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Abstract: Droughts and floods have frequently occurred in Southwest China (SWC) during the past
several decades. Yet, the understanding of the mechanism of precipitation in SWC is still a challenge,
since the East Asian monsoon and Indian monsoon potentially influence the rainfall in this region.
Thus, the prediction of precipitation in SWC has become a difficult and critical topic in climatology.
We develop a novel multi-variable network-based method to delineate the relations between the
global sea surface temperature anomalies (SSTA) and the precipitation anomalies (PA) in SWC. Our
results show that the out-degree patterns in the Pacific, Atlantic and Indian Ocean significantly
influence the PA in SWC. In particular, we find that such patterns dominated by extreme precipitation
change with the seasons. Furthermore, we uncover that the teleconnections between the global SSTA
and rainfall can be described by the in-degree patterns, which dominated by several vital nodes
within SWC. Based on the characteristics of these nodes, we find that the key SSTA areas affect the
pattern of the nodes in SWC with some specific time delays that could be helpful to improve the
long-term prediction of precipitation in SWC.

Keywords: rainfall; SSTA; SWC; complex network; teleconnection; time delays

1. Introduction

During the recent decades, natural hazards (such as droughts and floods) have oc-
curred frequently in Southwest China (SWC) due to climate change, causing numerous
casualties and property losses [1,2]. In the summer of 2006 and 2011, SWC suffered from
record-breaking droughts events [3]. On the other hand, the portion of annual precipitation
contributed by extremely heavy precipitation has been found as a result of an increasing
trend in the period of 1961–2010 [4]. Due to the population growth and high risk of natural
hazards, SWC has attracted lots of attention in the meteorological research fields. According
to the CMIP5 multi-model projections, severe and extreme droughts in SWC will increase
dramatically in the future, meanwhile, extremely wet events will also increase [5].

Droughts and floods can be attributed to precipitation anomalies. A better under-
standing of precipitation can further improve the underlying mechanisms of droughts and
floods in SWC. It was reported that the annual precipitation over SWC does not show a
significant decreasing or increasing trend [3,6]. In fact, the trend of precipitation in SWC
has been found to strongly depend on spatiotemporal patterns [4,7]. The forecasting of
precipitation in SWC is very challenging, since it can be influenced by both the East Asian
monsoon and Indian monsoon which could carry moist air from both the Indian Ocean
and the Pacific Ocean to SWC [8–11]. Previous studies have found that some correlations
between the SSTA and precipitation in SWC based on the regression analysis and the
Empirical Orthogonal Functions (EOFs) [12,13]. Nevertheless, such traditional analyses
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cannot describe well the connection contained in the daily time series and present the
nonlinear behaviors of complex systems, i.e., time delay in systems [14].

Complex networks approach has been successfully applied to a wide variety of com-
plex systems in the past decade [15–17]. It also emerged as a powerful tool to study climate
systems [18–21]. Here, the geographic sites or grids are considered as the network nodes,
and the linear or nonlinear interactions between any pair of nodes are regarded as the
network edges or links [18,21]. The strength of the link is quantified by the cross-correlation.
Complex networks can analyze the dynamics of the climate system systematically [22–26],
and some applications of complex networks in climate science have improved the under-
standing of some climate phenomenon [27–30]. The El Niño phenomenon can be predicted
one year ahead in advance by using the network method [31,32], the prediction skill is
even better than some dynamical models. Some features of air pollution have also been
detected by the network approach [33]. Recently, the network method provided a great
insight into the function of the Rossby waves in creating stable, global-scale dependency
of extreme-rainfall events, and revealed the teleconnection features of extreme rainfall
events [34]. Furthermore, extreme precipitation events can be predicted even in a long-term
scale in some cases by using the networks [35].

Indeed, the network-based method has shown many merits in extreme rainfall analysis
and prediction. Yet, (i) the correlations between the global SSTA and extreme rainfall in
SWC have not been studied by the network approach; (ii) whether the teleconnections
and the precursor signals exist to potentially improve the prediction of rainfall in SWC? In
order to overcome the two problems, we develop a multi-variable network approach here
to analyze the relationship between the global SSTA and the precipitation anomalies (PA)
in SWC for different seasons. The structure of our paper is as follows: In the second part
we will introduce the data and method; the main results are shown in the third part; finally,
we give a short summary.

