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SM.1 Definition and elements of Hidden Markov Models. 
 
In this section, a some more technical Hidden Markov Models (HMM) definition is given than in 
the manuscript. HMM is a doubly embedded stochastic process in which one is an underlying 
Markov chain, a series of hidden states (state variables); and the other one is the observation 
sequence (the temporal series) determined by the current hidden state of a given Markov chain, 
the outcome of a certain hidden state. Only the observations are unhidden.  
 
Let 𝑌!:# ≔ (𝑌!, 𝑌$, … , 𝑌#) be a time series of length 𝑇 and 𝑆!:# ≔ (𝑆!, 𝑆$, … , 𝑆#) states variables, 
these latter hidden to the observer. These variables 𝑆% are elements from a finite set 𝒮 =
{1,… , 𝑛} such that it can be written 𝑆% = 𝑖, 𝑖 ∈ 𝒮. The set 𝒮 is called the state-space of the HMM, 
and n is the number of states of the model. The observations 𝑌% are dependent on the state 
variables 𝑆% such that the distribution of 𝑌% can be written as: 𝑓&(𝑌%) ≔ 𝑓(𝑌%|𝑆% = 𝑖). Because 
the set 𝒮 is finite, this means that the marginal distribution of the data (the temporal serie) is a 
mixture distribution with n components: 
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where π&  are the mixing proportions in which every component (cluster) occurs with the 
constraints: π& ≥ 0, for 𝑖 ∈ {1, … , 𝑛} which sum to 1. Each 𝑓&(⋅) is the conditional distribution of 
the data in component i and is called as state-dependent distribution of the model. The below 
figure shows the dependence graph in a HMM:  
 

 
 

The Markov property in HMMs is determined by the dependence between the states, that can 
be expressed:  
 

𝑃(𝑆%|𝑆!, … , 𝑆%)!) = 𝑃(𝑆%|𝑆%)!) 
 

which are referred as transition probabilities. These latter probabilities are denoted by the 
matrix 𝐴(𝑡) with entries:  
 

𝑎&*(𝑡) = 𝑃(𝑆% = 𝑗|𝑆%)! = 𝑖)					𝑖, 𝑗 = 1,… , 𝑛  
 

and constraints: 
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= 1,	for each  𝑖; 𝑎&* ≥ 0 

 
The fundamental assumption of a dependent mixture model is that at any time point, the 
observations are distributed as a mixture with n components (clusters or states), and that time-
dependencies between the observations are due to time-dependencies between the mixture 



components (i.e., transition probabilities between the components) (Visser and Speekenbrik, 
2010). A comprehensive account of the HMMs can be found at Visser et al. (2011) and Zucchini 
and MacDonald (2009). 
 
  



SM.2 Computational implementation of Hidden Markov Models. 
 
The code below was used to fit the TS from the different monitoring sites reported in the paper 
(Section 2.1) using the depmixS4 package in R. Those readers not familiar with this R 
computational environment are referred to http://www.r-project.org and http://cran.r-
project.org/manuals.html where introductory material is available. This code is presented in a 
readable and comprehensive form although more sophisticated procedures have been used to 
manage all the data used in this work. These latter procedures are available to those interested 
readers under request. 
 
library(depmixS4) 
 
# The object named "data" contains the TS as a vector.  
# It is necessary to create a data frame: 
 
sample<-data.frame(y=data)  
 
# Now, using the depmix function, we create 4 different models to fit the TS,  
# from one hidden state (ns=1) to seven (ns=4).  
 
m1<-depmix(y~1, data=sample, ns=1, ntimes=nrow(sample)) 
m2<-depmix(y~1, data=sample, ns=2, ntimes=nrow(sample)) 
m3<-depmix(y~1, data=sample, ns=3, ntimes=nrow(sample)) 
m4<-depmix(y~1, data=sample, ns=4, ntimes=nrow(sample)) 
 
# Every model is fit to obtain their parameters by means of the "fit" function: 
 
fm1<-fit(m1, em=em.control(maxit=2000, tol=1e-08, crit="relative")) 
fm2<-fit(m2, em=em.control(maxit=2000, tol=1e-08, crit="relative")) 
fm3<-fit(m3, em=em.control(maxit=2000, tol=1e-08, crit="relative")) 
fm4<-fit(m4, em=em.control(maxit=2000, tol=1e-08, crit="relative")) 
 
 
# The BIC statistic is calculated for every model using the "BIC" function. 
# Values are stored in the object named "bic" as a vector. 
 
bic<-c(BIC(fm1),BIC(fm2),BIC(fm3),BIC(fm4)) 
 
# Now, the best model providing the best fit to the data 
# must be selected. We look for the model with lowest BIC value: 
 
> which.min(bic) 
[1] 4 
 
# The model with 4 states, "fm4", describes the TS data best. 
# Now, we can obtain the probability transition matrix and the 
# parameters of the 4 Gaussian distributions. 
# The "summary" function is used: 
 
> summary(fm4) 
Initial state probabilties model  
pr1 pr2 pr3 pr4  
  1   0   0   0  
 
Transition matrix  
                toS1         toS2       toS3         toS4 
fromS1  8.706526e-01 0.1099947038 0.01935269 6.945374e-56 
fromS2  2.213438e-01 0.6793470074 0.06635697 3.295224e-02 
fromS3  2.534007e-02 0.1697684571 0.78155134 2.334013e-02 
fromS4 1.312388e-110 0.0001419835 0.66654146 3.333166e-01 
 
Response parameters  
Resp 1 : gaussian  
    Re1.(Intercept)    Re1.sd 
St1        10.32563  2.418200 
St2        17.72293  4.346021 
St3        42.75554 17.701547 
St4       153.25253 62.565625 
 
# Calculate the "pi" values of every Gaussian: 
 
probs<-posterior(fm4) 



colMeans(probs[,2:5]) 
 
> colMeans(probs[,2:5])  
        S1         S2         S3         S4  
0.53226225 0.26543964 0.18137000 0.01992811  
 
# To solve the significant digits problem, the "S4" value can be obtained 
# as 1-(S1+S2+S3).  
# Missing some little precision must be assumed. 
# The same can be applied to last column in the transition probability matrix. 
 

  



SM.3 Analysed monitoring sites in Section 3.4 of the manuscript. 
 
 
Table SM.3a. Monitoring station selected from each country for PM10 analysis (Figure 5). m.a.s.l: meters 
above sea level. 

Country EoI Code Year m.a.s.l 
TR R010213 2015 107 
ES ES2002A 2015 160 
PT PT02019 2017 60 
BA BA0001G 2016 970 
FR FR18039 2016 33 
HR HR0011A 2015 0 

 
 
Table SM.3b. Monitoring station selected from each country for PM2.5 analysis (Figure 6). m.a.s.l: meters 
above sea level. 

Country EoI Code Year m.a.s.l 
TR R160613 2018 87 
ES ES1802A 2016 995 
PT PT04006 2017 187 
FR FR34038 2015 182 
HR HR0011A 2016 0 
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