrier to the
PM10 fraction. In the north-west corner of the building, the concentration of PM10 was
25% higher (10.64 ng/ m?) than in the adjacent areas (Figure 9B). This is visible in Figure 8,
which shows a visualization of airflow around the building. The same relationship was not
observed for the lighter PM2.5 and PM1.0 fractions. This can be explained by a stronger
correlation (above 0.90) between the PM2.5 and PM1.0 fractions at the height of both 10
and 20 m (Table 2). However, a relatively weaker correlation (below 0.75) between PM10
and PM2.5; PM1.0.

Table 2. Correlation between measurement data.

Altitude Parameters PM10 PM2.5 PM1.0 H,S
PM10 1 0.71 0.54 —0.48
PM2.5 0.71 1 0.91 —-0.72
10 m
PM1.0 0.54 091 1 —0.64
H,S —0.48 —0.72 —0.64 1
PM10 1 0.77 0.72 —045
PM2.5 0.77 1 0h97 —0.83
20 m
PM1.0 0.72 0.97 1 —0.81
H,S —0.45 —0.83 —0.81 1

On the basis of the collected data, it can be concluded that the masses of PM pollutants
have an important impact on their spatial distributions and concentrations. The PM10
fraction, being heavier than the others, clearly accumulated in the areas of turbulence.
The lighter fractions, PM2.5 and PM1.0, had more even spatial distributions around the
building, without clear points of increased concentration.

Figure 10 shows the results for the last of the analyzed pollutants, H,S, which is repre-
sentative of the group of gaseous air pollutants. The wind direction and the shape of the
building can be seen to have had a strong influence on concentration of H,S (Figure 10A,B).
At a height of 20 m, areas with a high concentration of H,S were noted on the north
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side and north-west side of the building, especially around the lower part of the building
(Figure 9B). In this area, the average concentration of H,S was 0.125 ppm and the highest
concentration was 0.134 ppm. According to Kourtidis et al. (2008), sources of H,S include
car catalysts [30]. Pallares et al. (2019) and Zwozdziak et al. (2013) also identify cleaning
products used in buildings [31,32]. Our results can therefore be explained by the presence
of a large car park (300 parking spaces) and a swimming pool hall, from which gaseous
pollutants may escape through mechanical ventilation into the vicinity of the library build-
ing, Hydrogen sulfide in the wind is mixed with air in the vortices generated at the edges
of the library building. This results in a significant reduction in its concentration, of up to
68% (average 0.040 ppm) on the leeward side (south side). The area with the lowest H,S
concentration, below 0.040 ppm, was on the south side of the higher part of the building
(Figure 10).

Figure 9. Spatial changes in PM10 concentration around the library building at heights of 10 m (A) and 20 m (B) above

ground level.
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Figure 10. Spatial changes in H,S concentration around the library building at heights of 10 m (A) and 20 m (B) above

ground level.
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Since H;S is heavier than air, it accumulated in the lower regions of the analyzed
area due to air turbulence (Figure 7). At a height of 10 m, high concentrations of H,S of
over 0.100 ppm occurred mainly on the north side of the building (windward side) of
the taller part of the building, and to a lesser extent around the lower part. The highest
recorded concentration of H,S in the air was 0.130 ppm, and was measured at the north-east
corner of the building. This was probably related to the proximity of the car park and
the accumulation of pollution in the narrow space between the buildings. The level of
H,S on the leeward side of the building was more than half that on the north-east corner
(0.046 ppm on average). The lowest H,S concentrations were recorded in line with the wind
direction behind the building corners. This again proves the influence of edge vortices
on the concentrations of the pollutants. In this case, the vortices diluted the H,S in the
air, and thus reduced its concentration. A negative value of a strong correlation at the
level of even —0.83 (Table 2) between H,S and PM is evidence of different observations of
the distribution of concentrations of gaseous pollutants in relation to particulate matter
pollutants. A summary of the measurement data is presented in Table 3.

Table 3. Detailed summary of measurement data.

PM10 PM2.5 PML0 H,S
Altitude Parameters
pg/m® ppm
min 6.39 3.70 2.70 0.0058
5-perc 6.98 3.79 2.77 0.0218
10m average 9.13 4.60 3.54 0.0737
95-perc 11.65 6.05 4.60 0.1270
max 11.80 6.19 482 0.1309
min 455 3.14 222 0.0264
5-perc 4.92 3.19 2.23 0.0289
20m average 8.64 430 3.30 0.0968
95-perc 11.95 5.85 483 0.1325
max 12.42 5.91 5.06 0.1338

4. Conclusions

In this research, we studied the concentrations of particulate matter and gas pollutants
in the air around a library building on a university campus. A strongly uneven distribution
of the pollutants was found in the space around the building. On the leeward side, the
concentrations were up to twice that on the windward side. The intended research objective
was achieved. It was found that the theory of aerodynamics of air flow around the building
overlaps with places of increased and decreased concentrations of air pollutants. In the case
of particulate matter, high concentrations (above the average values for the entire area) were
measured on the leeward side, in the zones of lowered pressure and behind the corners of
the building, where edge vortices formed. In these areas, there was an accumulation of
solid pollutants transported by the wind, analogous to the accumulation of snow on the
leeward side of a roof. This can be the reason why students and employees report negative
air quality opinions. Figure 11 shows the concentration of pollutants at characteristic
points on the leeward wall of the building. As can be seen, high concentrations of dust, in
particular PM10, occur mainly at the corners of the higher part of the building, i.e., in places
of strong air turbulence, at a height of 20 m. At a height of 10 m, the concentrations of dust
pollutants are more evenly spread around the entire building.

The airflow around the building affected the distribution of gaseous pollution dif-
ferently than in the case of particulate matter pollution. The turbulence caused by the
roughness of the building area caused the high content of H,S in the air within the parking
lot to be entrained and displaced in the direction of the wind towards the library building.
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Then, air turbulence within the area of the building contributed to reduce the specific
concentration of H,S in the air, via mixing and spatial dilution.
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Figure 11. Concentration of pollutants on the south side of the building at heights of 10 and 20 m above ground level (photo

background source: Google Earth Pro).

We also analyzed air quality in relation to the permissible concentrations of the
individual pollutants. The permissible level for PM10 of 50 ug/m?> was not exceeded at
any of the measurement points. The highest measured concentration at 12.42 ng/m3 was
more than three times lower than the permissible level. In the case of PM2.5, the values
were four times lower than the permissible level of 25 jig/m?. Currently, no limit values
have been defined for PM1.0. However, the concentration of PM1.0 in comparison to the
other fractions was alarmingly high, given that the WHO (2013) considers this the most
harmful of all the particulate matter fractions [1]. The average concentration of PM1.0 was
only 14% lower than the concentration of PM2.5. The greatest risk was associated with HjS,
the average concentration of which at the height of 10 m was 0.0737 ppm and at 20 m was
0.0968 ppm (0.10 mg/m? and 0.14 mg/m?3, respectively). These concentrations are more
than five times higher than the permissible level of 0.02 mg/m?. The maximum measured
concentration, of about 0.13 ppm (0.19 mg/m?), was recorded on the side of the parking
lot, and approached the upper limit for H,S in the air for humans of 0.20 mg/m?3. This
applies to the pedestrianized area, therefore reports on perceptible odors characteristic of
H,S are justified.
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