2. Data and Methodology
2.1. Data

The data is obtained from the global ERA-interim reanalysis of the European Centre
for Medium-Range Weather Forecasts (https://www.ecmwf.int/) [36]. We use the daily
averaged precipitation in SWC with a resolution of 1.25

◦ × 1.25
◦

and the global SST with
a resolution of 2.5

◦ × 2.5
◦

from January 1979 to December 2017. The spatial range of
SWC is 20.5

◦
N–33

◦
N and 98

◦
E–110.5

◦
E, resulting Nr = 121 grid points. We choose this

area is since that it mainly represents the SWC and its surrounding areas. We totally have
Ns = 6936 grid points for the global SST. Due to the seasonality of rainfall, we divide the
entire time series of precipitation in SWC into four seasons, i.e., Spring (March-April-May,
MAM), Summer (June-July-August, JJA), Autumn (September-October-November, SON)
and Winter (December-January-February, DJF), respectively.

2.2. Methodology

Firstly, we remove the seasonal cycle to obtain the time series of the SSTA as [37,38],

Yy(t) =
Ỹy(t) − mean

(
Ỹy(t)

)
std
(

Ỹy(t)
) , (1)

where Yy(t) is the time series of the daily SST. y stands the year and t stands date within
a year. The “mean” and “std” denote the mean and standard deviation of the SST. We
perform the same analysis to obtain the precipitation anomalies (PA).

We then construct the directed and weighted multi-variable network. Network nodes
i and j can be classified into two subsets by two different variables, one subset denotes the
PA nodes over SWC and the other denotes the global SSTA nodes. We divide one year into
four seasons, e.g., JJA for summer as mentioned in Data. For the days in summers, we can
obtain their dates Dt for 39 years and respectively define the daily time series of grid i for

https://www.ecmwf.int/
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the PA and grid j for the SSTA as, Xi(t) and Yj(t + τ), where t spans the dates Dt and τ
is the time delay (the dates of Yj(t + τ) shift τ days in relative to the dates of Xi(t). The
negative τ means that the SSTA is ahead the precipitation, vice versa. The cross-correlation
function is written as [37,39],

Ĉij(τ) =

〈
Xi(t)·Yj(t + τ)

〉
− 〈Xi(t)〉·

〈
Yj(t + τ)

〉√
Xi(t)

2·
√

Yj(t + τ)2
, (2)

where −τmax ≤ τ ≤ τmax is the time lag, τmax = 365 days. 〈 〉 is averaged for all t. We
identify the largest absolute value of Ĉij(τ) and denote the corresponding time lag as τ∗.
The correlation between the site i and j is defined as Cij = Ĉij(τ

∗). We define that the
direction of the link Ĉij(τ

∗) is from i to j when τ∗ > 0 and from j to i when τ∗ < 0. The
direction is undefined when τ∗ = 0.

To obtain the adjacency matrix of the network, a threshold ∆ is introduced to exclude
noise and only the links from the SSTA to PA are considered [39]. Thus the adjacency matrix
is defined as:

Aij =

{
1 i f

∣∣Cij
∣∣ ≥ ∆ and τ∗ ≤ 0

0 i f
∣∣Cij
∣∣ < ∆ and τ∗ > 0.

(3)

If Aij = 1, there is a link between i and j. If Aij = 0, there is no link between them.
Then the proportion of the positive links is calculated by,

Sp =
∑i,j,Cij > 0 Aij cos

(
λj
)

∑i,j cos
(
λj
) , (4)

where λj is the latitude for the SSTA node j and cos
(
λj
)

is introduced as a weight for the
link regarding the area size i.e., the pole is just a point and its area size is zero and the
area size for a gird in the Equator is biggest [14]. Similarly, we obtain the proportion of the
negative links Sn.

The extent of the SSTA nodes to influence the PA nodes in the network is usually
quantified by the weighted out-degree [37,39]. We define the weighted out-degree of the
node j as:

Gj = ∑
i

Aij
∣∣Cij
∣∣. (5)

The positive and negative degrees can more information about positive and nega-
tive correlations respectively than the totally degree. We have Gj = Gp

j + Gn
j that is

divided into the positive and negative weighted out-degrees Gp
j and Gn

j by the weight
Cij, respectively.

To find the important nodes in SWC which are strongly influenced by the most SSTA
areas, the weighted in-degree of the PA node i is defined as:

Hi =
∑j AijCij cos

(
λj
)

∑j cos
(
λj
) . (6)

Also we obtain the positive and negative weighted in-degrees Hp
i and Hn

i .

3. Results
3.1. Significance Tests

According to Equation (2), we obtain Cij for any pair of nodes between the global
SSTA and PA in SWC for four different seasons respectively. Figure 1 shows the probability
distribution function (PDF) of their corresponding correlation Cij. We find two separated
peaks related to positive, and negative correlations, respectively in Figure 1. It further
demonstrates the differences between positive and negative correlations. In order to verify
the significance of the correlation, we compare the PDFs between the real data and shuffled
data as shown Figure 1. Here, we randomly shuffle the order of years for each node,
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keeping the variations within each year to get shuffle data [37]. Then, we calculate the
cross-correlation for the shuffled data. In such shuffling process, the autocorrelations and
common seasonality have been kept, while the physical dependencies between the SSTA
and PA nodes are destroyed. The PDF of the real data in Figure 1 shows a much slower
decay than the shuffle data for both the positive and negative parts. Therefore, it proves
that some correlations are non-random. If the correlations are significantly higher than
the significant threshold ∆, we regard them as real links; otherwise, they are suspected
to be spurious links as Equation (3). We obtain the threshold ∆ = 0.1 by using the 99.5%
confidence significance test.
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Figure 1. (Color online) Probability distribution functions (PDFs) of correlations Cij for real data and
shuffle data. Black vertical lines represent the location of the threshold ∆ = 0.1. The y-axis is in
logarithmic scale.

3.2. Links and Degrees

We obtain the proportions of positive and negative links Sp and Sn by Equation (4)
and calculate the averages of correlations for positive and negative links as

〈
Cp
〉
, 〈Cn〉 in

Table 1. In Table 1, we summarize the statistics of the positive and negative links for four
seasons. We find the largest proportion Sp for positive links in MAM and the largest Sn
for negative links in DJF (see Table 1). Both the strongest correlations

〈
Cp
〉

and 〈Cn〉 are
also found in MAM. The fewest positive and negative links are observed in SON. The
correlations

〈
Cp
〉

and 〈Cn〉 also are weakest for SON. Therefore, the connections between
the SSTA and PA in SWC strongly depend on seasons.

Table 1. Statistics of positive and negative links from the SSTA to PA in SWC for four seasons. Sp

and Sn represent the proportions of the positive and negative links, respectively.
〈
Cp
〉

and 〈Cn〉
respectively denote the average of correlations for positive and negative links. The error bars show
the standard deviations of correlations.

DJF MAM JJA SON

Sp 0.059 0.087 0.072 0.041〈
Cp
〉
± δn 0.113 ± 0.013 0.114 ± 0.014 0.111 ± 0.011 0.109 ± 0.009

Sn 0.064 0.051 0.046 0.043
〈Cn〉 ± δn −0.113 ± 0.012 −0.116 ± 0.014 −0.112 ± 0.12 −0.109 ± 0.008

Then we present the global out-degree pattern according to Equation (5). The out-
degree patterns show that some important regions on the oceans are significant correlated
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with the PA of SWC in different seasons. In DJF, the nodes that have strong positive out-
degree are located in the north Indian Ocean and east Equatorial Pacific in Figure 2a. In
contrast, the locations of these nodes move to the Equatorial Atlantic Ocean and west
Equatorial Pacific in MAM. Note that the nodes in the east Equatorial Pacific disappeared
in Figure 2c. For JJA, Figure 2e shows that the nodes with high degrees can be found in high
latitudes but not around the Equator. In SON, a few strong nodes are found locating in the
east Equatorial Pacific and the south Indian Ocean. Due to the special geographical location
of SWC, both the East Asian monsoon and Indian monsoon carry moist air from the Indian
Ocean and Pacific Ocean to SWC resulting in extreme precipitation. Therefore, we suggest
that these important out-degree areas and SWC are connected through the bridge function
of the East Asian monsoon and Indian monsoon [40–43]. Different features of the monsoons
can be used to explain the changes of the degree patterns in different seasons.
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(b,d,f,h) same as (a,c,e,g) but for replacing top and bottom 5% extreme precipitation middle magnitude precipitation. White
areas represent zero in maps. Purple rectangle area covers the region of SWC.

To further test the contribution of extreme precipitation to the degree patterns, top
and bottom 5% extreme PA data are replaced by the random middle magnitude PA. Then
we perform the same analysis to the new time series. Figure 2b,d,f,h show the results.
Comparing with Figure 2a for real data, much less significant nodes are observed in the
Oceans in Figure 2b. Still, few nodes are in the same locations. Similar results can also be
found for other seasons. It implies that extreme precipitation plays an important role in
forming the teleconnection degree patterns.

The distributions of the negatively weighted out-degree are shown in Figure 3. We
find that they are very different form the positive case. For instance, we find some major
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negative degree patterns in the Equatorial Atlantic and west Equatorial Pacific, and few
nodes in the east Equatorial Pacific for DJF (see Figure 3a), which are the opposite of the
results for the positive weighted out-degree in Figure 2a. Similar results are also found for
other seasons (see Figure 3c,e,g). In fact, there are correlations for the SSTA itself between the
two regions i.e., the SSTA in the east Equatorial Pacific is negative correlated with the SSTA
in the west Equatorial Pacific. Such anti-correlations can lead to the positive and negatively
correlated patterns between the PA in SWC and SSTA in the two different regions.
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(b,d,f,h) same as (a,c,e,g) but for replacing top and bottom 5% extreme precipitation middle magnitude precipitation.
White areas represent zero in maps. Purple rectangle area covers the region of SWC.

The PA in different locations within SWC could be influenced by different weather
systems as suggested by Ma et al. [4] and Shi et al. [7]. To test the correlations between the
SSTA and PA nodes, we calculate the weighted in-degree for the PA nodes by Equation (6).
We find that some nodes within SWC have small in-degree values and several nodes have
strong correlations with the SSTA as shown in Figures 4 and 5. The spatial distribution
of in-degree is inhomogeneous and varies with seasons. The important nodes with large
in-degree values are almost located in the left- and right- bottom corners of SWC which are
close to the Indian, and west Pacific Ocean, respectively. Therefore, these nodes of SWC
are easier to be influenced by the Indian and the East Asian monsoons than other nodes in
SWC. Note that the largest positive and negative weighted in-degree nodes are the same
for MAM (see Figures 4b and 5b). It implies that the most sensitive region in SWC respect
to the SSTA can keep both two kinds of correlations.
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Figure 4. (Color online) Distributions of the positive weighted in-degrees for (a) DJF, (b) MAM,
(c) JJA and (d) SON in SWC. I1,1, I5,1, and I4,11 are the important nodes in SWC with the largest
positive weighted in-degree in a season.
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Figure 5. (Color online) Distributions of the negative weighted in-degrees for (a) DJF, (b) MAM,
(c) JJA and (d) SON in SWC. I1,11, I1,1, I3,3, I1,2 are the important nodes in SWC with the largest
negative weighted in-degree in a season.
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3.3. Important Areas

Since the inhomogeneous influence on SWC’s PA is observed, we next consider the
connection between the important nodes within SWC and the largest clusters of the SSTA.
We first select the nodes in SWC with the largest weighted in-degrees (which are more
than 4 times standard deviation above the averaged degree) for each season as shown in
Figures 4 and 5. The largest cluster C1 is identified by the largest successive area where all
the inside SSTA nodes are connected to that important node in SWC. We can obtain the
second largest cluster C2 by using a similar way. Figure 6a shows the cluster C1 (blue) and
C2 (green) are connected to the nodes I1,1 (as shown in Figure 4a) for DJF. Both of them are
positively correlated to I1,1 in DJF. We show the strongest links for C1 and C2 in Figure 6a
and their time delays in Figure 6b. The correlation Ĉ changes with the time lag τ and reaches
to the maximum value at −189 days for C1 and −245 days for C2 in Figure 6b. Similar time
delays are also observed for the other links between I1,1 and different SSTA nodes within
the clusters. Therefore, the cluster C2 in the east Equatorial Pacific performs a longer time
delay that could be useful for long-term prediction. The reason could be related to the El
Niño—Southern Oscillation that arouses warm SST in the central and east Equatorial Pacific
at the beginning, then lead to temperature anomaly in the Indian Ocean [42,44]. The PA in
SWC can be significantly influenced by the El Niño through the bridge of the East Asian
monsoon and Indian monsoon [44]. We show that the cluster C1 and C2 are negatively
correlated with the nodes I1,11 (as shown in Figure 5a) for DJF in Figure 6c. The cluster C1
locates in the Equatorial Atlantic that can arouse a series of quasi-stationary wave trains.
Such waves can propagate eastward leading to an anticyclone (cyclone) in upper air of
SWC, and motivating (inhibiting) PA [42]. The time delay corresponding to the maximum
correlation is −190 days for the strongest link of C1 (see Figure 6d). There is a similar time
delay −104 days for the link of C2 in the Middle East Pacific (see Figure 6d).
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Figure 6. (Color online) Locations of the largest cluster C1 (blue) and the second largest cluster C2

(green) for (a) positively correlated with the node I1,1 and (c) negatively correlated with the node
I1,11 in SWC for DJF. The blue and green arrows represent the strongest links from C1 and C2 to that
node in SWC. (b,d) The correlation Ĉ as a function of the time lag τ corresponding to the strongest
links in map (left), respectively. Dashed black line shows the absolute maximum of the correlation Ĉ.
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For MAM, the links between the SSTA and PA in SWC are much higher than other
three seasons. The largest cluster size is also larger than other seasons. Figure 7a shows that
the cluster C1 in the west Pacific and C2 in the Equatorial Atlantic are positively correlated
with the nodes I1,1 in MAM. For the negative correlation, however, the clusters C1 and C2
mainly distributed in the east Pacific and Indian Ocean (see Figure 7c). Therefore, most of
the correlation patterns come from the Pacific, which implies that the SSTA in the tropical
Pacific has a crucial impact on PA in SWC. Moreover, the time delays of the strongest links
for C1 are within 100 days shorter than that of DJF, but the strength of links is stronger
(Figure 7b,d). Therefore, we suggest that the proceeding winter SSTA probably influences
the PA in MAM. The SSTA in the east Pacific often reaches to the peak during winter [40].
It will further influence the circulation systems, i.e., the Walker atmospheric circulation
and the Hadley circulation in the tropical Pacific then cause climate anomalies in East Asia
including SWC after around three months.
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Figure 7. (Color online) Locations of the largest cluster C1 (blue) and the second largest cluster C2

(green) that are (a) positively correlated with the node I1,1 and (c) negatively correlated with the node
I1,1 in SWC for MAM. The blue and green arrows represent the strongest links from C1 and C2 to that
node in SWC. (b,d) The correlation Ĉ as a function of the time lag τ corresponding to the strongest
links in map (left), respectively. Dashed black line shows the absolute maximum of the correlation Ĉ.

Figures 8 and 9 show the same analysis as Figures 6 and 7, but for JJA and SON,
respectively. We find that the cluster sizes are smaller and the correlations are weaker than
DJF and MAM. This is given that much more moisture is generated by local sources in
SWC for JJA. Besides, we also find that the Indian Ocean and Pacific are important areas to
influence the SWC in JJA and SON. Thus, considering both the Indian Ocean and Pacific
could better improve the prediction of the rainfall in SWC [45,46].
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I3,3 in SWC for JJA. The blue and green arrows represent the strongest links from C1 and C2 to that
node in SWC. (b,d) The correlation Ĉ as a function of the time lag τ corresponding to the strongest
links in map (left), respectively. Dashed black line shows the absolute maximum of the correlation Ĉ.
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4. Conclusions

In this study, we employ a multi-variable complex network method to study the
teleconnection between the SSTA and PA in SWC. We reveal that there are the most links
between PA in SWC and the global SSTA network in Spring, followed by Winter, Summer
and Autumn, respectively. According to the weighted out-degree of the network, we
show the positive and negative correlation patterns over the global and find that most
of the out-degree patterns emerge in the Equatorial Indian, Pacific and Atlantic Oceans
which are mainly contributed by extreme PA in SWC. The mechanisms could be related to
atmospheric bridge function of East Asian and Indian monsoons for the Equatorial Indian
and Pacific Oceans. For the links between SWC and the Atlantic SSTA, the long-range
Atlantic, long-range planetary waves account for the teleconnections [42,47]. The seasonal
variation of the East Asian and Indian monsoon system mainly presents south wind in
Summer and north wind in Winter, which can result that the out-degree patterns change
with seasons.

According to the weighted in-degree in SWC, we find that the teleconnections are
dominated by some important nodes. Therefore, we obtain the two largest clusters in the
Oceans which are connected to the important nodes in the SWC. The time delay of the
strongest link between the tropical east Pacific cluster and the important node of SWC is
respectively −245 days for DJF, −75 days for MAM, −62 days for JJA, and −65 days for
SON. Such teleconnection patterns over the global and their time delays for four seasons
have not been reported in previous studies. These results are based on a complex network
analysis and could be useful in improving the prediction of rainfall in SWC. The potential
rainfall prediction and its mechanism need further analysis based on climate models and
observation data.
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